## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = F, warning = FALSE ) ## ----eval=T, echo=F, fig.align='center', out.width='80%', fig.cap="Araucaria forest in southern Brazil"---- knitr::include_graphics("vignettes_img/paranapine2.jpeg") ## ----eval = T----------------------------------------------------------------- # Load RuHere package library(RuHere) ## ----------------------------------------------------------------------------- # set_gbif_credentials( # gbif_username = "your_username", # gbif_email = "your_email@domain.com", # gbif_password = "your_password", # verbose = FALSE # ) ## ----------------------------------------------------------------------------- # set_specieslink_credentials(specieslink_key = "your_api_key", verbose = FALSE) ## ----------------------------------------------------------------------------- # # Store downloads in a temporary directory # # In your own project, replace this with a permanent directory # output_dir <- file.path(tempdir(), "occ_data") # dir.create(output_dir) ## ----------------------------------------------------------------------------- # # Prepare the taxonomic query # gbif_prep <- prepare_gbif_download(species = "Araucaria angustifolia") ## ----------------------------------------------------------------------------- # gbif_prep # #> with_coordinates n_records species usageKey scientificName canonicalName # #> 1 3056 15696 Araucaria angustifolia 2684940 Araucaria angustifolia (Bertol.) Kuntze Araucaria angustifolia # #> rank status confidence matchType kingdom phylum order family genus kingdomKey phylumKey classKey # #> 1 SPECIES ACCEPTED 97 EXACT Plantae Tracheophyta Pinales Araucariaceae Araucaria 6 7707728 194 # #> orderKey familyKey genusKey speciesKey class verbatim_name # #> 1 640 3924 2684910 2684940 Pinopsida Araucaria angustifolia ## ----------------------------------------------------------------------------- # # Submit the request to GBIF # gbif_req <- request_gbif( # gbif_info = gbif_prep, # hasCoordinate = TRUE, # Retrieve only records with coordinates # hasGeospatialIssue = FALSE # Exclude records with geospatial issues # ) ## ----------------------------------------------------------------------------- # rgbif::occ_download_wait(gbif_req) # #> status: succeeded # #> download is done, status: succeeded ## ----------------------------------------------------------------------------- # # Import the processed file # occ_gbif <- import_gbif(request_key = gbif_req) # #> Download file size: 2.04 MB ## ----------------------------------------------------------------------------- # head(occ_gbif) # #> # A tibble: 6 × 25 # #> scientificName acceptedScientificName occurrenceID collectionCode catalogNumber decimalLongitude #> decimalLatitude # #> #> # #> 1 Araucaria angustifolia (Bert… Araucaria angustifoli… urn:catalog… ALTA-VP 74703 -52.8 #> -26.4 # #> 2 Araucaria angustifolia (Bert… Araucaria angustifoli… https://www… Observations 329390275 -49.2 #> -25.4 # #> 3 Araucaria angustifolia (Bert… Araucaria angustifoli… https://www… Observations 329483122 -49.5 #> -28.0 # #> 4 Araucaria angustifolia (Bert… Araucaria angustifoli… https://www… Observations 329455309 -74.0 #> 4.68 # #> 5 Araucaria angustifolia (Bert… Araucaria angustifoli… https://www… Observations 329576016 -45.6 #> -22.7 # #> 6 Araucaria angustifolia (Bert… Araucaria angustifoli… https://www… Observations 329805643 175. #> -39.9 # #> # ℹ 18 more variables: coordinateUncertaintyInMeters , elevation , continent , countryCode , # #> # stateProvince , municipality , locality , verbatimLocality , year , eventDate , # #> # recordedBy , identifiedBy , basisOfRecord , occurrenceRemarks , habitat , datasetName , # #> # datasetKey , speciesKey ## ----------------------------------------------------------------------------- # # SpeciesLink: Filtering by Species # occ_sl <- get_specieslink(species = "Araucaria angustifolia", verbose = FALSE) # # # BIEN: Natives only, excluding cultivated records # occ_bien <- get_bien(species = "Araucaria angustifolia", # cultivated = FALSE, # natives.only = TRUE, # verbose = FALSE) # #> Getting page 1 of records # # # iDigBio: # occ_idig <- get_idigbio(species = "Araucaria angustifolia") ## ----------------------------------------------------------------------------- # all_occ <- bind_here(occ_gbif, occ_sl, occ_bien, occ_idig) # #> Error: All datasets must have the same columns. ## ----------------------------------------------------------------------------- # # Standardizing GBIF # gbif_std <- format_columns(occ_gbif, metadata = "gbif") # # # Standardizing SpeciesLink (checking for encoding issues) # sl_std <- format_columns(occ_sl, metadata = "specieslink", check_encoding = TRUE) # #> Warning: NAs introduced by coercion> # # # Standardizing BIEN # bien_std <- format_columns(occ_bien, metadata = "bien") # # # Standardizing iDigBio # idig_std <- format_columns(occ_idig, metadata = "idigbio") ## ----------------------------------------------------------------------------- # all_occ <- bind_here(gbif_std, sl_std, bien_std, idig_std) # # Number of records by database # table(all_occ$data_source) # #> bien gbif idigbio specieslink # #> 137 3000 1271 1224 ## ----eval = TRUE-------------------------------------------------------------- # Import data example data("puma_atlanticr", package = "RuHere") # Create metadata to standardize the occurrences puma_metadata <- create_metadata(occ = puma_atlanticr, scientificName = "actual_species_name", decimalLongitude = "longitude", decimalLatitude = "latitude", elevation = "altitude", country = "country", stateProvince = "state", municipality = "municipality", locality = "study_location", year = "year_finish", habitat = "vegetation_type", datasetName = "reference") # Now, we can use this metadata to standardize the columns puma_occ <- format_columns(occ = puma_atlanticr, metadata = puma_metadata, binomial_from = "actual_species_name", data_source = "atlanticr") head(puma_occ[, 1:5]) ## ----------------------------------------------------------------------------- # occ_araucaria_cougar <- bind_here(all_occ, #Occurrences of Araucaria # puma_occ) #Occurrences of cougar # # Number of records per species # table(occ_araucaria_cougar$species) # #> Araucaria angustifolia Puma concolor # #> 5632 139 ## ----------------------------------------------------------------------------- # # Convert to spatial object # occ_spatial <- spatialize(occ = occ_araucaria_cougar) # # # Load mapview # library(mapview) # # # Plot the distribution using mapview # mapview(occ_spatial, zcol = "species", layer.name = "Species", cex = 4) ## ----IMG01, eval=T, echo=F, fig.align='center', out.width='80%'--------------- knitr::include_graphics("vignettes_img/IMG01.jpeg")