Time to steady-state (TSS) can be estimated with PKNCA using either a monoexponential increase toward an asymptote or by a linear regression of the last points. According to Maganti (2008), the monoexponential method is preferred.
TSS can be estimated using either method using the
pk.tss() function in PKNCA.
Illustrating time to steady-state, the example from the superposition vignette will be used.
library(PKNCA)
theoph_corrected <- as.data.frame(datasets::Theoph)
theoph_corrected$conc[theoph_corrected$Time == 0] <- 0
conc_obj <- PKNCAconc(theoph_corrected, conc~Time|Subject)
steady_state <- superposition(conc_obj, dose.times = seq(0, 168 - 12, by=12), tau=168, n.tau=1)
# Add some noise to the data so that it seems more reasonable
steady_state_noise <- steady_state
steady_state_noise$conc <-
  withr::with_seed(
    seed = 5,
    steady_state_noise$conc*exp(rnorm(nrow(steady_state_noise), mean = 0, sd = 0.1))
  )Examine the data graphically.
The below code estimates four different types of monoexponential time to steady-state:
tss_mono <-
  pk.tss.monoexponential(
    conc = steady_state_noise$conc,
    time = steady_state_noise$time,
    subject = steady_state_noise$Subject,
    time.dosing = seq(0, 168 - 12, by=12)
  )
#> Warning in nlme.formula(conc ~ ctrough.ss * (1 - exp(tss.constant * time/tss)),
#> : Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase
#> 'msMaxIter'!
tss_mono
#>    subject tss.monoexponential.population tss.monoexponential.popind
#> 1        1                       26.41701                   36.94318
#> 2       10                       26.41701                   31.95399
#> 3       11                       26.41701                   22.79698
#> 4       12                       26.41701                   26.59824
#> 5        2                       26.41701                   23.53959
#> 6        3                       26.41701                   24.72281
#> 7        4                       26.41701                   25.73782
#> 8        5                       26.41701                   26.93379
#> 9        6                       26.41701                   23.21919
#> 10       7                       26.41701                   25.39819
#> 11       8                       26.41701                   24.54293
#> 12       9                       26.41701                   24.61733
#>    tss.monoexponential.individual tss.monoexponential.single
#> 1                        40.65290                   27.87592
#> 2                        24.72591                   27.87592
#> 3                        20.18663                   27.87592
#> 4                        22.58610                   27.87592
#> 5                        25.45251                   27.87592
#> 6                        29.97015                   27.87592
#> 7                        21.60401                   27.87592
#> 8                        25.04023                   27.87592
#> 9                        23.53884                   27.87592
#> 10                       31.37369                   27.87592
#> 11                       32.02870                   27.87592
#> 12                       26.01334                   27.87592The fraction of steady-state required for time to steady-state can be
changed with the tss.fraction argument (see
?pk.tss.monoexponential).
The stepwise linear method estimates if the slope of the predose concentrations is statistically significant starting from the last measurement and moving backward in time. It has bias in that more individuals will move the time to steady-state to a late time point.