## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) options(rmarkdown.html_vignette.check_title = FALSE) ## ----setup-------------------------------------------------------------------- library(TensorMCMC) ## ----example, echo=TRUE, eval=TRUE-------------------------------------------- set.seed(2026) n <- 100 # number of observations p <- 7 # first tensor dimension d <- 5 # second tensor dimension pgamma <- 2 # number of scalar covariates x <- array(rnorm(n*p*d), dim = c(n,p,d)) #Tensor predictor array z <- matrix(rnorm(n*pgamma), n, pgamma) #Scalar covariates y <- rnorm(n) #Response ## ----------------------------------------------------------------------------- ## Fitting Tensor Regression fit <- tensor.reg(z, x, y, nsweep = 10, rank = 2) fit ## Predictions pred <- predict_tensor_reg(fit, x, z) head(pred) ## Cross-Validation cv <- cv.tensor.reg(x, z, y, ranks = 1:2, nsweep = 5) cv ## ----plot-pred, fig.width=8, fig.height=6------------------------------------- ## Scatter plot of predicted vs actual plot(y, pred, pch = 19, col = "blue", main = "Predicted vs Actual Response", xlab = "Actual y", ylab = "Predicted y") abline(a = 0, b = 1, col = "red", lty = 2) ## ----scatter-x1-pred, fig.width=8, fig.height=6------------------------------- x1 <- x[,1,1] ## Scatter plot of Predicted vs Tensor Covariate plot(x1, pred, pch = 19, col = "purple", main = "Predicted vs Tensor Covariate", xlab = "Tensor Covariate", ylab = "Predicted y") abline(lm(pred ~ x1), col = "green", lty = 2)