| Type: | Package | 
| Title: | A Finer Way to Render 3D Illustrated Objects in 'grid' Using Affine Transformations | 
| Version: | 0.1.3 | 
| Description: | Dilate, permute, project, reflect, rotate, shear, and translate 2D and 3D points. Supports parallel projections including oblique projections such as the cabinet projection as well as axonometric projections such as the isometric projection. Use 'grid's "affine transformation" feature to render illustrated flat surfaces. | 
| URL: | https://trevorldavis.com/R/affiner/ | 
| BugReports: | https://github.com/trevorld/affiner/issues | 
| License: | MIT + file LICENSE | 
| Imports: | graphics, grDevices, grid, R6, utils | 
| Suggests: | aRtsy, ggplot2, gridpattern, gtable, knitr, ragg (≥ 1.3.3), rgl, rlang, rmarkdown, stats, testthat (≥ 3.0.0), vdiffr, withr | 
| VignetteBuilder: | knitr, ragg, rmarkdown | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.3.1 | 
| Config/testthat/edition: | 3 | 
| NeedsCompilation: | no | 
| Packaged: | 2024-12-02 06:12:41 UTC; trevorld | 
| Author: | Trevor L. Davis | 
| Maintainer: | Trevor L. Davis <trevor.l.davis@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2024-12-02 06:40:02 UTC | 
affiner: A Finer Way to Render 3D Illustrated Objects in 'grid' Using Affine Transformations
Description
 
Dilate, permute, project, reflect, rotate, shear, and translate 2D and 3D points. Supports parallel projections including oblique projections such as the cabinet projection as well as axonometric projections such as the isometric projection. Use 'grid's "affine transformation" feature to render illustrated flat surfaces.
Package options
The following affiner function arguments may be set globally via base::options():
- affiner_angular_unit
- The default for the - unitargument used by- angle()and- as_angle(). The default for this option is "degrees".
- affiner_grid_unit
- The default for the - unitargument used by- affine_settings(). The default for this option is "inches".
The following cli options may also be of interest:
- cli.unicode
- Whether UTF-8 character support should be assumed. Along with - l10n_info()used to determine the default of the- use_unicodeargument of- format.angle()and- print.angle().
Author(s)
Maintainer: Trevor L. Davis trevor.l.davis@gmail.com (ORCID)
See Also
Useful links:
1D coordinate vector R6 Class
Description
Coord1D is an R6::R6Class() object representing two-dimensional points
represented by Cartesian Coordinates.
Active bindings
- xw
- A two-column matrix representing the homogeneous coordinates. The first column is the "x" coordinates and the second column is all ones. 
- x
- A numeric vector of x-coordinates. 
Methods
Public methods
Method new()
Usage
Coord1D$new(xw)
Arguments
- xw
- A matrix with three columns representing (homogeneous) coordinates. The first column represents x coordinates and the last column is all ones. Column names should be "x" and "w". 
Method print()
Usage
Coord1D$print(n = NULL, ...)
Arguments
- n
- Number of coordinates to print. If - NULLprint all of them.
- ...
- Passed to - format.default().
Method project()
Usage
Coord1D$project(point = as_point1d("origin"), ...)Arguments
- point
- A Point1D object of length one representing the point you with to reflect across or project to or an object coercible to one by - as_point1d(point, ...)such as "origin".
- ...
- Passed to - project1d().
Method reflect()
Usage
Coord1D$reflect(point = as_point1d("origin"), ...)Arguments
- point
- A Point1D object of length one representing the point you with to reflect across or project to or an object coercible to one by - as_point1d(point, ...)such as "origin".
- ...
- Passed to - reflect1d().
Method scale()
Usage
Coord1D$scale(x_scale = 1)
Arguments
- x_scale
- Scaling factor to apply to x coordinates 
Method translate()
Usage
Coord1D$translate(x = as_coord1d(0), ...)
Arguments
Method transform()
Usage
Coord1D$transform(mat = transform1d())
Arguments
- mat
- A 2x2 matrix representing a post-multiplied affine transformation matrix. The last column must be equal to - c(0, 1). If the last row is- c(0, 1)you may need to transpose it to convert it from a pre-multiplied affine transformation matrix to a post-multiplied one. If a 1x1 matrix we'll quietly add a final column/row equal to- c(0, 1).
Method clone()
The objects of this class are cloneable with this method.
Usage
Coord1D$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
Examples
p <- as_coord1d(x = rnorm(100, 2))
print(p, n = 10L)
pc <- mean(p) # Centroid
# method chained affine transformation matrices are auto-pre-multiplied
p$
  translate(-pc)$
  reflect("origin")$
  print(n = 10L)
2D coordinate vector R6 Class
Description
Coord2D is an R6::R6Class() object representing two-dimensional points
represented by Cartesian Coordinates.
Active bindings
- xyw
- A three-column matrix representing the homogeneous coordinates. The first two columns are "x" and "y" coordinates and the third column is all ones. 
- x
- A numeric vector of x-coordinates. 
- y
- A numeric vector of y-coordinates. 
Methods
Public methods
Method new()
Usage
Coord2D$new(xyw)
Arguments
- xyw
- A matrix with three columns representing (homogeneous) coordinates. The first two columns represent x and y coordinates and the last column is all ones. Column names should be "x", "y", and "w". 
Method permute()
Usage
Coord2D$permute(permutation = c("xy", "yx"))Arguments
- permutation
- Either "xy" (no permutation) or "yx" (permute x and y axes) 
Method print()
Usage
Coord2D$print(n = NULL, ...)
Arguments
- n
- Number of coordinates to print. If - NULLprint all of them.
- ...
- Passed to - format.default().
Method project()
Usage
Coord2D$project(line = as_line2d("x-axis"), ..., scale = 0)Arguments
- line
- A Line2D object of length one representing the line you with to reflect across or project to or an object coercible to one by - as_line2d(line, ...)such as "x-axis" or "y-axis".
- ...
- Passed to - project2d()
- scale
- Oblique projection scale factor. A degenerate - 0value indicates an orthogonal projection.
Method reflect()
Usage
Coord2D$reflect(line = as_line2d("x-axis"), ...)Arguments
- line
- A Line2D object of length one representing the line you with to reflect across or project to or an object coercible to one by - as_line2d(line, ...)such as "x-axis" or "y-axis".
- ...
- Passed to - reflect2d().
Method rotate()
Usage
Coord2D$rotate(theta = angle(0), ...)
Arguments
- theta
- An - angle()object of length one or an object coercible to one by- as_angle(theta, ...).
- ...
- Passed to - as_angle().
Method scale()
Usage
Coord2D$scale(x_scale = 1, y_scale = x_scale)
Arguments
- x_scale
- Scaling factor to apply to x coordinates 
- y_scale
- Scaling factor to apply to y coordinates 
Method shear()
Usage
Coord2D$shear(xy_shear = 0, yx_shear = 0)
Arguments
- xy_shear
- Horizontal shear factor: - x = x + xy_shear * y
- yx_shear
- Vertical shear factor: - y = yx_shear * x + y
Method translate()
Usage
Coord2D$translate(x = as_coord2d(0, 0), ...)
Arguments
Method transform()
Usage
Coord2D$transform(mat = transform2d())
Arguments
- mat
- A 3x3 matrix representing a post-multiplied affine transformation matrix. The last column must be equal to - c(0, 0, 1). If the last row is- c(0, 0, 1)you may need to transpose it to convert it from a pre-multiplied affine transformation matrix to a post-multiplied one. If a 2x2 matrix (such as a 2x2 post-multiplied 2D rotation matrix) we'll quietly add a final column/row equal to- c(0, 0, 1).
Method clone()
The objects of this class are cloneable with this method.
Usage
Coord2D$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
Examples
p <- as_coord2d(x = rnorm(100, 2), y = rnorm(100, 2))
print(p, n = 10)
pc <- mean(p) # Centroid
# method chained affine transformation matrices are auto-pre-multiplied
p$
  translate(-pc)$
  shear(x = 1, y = 0)$
  reflect("x-axis")$
  rotate(90, "degrees")$
  print(n = 10)
3D coordinate vector R6 Class
Description
Coord3D is an R6::R6Class() object representing three-dimensional points
represented by Cartesian Coordinates.
Active bindings
- xyzw
- A four-column matrix representing the homogeneous coordinates. The first three columns are "x", "y", and "z" coordinates and the fourth column is all ones. 
- x
- A numeric vector of x-coordinates. 
- y
- A numeric vector of y-coordinates. 
- z
- A numeric vector of z-coordinates. 
Methods
Public methods
Method new()
Usage
Coord3D$new(xyzw)
Arguments
- xyzw
- A matrix with four columns representing (homogeneous) coordinates. The first three columns represent x, y, and z coordinates and the last column is all ones. Column names should be "x", "y", "z", and "w". 
Method permute()
Usage
Coord3D$permute(permutation = c("xyz", "xzy", "yxz", "yzx", "zyx", "zxy"))Arguments
- permutation
- Either "xyz" (no permutation), "xzy" (permute y and z axes), "yxz" (permute x and y axes), "yzx" (x becomes z, y becomes x, z becomes y), "zxy" (x becomes y, y becomes z, z becomes x), "zyx" (permute x and z axes) 
Method print()
Usage
Coord3D$print(n = NULL, ...)
Arguments
- n
- Number of coordinates to print. If - NULLprint all of them.
- ...
- Passed to - format.default().
Method project()
Usage
Coord3D$project(
  plane = as_plane3d("xy-plane"),
  ...,
  scale = 0,
  alpha = angle(45, "degrees")
)Arguments
- plane
- A Plane3D object of length one representing the plane you wish to reflect across or project to or an object coercible to one using - as_plane3d(plane, ...)such as "xy-plane", "xz-plane", or "yz-plane".
- ...
- Passed to - project3d().
- scale
- Oblique projection foreshortening scale factor. A (degenerate) - 0value indicates an orthographic projection. A value of- 0.5is used by a “cabinet projection” while a value of- 1.0is used by a “cavalier projection”.
- alpha
- Oblique projection angle (the angle the third axis is projected going off at). An - angle()object or one coercible to one with- as_angle(alpha, ...). Popular angles are 45 degrees, 60 degrees, and- arctangent(2)degrees.
Method reflect()
Usage
Coord3D$reflect(plane = as_plane3d("xy-plane"), ...)Arguments
- plane
- A Plane3D object of length one representing the plane you wish to reflect across or project to or an object coercible to one using - as_plane3d(plane, ...)such as "xy-plane", "xz-plane", or "yz-plane".
- ...
- Passed to - reflect3d().
Method rotate()
Usage
Coord3D$rotate(axis = as_coord3d("z-axis"), theta = angle(0), ...)Arguments
- axis
- A Coord3D class object or one that can coerced to one by - as_coord3d(axis, ...). The- axisrepresents the axis to be rotated around.
- theta
- An - angle()object of length one or an object coercible to one by- as_angle(theta, ...).
- ...
- Passed to - rotate3d().
Method scale()
Usage
Coord3D$scale(x_scale = 1, y_scale = x_scale, z_scale = x_scale)
Arguments
- x_scale
- Scaling factor to apply to x coordinates 
- y_scale
- Scaling factor to apply to y coordinates 
- z_scale
- Scaling factor to apply to z coordinates 
Method shear()
Usage
Coord3D$shear( xy_shear = 0, xz_shear = 0, yx_shear = 0, yz_shear = 0, zx_shear = 0, zy_shear = 0 )
Arguments
- xy_shear
- Shear factor: - x = x + xy_shear * y + xz_shear * z
- xz_shear
- Shear factor: - x = x + xy_shear * y + xz_shear * z
- yx_shear
- Shear factor: - y = yx_shear * x + y + yz_shear * z
- yz_shear
- Shear factor: - y = yx_shear * x + y + yz_shear * z
- zx_shear
- Shear factor: - z = zx_shear * x + zy_shear * y + z
- zy_shear
- Shear factor: - z = zx_shear * x + zy_shear * y + z
Method translate()
Usage
Coord3D$translate(x = as_coord3d(0, 0, 0), ...)
Arguments
Method transform()
Usage
Coord3D$transform(mat = transform3d())
Arguments
- mat
- A 4x4 matrix representing a post-multiplied affine transformation matrix. The last column must be equal to - c(0, 0, 0, 1). If the last row is- c(0, 0, 0, 1)you may need to transpose it to convert it from a pre-multiplied affine transformation matrix to a post-multiplied one. If a 3x3 matrix (such as a 3x3 post-multiplied 3D rotation matrix) we'll quietly add a final column/row equal to- c(0, 0, 0, 1).
Method clone()
The objects of this class are cloneable with this method.
Usage
Coord3D$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
Examples
p <- as_coord3d(x = rnorm(100, 2), y = rnorm(100, 2), z = rnorm(100, 2))
print(p, n = 10)
pc <- mean(p) # Centroid
# method chained affine transformation matrices are auto-pre-multiplied
p$
  translate(-pc)$
  reflect("xy-plane")$
  rotate("z-axis", degrees(90))$
  print(n = 10)
2D lines R6 Class
Description
Line2D is an R6::R6Class() object representing two-dimensional lines.
Public fields
- a
- Numeric vector that parameterizes the line via the equation - a * x + b * y + c = 0.
- b
- Numeric vector that parameterizes the line via the equation - a * x + b * y + c = 0.
- c
- Numeric vector that parameterizes the line via the equation - a * x + b * y + c = 0.
Methods
Public methods
Method new()
Usage
Line2D$new(a, b, c)
Arguments
- a
- Numeric vector that parameterizes the line via the equation - a * x + b * y + c = 0.
- b
- Numeric vector that parameterizes the line via the equation - a * x + b * y + c = 0.
- c
- Numeric vector that parameterizes the line via the equation - a * x + b * y + c = 0.
Method print()
Usage
Line2D$print(n = NULL, ...)
Arguments
- n
- Number of lines to print. If - NULLprint all of them.
- ...
- Passed to - format.default().
Method clone()
The objects of this class are cloneable with this method.
Usage
Line2D$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
Examples
p1 <- as_coord2d(x = 5, y = 10)
p2 <- as_coord2d(x = 7, y = 12)
theta <- degrees(45)
as_line2d(theta, p1)
as_line2d(p1, p2)
3D planes R6 Class
Description
Plane3D is an R6::R6Class() object representing three-dimensional planes.
Public fields
- a
- Numeric vector that parameterizes the plane via the equation - a * x + b * y + c * z + d = 0.
- b
- Numeric vector that parameterizes the plane via the equation - a * x + b * y + c * z + d = 0.
- c
- Numeric vector that parameterizes the plane via the equation - a * x + b * y + c * z + d = 0.
- d
- Numeric vector that parameterizes the plane via the equation - a * x + b * y + c * z + d = 0.
Methods
Public methods
Method new()
Usage
Plane3D$new(a, b, c, d)
Arguments
- a
- Numeric vector that parameterizes the plane via the equation - a * x + b * y + c * z + d = 0.
- b
- Numeric vector that parameterizes the plane via the equation - a * x + b * y + c * z + d = 0.
- c
- Numeric vector that parameterizes the plane via the equation - a * x + b * y + c * z + d = 0.
- d
- Numeric vector that parameterizes the plane via the equation - a * x + b * y + c * z + d = 0.
Method print()
Usage
Plane3D$print(n = NULL, ...)
Arguments
- n
- Number of lines to print. If - NULLprint all of them.
- ...
- Passed to - format.default().
Method clone()
The objects of this class are cloneable with this method.
Usage
Plane3D$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
1D points R6 Class
Description
Point1D is an R6::R6Class() object representing one-dimensional points.
Public fields
- a
- Numeric vector that parameterizes the point via the equation - a * x + b = 0.
- b
- Numeric vector that parameterizes the point via the equation - a * x + b = 0.
Methods
Public methods
Method new()
Usage
Point1D$new(a, b)
Arguments
- a
- Numeric vector that parameterizes the line via the equation - a * x + b = 0.
- b
- Numeric vector that parameterizes the line via the equation - a * x + b = 0.
Method print()
Usage
Point1D$print(n = NULL, ...)
Arguments
- n
- Number of lines to print. If - NULLprint all of them.
- ...
- Passed to - format.default().
Method clone()
The objects of this class are cloneable with this method.
Usage
Point1D$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
Examples
p1 <- as_point1d(a = 1, b = 5)
Compute Euclidean norm
Description
abs() computes the Euclidean norm for Coord2D class objects and Coord3D class objects.
Usage
## S3 method for class 'Coord1D'
abs(x)
## S3 method for class 'Coord2D'
abs(x)
## S3 method for class 'Coord3D'
abs(x)
Arguments
| x | 
Value
A numeric vector
Examples
  z <- complex(real = 1:4, imaginary = 1:4)
  p <- as_coord2d(z)
  abs(p) # Euclidean norm
  # Less efficient ways to calculate same Euclidean norms
  sqrt(p * p) # `*` dot product
  distance2d(p, as_coord2d(0, 0, 0))
  # In {base} R `abs()` calculates Euclidean norm of complex numbers
  all.equal(abs(p), abs(z))
  all.equal(Mod(p), Mod(z))
  p3 <- as_coord3d(x = 1:4, y = 1:4, z = 1:4)
  abs(p3)
Affine transformation grob
Description
affineGrob() is a grid grob function to facilitate
using the group affine transformation features introduced in R 4.2.
Usage
affineGrob(
  grob,
  vp_define = NULL,
  transform = NULL,
  vp_use = NULL,
  name = NULL,
  gp = grid::gpar(),
  vp = NULL
)
grid.affine(...)
Arguments
| grob | A grid grob to perform affine transformations on.  Passed to  | 
| vp_define | 
 | 
| transform | An affine transformation function.
If  | 
| vp_use | 
 | 
| name | A character identifier (for grid). | 
| gp | A  | 
| vp | A  | 
| ... | Passed to  | 
Details
Not all graphics devices provided by grDevices or other R packages support the affine transformation feature introduced in R 4.2.
If isTRUE(getRversion() >= '4.2.0') then the active graphics device should support this feature if isTRUE(grDevices::dev.capabilities()$transformations).
In particular the following graphics devices should support the affine transformation feature:
- R's - grDevices::pdf()device
- R's 'cairo' devices e.g. - grDevices::cairo_pdf(),- grDevices::png(type = 'cairo'),- grDevices::svg(),- grDevices::x11(type = 'cairo'), etc. If- isTRUE(capabilities('cairo'))then R was compiled with support for the 'cairo' devices .
- R's 'quartz' devices (since R 4.3.0) e.g. - grDevices::quartz(),- grDevices::png(type = 'quartz'), etc. If- isTRUE(capabilities('aqua'))then R was compiled with support for the 'quartz' devices (generally only- TRUEon macOS systems).
-  ragg's devices (since v1.3.0) e.g.ragg::agg_png(),ragg::agg_capture(), etc.
Value
A grid::gTree() (grob) object of class "affine".
As a side effect grid.affine() draws to the active graphics device.
See Also
See affine_settings() for computing good transform and vp_use settings.
See https://www.stat.auckland.ac.nz/~paul/Reports/GraphicsEngine/groups/groups.html
for more information about the group affine transformation feature.
See isocubeGrob() which wraps this function to render isometric cubes.
Examples
if (require("grid")) {
  grob <- grobTree(rectGrob(gp = gpar(fill = "blue", col = NA)),
                   circleGrob(gp=gpar(fill="yellow", col = NA)),
                   textGrob("RSTATS", gp=gpar(fontsize=32)))
  grid.newpage()
  pushViewport(viewport(width=unit(4, "in"), height=unit(2, "in")))
  grid.draw(grob)
  popViewport()
}
if (require("grid") &&
    getRversion() >= "4.2.0" &&
    isTRUE(dev.capabilities()$transformations)) {
  # Only works if active graphics device supports affine transformations
  # such as `png(type="cairo")` on R 4.2+
  vp_define <- viewport(width=unit(2, "in"), height=unit(2, "in"))
  affine <- affineGrob(grob, vp_define=vp_define)
  grid.newpage()
  pushViewport(viewport(width=unit(4, "in"), height=unit(2, "in")))
  grid.draw(affine)
  popViewport()
}
if (require("grid") &&
    getRversion() >= "4.2.0" &&
    isTRUE(dev.capabilities()$transformations)) {
  # Only works if active graphics device supports affine transformations
  # such as `png(type="cairo")` on R 4.2+
  settings <- affine_settings(xy = list(x = c(3/3, 2/3, 0/3, 1/3),
                                        y = c(2/3, 1/3, 1/3, 2/3)),
                              unit = "snpc")
  affine <- affineGrob(grob,
                       vp_define = vp_define,
                       transform = settings$transform,
                       vp_use = settings$vp)
  grid.newpage()
  grid.draw(affine)
}
Compute grid affine transformation feature viewports and transformation functions
Description
affine_settings() computes grid group affine transformation feature viewport and transformation
function settings given the (x,y) coordinates of the corners of the
affine transformed "viewport" one wishes to draw in.
Usage
affine_settings(
  xy = data.frame(x = c(0, 0, 1, 1), y = c(1, 0, 0, 1)),
  unit = getOption("affiner_grid_unit", "inches")
)
Arguments
| xy | An R object with named elements  | 
| unit | Which  | 
Value
A named list with the following group affine transformation feature viewport and functions settings:
- transform
- An affine transformation function to pass to - affineGrob()or- useGrob(). If- getRversion()is less than- "4.2.0"will instead be- NULL.
- vp
- A - grid::viewport()object to pass to- affineGrob()or- useGrob().
- sx
- x-axis sx factor 
- flipX
- whether the affine transformed "viewport" is "flipped" horizontally 
- x
- x-coordinate for viewport 
- y
- y-coordinate for viewport 
- width
- Width of viewport 
- height
- Height of viewport 
- default.units
- Default - grid::unit()for viewport
- angle
- angle for viewport 
Usage in other packages
To avoid taking a dependency on affiner you may copy the source of affine_settings()
into your own package under the permissive Unlicense.  Either use
usethis::use_standalone("trevorld/affiner", "standalone-affine-settings.r") or
copy the file standalone-affine-settings.r into your R directory and add grid
to the Imports of your DESCRIPTION file.
See Also
Intended for use with affineGrob() and grid::useGrob().
See https://www.stat.auckland.ac.nz/~paul/Reports/GraphicsEngine/groups/groups.html
for more information about the group affine transformation feature.
Examples
if (require("grid")) {
  grob <- grobTree(rectGrob(gp = gpar(fill = "blue", col = NA)),
                   circleGrob(gp=gpar(fill="yellow", col = NA)),
                   textGrob("RSTATS", gp=gpar(fontsize=32)))
  grid.newpage()
  pushViewport(viewport(width=unit(4, "in"), height=unit(2, "in")))
  grid.draw(grob)
  popViewport()
}
if (require("grid") &&
    getRversion() >= "4.2.0" &&
    isTRUE(dev.capabilities()$transformations)) {
  # Only works if active graphics device supports affine transformations
  # such as `png(type="cairo")` on R 4.2+
  vp_define <- viewport(width=unit(2, "in"), height=unit(2, "in"))
  settings <- affine_settings(xy = list(x = c(1/3, 0/3, 2/3, 3/3),
                                        y = c(2/3, 1/3, 1/3, 2/3)),
                              unit = "snpc")
  affine <- affineGrob(grob,
                       vp_define=vp_define,
                       transform = settings$transform,
                       vp_use = settings$vp)
  grid.newpage()
  grid.draw(affine)
}
if (require("grid") &&
    getRversion() >= "4.2.0" &&
    isTRUE(dev.capabilities()$transformations)) {
  # Only works if active graphics device supports affine transformations
  # such as `png(type="cairo")` on R 4.2+
  settings <- affine_settings(xy = list(x = c(3/3, 2/3, 0/3, 1/3),
                                        y = c(2/3, 1/3, 1/3, 2/3)),
                              unit = "snpc")
  affine <- affineGrob(grob,
                       vp_define=vp_define,
                       transform = settings$transform,
                       vp_use = settings$vp)
  grid.newpage()
  grid.draw(affine)
}
Get affiner options
Description
affiner_options() returns the affiner package's global options.
Usage
affiner_options(..., default = FALSE)
Arguments
| ... | 
 | 
| default | If  | 
Value
A list of option values.
Note this function does not set option values itself but
this list can be passed to options(), withr::local_options(), or withr::with_options().
See Also
affiner for a high-level description of relevant global options.
Examples
  affiner_options()
  affiner_options(default = TRUE)
  affiner_options(affiner_angular_unit = "pi-radians")
Angle vectors
Description
angle() creates angle vectors with user specified angular unit.
around as_angle() for those angular units.
Usage
angle(x = numeric(), unit = getOption("affiner_angular_unit", "degrees"))
degrees(x)
gradians(x)
pi_radians(x)
radians(x)
turns(x)
Arguments
| x | An angle vector or an object to convert to it (such as a numeric vector) | 
| unit | A string of the desired angular unit.  Supports the following strings
(note we ignore any punctuation and space characters as well as any trailing  
 | 
Value
A numeric vector of class "angle". Its "unit" attribute is a standardized string of the specified angular unit.
See Also
as_angle(), angular_unit(), and angle-methods.
https://en.wikipedia.org/wiki/Angle#Units for more information about angular units.
Examples
  # Different representations of the "same" angle
  angle(180, "degrees")
  angle(pi, "radians")
  angle(0.5, "turns")
  angle(200, "gradians")
  pi_radians(1)
  a1 <- angle(180, "degrees")
  angular_unit(a1)
  is_angle(a1)
  as.numeric(a1, "radians")
  cos(a1)
  a2 <- as_angle(a1, "radians")
  angular_unit(a2)
  is_congruent(a1, a2)
Implemented base methods for angle vectors
Description
We implemented methods for several base generics for the angle() vectors.
Usage
## S3 method for class 'angle'
as.double(x, unit = angular_unit(x), ...)
## S3 method for class 'angle'
as.complex(x, modulus = 1, ...)
## S3 method for class 'angle'
format(x, unit = angular_unit(x), ..., use_unicode = is_utf8_output())
## S3 method for class 'angle'
print(x, unit = angular_unit(x), ..., use_unicode = is_utf8_output())
## S3 method for class 'angle'
abs(x)
Arguments
| x | 
 | 
| unit | A string of the desired angular unit.  Supports the following strings
(note we ignore any punctuation and space characters as well as any trailing  
 | 
| ... | Passed to  | 
| modulus | Numeric vector representing the complex numbers' modulus | 
| use_unicode | If  | 
Details
- Mathematical Ops (in particular - +and- -) for two angle vectors will (if necessary) set the second vector's- angular_unit()to match the first.
-  as.numeric()takes aunitargument which can be used to convert angles into other angular units e.g.angle(x, "degrees") |> as.numeric("radians")to cast a numeric vectorxfrom degrees to radians.
-  abs()will calculate the angle modulo full turns.
- Use - is_congruent()to test if two angles are congruent instead of- ==or- all.equal().
- Not all implemented methods are documented here and since - angle()is a- numeric()class many other S3 generics besides the explicitly implemented ones should also work with it.
Value
Typical values as usually returned by these base generics.
Examples
  # Two "congruent" angles
  a1 <- angle(180, "degrees")
  a2 <- angle(pi, "radians")
  print(a1)
  print(a1, unit = "radians")
  print(a1, unit = "pi-radians")
  cos(a1)
  sin(a1)
  tan(a1)
  # mathematical operations will coerce second `angle()` object to
  # same `angular_unit()` as the first one
  a1 + a2
  a1 - a2
  as.numeric(a1)
  as.numeric(a1, "radians")
  as.numeric(a1, "turns")
  # Use `is_congruent()` to check if two angles are "congruent"
  a1 == a2
  isTRUE(all.equal(a1, a2))
  is_congruent(a1, a2)
  is_congruent(a1, a2, mod_turns = FALSE)
  a3 <- angle(-180, "degrees") # Only congruent modulus full turns
  a1 == a3
  isTRUE(all.equal(a1, a2))
  is_congruent(a1, a3)
  is_congruent(a1, a3, mod_turns = FALSE)
Get/set angular unit of angle vectors
Description
angular_unit() gets/sets the angular unit of angle() vectors.
Usage
angular_unit(x)
angular_unit(x) <- value
Arguments
| x | An  | 
| value | A string of the desired angular unit.  See  | 
Value
angular_unit() returns a string of x's angular unit.
Examples
a <- angle(seq(0, 360, by = 90), "degrees")
angular_unit(a)
print(a)
angular_unit(a) <- "turns"
angular_unit(a)
print(a)
Cast to angle vector
Description
as_angle() casts to an angle() vector
Usage
as_angle(x, unit = getOption("affiner_angular_unit", "degrees"), ...)
## S3 method for class 'angle'
as_angle(x, unit = getOption("affiner_angular_unit", "degrees"), ...)
## S3 method for class 'character'
as_angle(x, unit = getOption("affiner_angular_unit", "degrees"), ...)
## S3 method for class 'complex'
as_angle(x, unit = getOption("affiner_angular_unit", "degrees"), ...)
## S3 method for class 'Coord2D'
as_angle(x, unit = getOption("affiner_angular_unit", "degrees"), ...)
## S3 method for class 'Coord3D'
as_angle(
  x,
  unit = getOption("affiner_angular_unit", "degrees"),
  type = c("azimuth", "inclination"),
  ...
)
## S3 method for class 'Line2D'
as_angle(x, unit = getOption("affiner_angular_unit", "degrees"), ...)
## S3 method for class 'Plane3D'
as_angle(
  x,
  unit = getOption("affiner_angular_unit", "degrees"),
  type = c("azimuth", "inclination"),
  ...
)
## S3 method for class 'numeric'
as_angle(x, unit = getOption("affiner_angular_unit", "degrees"), ...)
Arguments
| x | An R object to convert to a  | 
| unit | A string of the desired angular unit.  Supports the following strings
(note we ignore any punctuation and space characters as well as any trailing  
 | 
| ... | Further arguments passed to or from other methods | 
| type | Use "azimuth" to calculate the azimuthal angle and "inclination" to calculate the inclination angle aka polar angle. | 
Value
An angle() vector
Examples
as_angle(angle(pi, "radians"), "pi-radians")
as_angle(complex(real = 0, imaginary = 1), "degrees")
as_angle(as_coord2d(x = 0, y = 1), "turns")
as_angle(200, "gradians")
Cast to coord1d object
Description
as_coord1d() casts to a Coord1D class object
Usage
as_coord1d(x, ...)
## S3 method for class 'character'
as_coord1d(x, ...)
## S3 method for class 'Coord2D'
as_coord1d(
  x,
  permutation = c("xy", "yx"),
  ...,
  line = as_line2d("x-axis"),
  scale = 0
)
## S3 method for class 'data.frame'
as_coord1d(x, ...)
## S3 method for class 'list'
as_coord1d(x, ...)
## S3 method for class 'matrix'
as_coord1d(x, ...)
## S3 method for class 'numeric'
as_coord1d(x, ...)
## S3 method for class 'Coord1D'
as_coord1d(x, ...)
## S3 method for class 'Point1D'
as_coord1d(x, ...)
Arguments
| x | An object that can be cast to a Coord1D class object such as a numeric vector of x-coordinates. | 
| ... | Further arguments passed to or from other methods | 
| permutation | Either "xy" (no permutation) or "yx" (permute x and y axes) | 
| line | A Line2D object of length one representing the line
you with to reflect across or project to or an object coercible to one by  | 
| scale | Oblique projection scale factor.
A degenerate  | 
Value
A Coord1D class object
Examples
as_coord1d(x = rnorm(10))
Cast to coord2d object
Description
as_coord2d() casts to a Coord2D class object
Usage
as_coord2d(x, ...)
## S3 method for class 'angle'
as_coord2d(x, radius = 1, ...)
## S3 method for class 'character'
as_coord2d(x, ...)
## S3 method for class 'complex'
as_coord2d(x, ...)
## S3 method for class 'Coord3D'
as_coord2d(
  x,
  permutation = c("xyz", "xzy", "yxz", "yzx", "zyx", "zxy"),
  ...,
  plane = as_plane3d("xy-plane"),
  scale = 0,
  alpha = angle(45, "degrees")
)
## S3 method for class 'data.frame'
as_coord2d(x, ...)
## S3 method for class 'list'
as_coord2d(x, ...)
## S3 method for class 'matrix'
as_coord2d(x, ...)
## S3 method for class 'numeric'
as_coord2d(x, y = rep_len(0, length(x)), ...)
## S3 method for class 'Coord2D'
as_coord2d(x, ...)
Arguments
| x | An object that can be cast to a Coord2D class object such as a matrix or data frame of coordinates. | 
| ... | Further arguments passed to or from other methods | 
| radius | A numeric vector of radial distances. | 
| permutation | Either "xyz" (no permutation), "xzy" (permute y and z axes), "yxz" (permute x and y axes), "yzx" (x becomes z, y becomes x, z becomes y), "zxy" (x becomes y, y becomes z, z becomes x), "zyx" (permute x and z axes). This permutation is applied before the (oblique) projection. | 
| plane | A Plane3D class object representing the plane
you wish to project to or an object coercible to one using  | 
| scale | Oblique projection foreshortening scale factor.
A (degenerate)  | 
| alpha | Oblique projection angle (the angle the third axis is projected going off at).
An  | 
| y | Numeric vector of y-coordinates to be used. | 
Value
A Coord2D class object
Examples
df <- data.frame(x = sample.int(10, 3),
                 y = sample.int(10, 3))
as_coord2d(df)
as_coord2d(complex(real = 3, imaginary = 2))
as_coord2d(angle(90, "degrees"), radius = 2)
as_coord2d(as_coord3d(1, 2, 2), alpha = degrees(90), scale = 0.5)
Cast to coord3d object
Description
as_coord3d() casts to a Coord3D class object
Usage
as_coord3d(x, ...)
## S3 method for class 'angle'
as_coord3d(x, radius = 1, inclination = NULL, z = NULL, ...)
## S3 method for class 'character'
as_coord3d(x, ...)
## S3 method for class 'data.frame'
as_coord3d(x, ..., z = NULL)
## S3 method for class 'list'
as_coord3d(x, ..., z = NULL)
## S3 method for class 'matrix'
as_coord3d(x, ...)
## S3 method for class 'numeric'
as_coord3d(x, y = rep_len(0, length(x)), z = rep_len(0, length(x)), ...)
## S3 method for class 'Coord3D'
as_coord3d(x, ...)
## S3 method for class 'Coord2D'
as_coord3d(x, z = rep_len(0, length(x)), ...)
Arguments
| x | An object that can be cast to a Coord3D class object such as a matrix or data frame of coordinates. | 
| ... | Further arguments passed to or from other methods | 
| radius | A numeric vector.  If  | 
| inclination | Spherical coordinates inclination angle aka polar angle.
 | 
| z | Numeric vector of z-coordinates to be used | 
| y | Numeric vector of y-coordinates to be used
if  | 
Value
A Coord3D class object
Examples
as_coord3d(x = 1, y = 2, z = 3)
df <- data.frame(x = sample.int(10, 3),
                 y = sample.int(10, 3),
                 z = sample.int(10, 3))
as_coord3d(df)
# Cylindrical coordinates
as_coord3d(degrees(90), z = 1, radius = 1)
# Spherical coordinates
as_coord3d(degrees(90), inclination = degrees(90), radius = 1)
Cast to Line2D object
Description
as_line2d() casts to a Line2D object.
Usage
as_line2d(...)
## S3 method for class 'numeric'
as_line2d(a, b, c, ...)
## S3 method for class 'angle'
as_line2d(theta, p1 = as_coord2d("origin"), ...)
## S3 method for class 'character'
as_line2d(x, ...)
## S3 method for class 'Coord2D'
as_line2d(normal, p1 = as_coord3d("origin"), p2, ...)
## S3 method for class 'Line2D'
as_line2d(line, ...)
## S3 method for class 'Point1D'
as_line2d(point, b = 0, ...)
Arguments
| ... | Passed to other function such as  | 
| a,b,c | Numeric vectors that parameterize the line via the equation  | 
| theta | Angle of the line represented by an  | 
| p1 | Point on the line represented by a Coord2D class object. | 
| x | A (character) vector to be cast to a Line2D object | 
| normal | Normal vector to the line represented by a Coord2D class object.  | 
| p2 | Another point on the line represented by a Coord2D class object. | 
| line | A Line2D object | 
| point | A Point1D object | 
Examples
p1 <- as_coord2d(x = 5, y = 10)
p2 <- as_coord2d(x = 7, y = 12)
theta <- degrees(45)
as_line2d(theta, p1)
as_line2d(p1, p2)
Cast to Plane3D object
Description
as_plane3d() casts to a Plane3D object.
Usage
as_plane3d(...)
## S3 method for class 'numeric'
as_plane3d(a, b, c, d, ...)
## S3 method for class 'character'
as_plane3d(x, ...)
## S3 method for class 'Coord3D'
as_plane3d(normal, p1 = as_coord3d("origin"), p2, p3, ...)
## S3 method for class 'Plane3D'
as_plane3d(plane, ...)
## S3 method for class 'Point1D'
as_plane3d(point, b = 0, c = 0, ...)
## S3 method for class 'Line2D'
as_plane3d(line, c = 0, ...)
Arguments
| ... | Passed to other function such as  | 
| a,b,c,d | Numeric vectors that parameterize the plane via the equation  | 
| x | A (character) vector to be cast to a Plane3D object | 
| normal | Normal vector to the plane represented by a Coord3D class object.  | 
| p1 | Point on the plane represented by a Coord3D class object. | 
| p2,p3 | Points on the plane represented by Coord3D class objects.   | 
| plane | A Plane3D object | 
| point | A Point1D object | 
| line | A Line2D object | 
Cast to Point1D object
Description
as_point1d() casts to a Point1D object.
Usage
as_point1d(...)
## S3 method for class 'numeric'
as_point1d(a, b, ...)
## S3 method for class 'character'
as_point1d(x, ...)
## S3 method for class 'Coord1D'
as_point1d(normal, ...)
## S3 method for class 'Point1D'
as_point1d(point, ...)
Arguments
| ... | Passed to other function such as  | 
| a,b | Numeric vectors that parameterize the point via the equation  | 
| x | A (character) vector to be cast to a Point1D object | 
| normal | Coord1D class object. | 
| point | A Point1D object | 
Examples
p1 <- as_point1d(a = 1, b = 0)
Cast to 1D affine transformation matrix
Description
as_transform1d() casts to a transform1d() affine transformation matrix
Usage
as_transform1d(x, ...)
## S3 method for class 'transform1d'
as_transform1d(x, ...)
## Default S3 method:
as_transform1d(x, ...)
Arguments
| x | An object that can be cast to a | 
| ... | Further arguments passed to or from other methods | 
Value
A transform1d() object
Examples
m <- diag(2L)
as_transform1d(m)
Cast to 2D affine transformation matrix
Description
as_transform2d() casts to a transform2d() affine transformation matrix
Usage
as_transform2d(x, ...)
## S3 method for class 'transform2d'
as_transform2d(x, ...)
## Default S3 method:
as_transform2d(x, ...)
Arguments
| x | An object that can be cast to a | 
| ... | Further arguments passed to or from other methods | 
Value
A transform2d() object
Examples
m <- diag(3L)
as_transform2d(m)
Cast to 3D affine transformation matrix
Description
as_transform3d() casts to a transform3d() affine transformation matrix
Usage
as_transform3d(x, ...)
## S3 method for class 'transform3d'
as_transform3d(x, ...)
## Default S3 method:
as_transform3d(x, ...)
Arguments
| x | An object that can be cast to a | 
| ... | Further arguments passed to or from other methods | 
Value
A transform3d() object
Examples
m <- diag(4L)
as_transform3d(m)
Compute axis-aligned ranges
Description
range() computes axis-aligned ranges for
Coord1D, Coord2D, and Coord3D class objects.
Usage
## S3 method for class 'Coord1D'
range(..., na.rm = FALSE)
## S3 method for class 'Coord2D'
range(..., na.rm = FALSE)
## S3 method for class 'Coord3D'
range(..., na.rm = FALSE)
Arguments
| ... | |
| na.rm | logical, indicating if  | 
Value
Either a Coord1D, Coord2D, or Coord3D object of length two. The first element will have the minimum x/y(/z) coordinates and the second element will have the maximum x/y(/z) coordinates of the axis-aligned ranges.
Examples
range(as_coord2d(rnorm(5), rnorm(5)))
range(as_coord3d(rnorm(5), rnorm(5), rnorm(5)))
Compute centroids of coordinates
Description
mean()computes centroids for Coord1D, Coord2D, and Coord3D class objects
Usage
## S3 method for class 'Coord1D'
mean(x, ...)
## S3 method for class 'Coord2D'
mean(x, ...)
## S3 method for class 'Coord3D'
mean(x, ...)
Arguments
| x | |
| ... | Passed to  | 
Value
A Coord1D, Coord2D, or Coord3D class object of length one
Examples
p <- as_coord2d(x = 1:4, y = 1:4)
print(mean(p))
print(sum(p) / length(p)) # less efficient alternative
p <- as_coord3d(x = 1:4, y = 1:4, z = 1:4)
print(mean(p))
Compute 2D convex hulls
Description
convex_hull2d() is a S3 generic for computing the convex hull of an object.
There is an implemented method supporting Coord2D class objects
using grDevices::chull() to compute the convex hull.
Usage
convex_hull2d(x, ...)
## S3 method for class 'Coord2D'
convex_hull2d(x, ...)
Arguments
| x | An object representing object to compute convex hull of such as a Coord2D class object. | 
| ... | Further arguments passed to or from other methods. | 
Value
An object of same class as x representing just the subset of points on the convex hull.
The method for Coord2D class objects returns these points in counter-clockwise order.
Examples
p <- as_coord2d(x = rnorm(25), y = rnorm(25))
print(convex_hull2d(p))
# Equivalent to following caculation using `grDevices::chull()`
all.equal(convex_hull2d(p),
          p[rev(grDevices::chull(as.list(p)))])
Compute 3D vector cross product
Description
cross_product3d() computes the cross product of two Coord3D class vectors.
Usage
cross_product3d(x, y)
Arguments
| x | A Coord3D class vector. | 
| y | A Coord3D class vector. | 
Value
A Coord3D class vector
Examples
x <- as_coord3d(2, 3, 4)
y <- as_coord3d(5, 6, 7)
cross_product3d(x, y)
1D Euclidean distances
Description
distance1d() computes 1D Euclidean distances.
Usage
distance1d(x, y)
Arguments
| x | |
| y | 
Examples
p <- as_coord1d(x = 1:4)
distance1d(p, as_coord1d(0))
2D Euclidean distances
Description
distance2d() computes 2D Euclidean distances.
Usage
distance2d(x, y)
Arguments
| x | |
| y | 
Examples
p <- as_coord2d(x = 1:4, y = 1:4)
distance2d(p, as_coord2d(0, 0))
3D Euclidean distances
Description
distance3d() computes 3D Euclidean distances.
Usage
distance3d(x, y)
Arguments
| x | |
| y | 
Examples
p <- as_coord3d(x = 1:4, y = 1:4, z = 1:4)
distance3d(p, as_coord3d("origin"))
Plot coordinates, points, lines, and planes
Description
plot() plots Coord1D and Coord2D class objects while
points() draws Coord1D and Coord2D class objects
and lines() draws Point1D and Line2D class objects to an existing plot.
If the suggested ggplot2 and rgl packages are available we also register ggplot2::autolayer() methods for Coord1D, Coord2D, Point1D, and Line2D class objects and a rgl::plot3d() method for Coord3D class objects.
Usage
## S3 method for class 'Coord1D'
plot(x, ...)
## S3 method for class 'Coord1D'
points(x, ...)
## S3 method for class 'Point1D'
lines(x, ...)
## S3 method for class 'Coord2D'
plot(x, ...)
## S3 method for class 'Coord2D'
points(x, ...)
## S3 method for class 'Line2D'
lines(x, ...)
Arguments
| x | A supported object to plot. | 
| ... | Passed to the underlying plot method. | 
Value
Used for its side effect of drawing to the graphics device.
Examples
c1 <- as_coord2d(x = 0, y = 1:10)
l <- as_line2d(a = 1, b = -1, c = 0) # y = x
c2 <- c1$clone()$reflect(l)
plot(c1, xlim = c(-1, 11), ylim = c(-1, 11),
     main = "2D reflection across a line")
lines(l)
points(c2, col = "red")
c1 <- as_coord2d(x = 1:10, y = 1:10)
l <- as_line2d(a = -1, b = 0, c = 0) # x = 0
c2 <- c1$clone()$project(l)
if (require("ggplot2", quietly = TRUE,
            include.only = c("ggplot", "autolayer", "labs"))) {
  ggplot() +
      autolayer(c1) +
      autolayer(l) +
      autolayer(c2, color = "red") +
      labs(title = "2D projection onto a line")
}
c1 <- as_coord1d(x = seq.int(-4, -1))
pt <- as_point1d(a = 1, b = 0) # x = 0
c2 <- c1$clone()$reflect(pt)
plot(c1, xlim = c(-5, 5), main = "1D reflection across a point")
lines(pt)
points(c2, col = "red")
# 3D reflection across a plane
c1 <- as_coord3d(x = 1:10, y = 1:10, z = 1:10)
pl <- as_plane3d(a = 0, b = 0, c = -1, d = 2) # z = 2
c2 <- c1$clone()$reflect(pl)
if (require("rgl", quietly = TRUE, 
            include.only = c("plot3d", "planes3d", "points3d"))) {
  plot3d(c1, size = 8)
  planes3d(as.data.frame(pl), d =  pl$d, color = "grey", alpha = 0.6)
  points3d(as.data.frame(c2), col = "red", size = 8)
}
Angle vector aware inverse trigonometric functions
Description
arcsine(), arccosine(), arctangent(),
arcsecant(), arccosecant(), and arccotangent() are
inverse trigonometric functions that return angle() vectors
with a user chosen angular unit.
Usage
arcsine(
  x,
  unit = getOption("affiner_angular_unit", "degrees"),
  tolerance = sqrt(.Machine$double.eps)
)
arccosine(
  x,
  unit = getOption("affiner_angular_unit", "degrees"),
  tolerance = sqrt(.Machine$double.eps)
)
arctangent(x, unit = getOption("affiner_angular_unit", "degrees"), y = NULL)
arcsecant(x, unit = getOption("affiner_angular_unit", "degrees"))
arccosecant(x, unit = getOption("affiner_angular_unit", "degrees"))
arccotangent(x, unit = getOption("affiner_angular_unit", "degrees"))
Arguments
| x | A numeric vector | 
| unit | A string of the desired angular unit.  Supports the following strings
(note we ignore any punctuation and space characters as well as any trailing  
 | 
| tolerance | If  | 
| y | A numeric vector or  | 
Value
An angle() vector
Examples
arccosine(-1, "degrees")
arcsine(0, "turns")
arctangent(0, "gradians")
arccosecant(-1, "degrees")
arcsecant(1, "degrees")
arccotangent(1, "half-turns")
# `base::atan2(y, x)` computes the angle of the vector from origin to (x, y)
as_angle(as_coord2d(x = 1, y = 1), "degrees")
Test whether an object is an angle vector
Description
is_angle() tests whether an object is an angle vector
Usage
is_angle(x)
Arguments
| x | An object | 
Value
A logical value
Examples
a <- angle(180, "degrees")
is_angle(a)
is_angle(pi)
Test whether two objects are congruent
Description
is_congruent() is a S3 generic that tests whether two different objects are “congruent”.
The is_congruent() method for angle() classes tests whether two angles are congruent.
Usage
is_congruent(x, y, ...)
## S3 method for class 'numeric'
is_congruent(x, y, ..., tolerance = sqrt(.Machine$double.eps))
## S3 method for class 'angle'
is_congruent(
  x,
  y,
  ...,
  mod_turns = TRUE,
  tolerance = sqrt(.Machine$double.eps)
)
Arguments
| x,y | Two objects to test whether they are “"congruent"”. | 
| ... | Further arguments passed to or from other methods. | 
| tolerance | Angles (coerced to half-turns) or numerics with differences smaller
than  | 
| mod_turns | If  | 
Value
A logical vector
Examples
  # Use `is_congruent()` to check if two angles are "congruent"
  a1 <- angle(180, "degrees")
  a2 <- angle(pi, "radians")
  a3 <- angle(-180, "degrees") # Only congruent modulus full turns
  a1 == a2
  isTRUE(all.equal(a1, a2))
  is_congruent(a1, a2)
  is_congruent(a1, a2, mod_turns = FALSE)
  a1 == a3
  isTRUE(all.equal(a1, a3))
  is_congruent(a1, a3)
  is_congruent(a1, a3, mod_turns = FALSE)
Test whether an object has a Coord1D class
Description
is_coord1d() tests whether an object has a "Coord1D" class
Usage
is_coord1d(x)
Arguments
| x | An object | 
Value
A logical value
Examples
p <- as_coord1d(x = sample.int(10, 3))
is_coord1d(p)
Test whether an object has a Coord2D class
Description
is_coord2d() tests whether an object has a "Coord2D" class
Usage
is_coord2d(x)
Arguments
| x | An object | 
Value
A logical value
Examples
p <- as_coord2d(x = sample.int(10, 3), y = sample.int(10, 3))
is_coord2d(p)
Test whether an object has a Coord3D class
Description
is_coord3d() tests whether an object has a "Coord3D" class
Usage
is_coord3d(x)
Arguments
| x | An object | 
Value
A logical value
Examples
p <- as_coord3d(x = sample.int(10, 3),
                y = sample.int(10, 3),
                z = sample.int(10, 3))
is_coord3d(p)
Test whether an object has a Line2D class
Description
is_line2d() tests whether an object has a "Line2D" class
Usage
is_line2d(x)
Arguments
| x | An object | 
Value
A logical value
Examples
l <- as_line2d(a = 1, b = 2, c = 3)
is_line2d(l)
Test whether an object has a Plane3D class
Description
is_plane3d() tests whether an object has a "Plane3D" class
Usage
is_plane3d(x)
Arguments
| x | An object | 
Value
A logical value
Examples
p <- as_plane3d(a = 1, b = 2, c = 3, 4)
is_plane3d(p)
Test whether an object has a Point1D class
Description
is_point1d() tests whether an object has a "Point1D" class
Usage
is_point1d(x)
Arguments
| x | An object | 
Value
A logical value
Examples
p <- as_point1d(a = 1, b = 5)
is_point1d(p)
Test if 1D affine transformation matrix
Description
is_transform1d() tests if object is a transform1d() affine transformation matrix
Usage
is_transform1d(x)
Arguments
| x | An object | 
Value
A logical value
Examples
m <- transform1d(diag(2L))
is_transform1d(m)
is_transform1d(diag(2L))
Test if 2D affine transformation matrix
Description
is_transform2d() tests if object is a transform2d() affine transformation matrix
Usage
is_transform2d(x)
Arguments
| x | An object | 
Value
A logical value
Examples
m <- transform2d(diag(3L))
is_transform2d(m)
is_transform2d(diag(3L))
Test if 3D affine transformation matrix
Description
is_transform3d() tests if object is a transform3d() affine transformation matrix
Usage
is_transform3d(x)
Arguments
| x | An object | 
Value
A logical value
Examples
m <- transform3d(diag(4L))
is_transform3d(m)
is_transform3d(diag(4L))
Isometric cube grob
Description
isometricCube() is a grid grob function to render
isometric cube faces by automatically wrapping around affineGrob().
Usage
isocubeGrob(
  top,
  right,
  left,
  gp_border = grid::gpar(col = "black", lwd = 12),
  name = NULL,
  gp = grid::gpar(),
  vp = NULL
)
grid.isocube(...)
Arguments
| top | A grid grob object to use as the top side of the cube.  ggplot2 objects will be coerced by  | 
| right | A grid grob object to use as the right side of the cube.  ggplot2 objects will be coerced by  | 
| left | A grid grob object to use as the left side of the cube.  ggplot2 objects will be coerced by  | 
| gp_border | A  | 
| name | A character identifier (for grid). | 
| gp | A  | 
| vp | A  | 
| ... | Passed to  | 
Details
Any ggplot2 objects are coerced to grobs by ggplot2::ggplotGrob().  Depending on what you'd like
to do you may want to instead manually convert a ggplot2 object gg to a grob with gtable::gtable_filter(ggplot2::ggplotGrob(gg), "panel").
Not all graphics devices provided by grDevices or other R packages support the affine transformation feature introduced in R 4.2.
If isTRUE(getRversion() >= '4.2.0') then the active graphics device should support this feature if isTRUE(grDevices::dev.capabilities()$transformations).
In particular the following graphics devices should support the affine transformation feature:
- R's - grDevices::pdf()device
- R's 'cairo' devices e.g. - grDevices::cairo_pdf(),- grDevices::png(type = 'cairo'),- grDevices::svg(),- grDevices::x11(type = 'cairo'), etc. If- isTRUE(capabilities('cairo'))then R was compiled with support for the 'cairo' devices .
- R's 'quartz' devices (since R 4.3.0) e.g. - grDevices::quartz(),- grDevices::png(type = 'quartz'), etc. If- isTRUE(capabilities('aqua'))then R was compiled with support for the 'quartz' devices (generally only- TRUEon macOS systems).
-  ragg's devices (since v1.3.0) e.g.ragg::agg_png(),ragg::agg_capture(), etc.
Value
A grid::gTree() (grob) object of class "isocube".
As a side effect grid.isocube() draws to the active graphics device.
Examples
if (require("grid") &&
    getRversion() >= "4.2.0" &&
    isTRUE(dev.capabilities()$transformations)) {
  # Only works if active graphics device supports affine transformations
  # such as `png(type="cairo")` on R 4.2+
  grid.newpage()
  gp_text <- gpar(fontsize = 72)
  grid.isocube(top = textGrob("top", gp = gp_text), 
               right = textGrob("right", gp = gp_text),
               left = textGrob("left", gp = gp_text))
}
if (require("grid") &&
    getRversion() >= "4.2.0" &&
    isTRUE(dev.capabilities()$transformations)) {
    colors <- c("#D55E00", "#009E73", "#56B4E9")
    spacings <- c(0.25, 0.2, 0.25)
    texts <- c("pkgname", "left\nface", "right\nface")
    rots <- c(45, 0, 0)
    fontsizes <- c(52, 80, 80)
    sides <- c("top", "left", "right")
    types <- gridpattern::names_polygon_tiling[c(5, 7, 9)]
    l_grobs <- list()
    grid.newpage()
    for (i in 1:3) {
        if (requireNamespace("gridpattern", quietly = TRUE)) {
            bg <- gridpattern::grid.pattern_polygon_tiling(
                       colour = "grey80",
                       fill = c(colors[i], "white"),
                       type = types[i],
                       spacing = spacings[i],
                       draw = FALSE)
        } else {
            bg <- rectGrob(gp = gpar(col = NA, fill = colors[i]))
        }
        text <- textGrob(texts[i], rot = rots[i],
                         gp = gpar(fontsize = fontsizes[i]))
        l_grobs[[sides[i]]] <- grobTree(bg, text)
    }
  grid.newpage()
  grid.isocube(top = l_grobs$top, 
               right = l_grobs$right,
               left = l_grobs$left)
}
# May take more than 5 seconds on CRAN machines
if (require("aRtsy") &&
    require("grid") &&
    require("ggplot2") &&
    requireNamespace("gtable", quietly = TRUE) &&
    getRversion() >= "4.2.0" &&
    isTRUE(dev.capabilities()$transformations)
    ) {
  gg <- canvas_planet(colorPalette("lava"), threshold = 3) +
    scale_x_continuous(expand=c(0, 0)) +
    scale_y_continuous(expand=c(0, 0))
grob <- ggplotGrob(gg)
grob <- gtable::gtable_filter(grob, "panel") # grab just the panel
grid.newpage()
grid.isocube(top = grob, left = grob, right = grob,
             gp_border = grid::gpar(col = "darkorange", lwd = 12))
}
2D normal vectors
Description
normal2d() is an S3 generic that computes a 2D normal vector.
Usage
normal2d(x, ...)
## S3 method for class 'Coord2D'
normal2d(x, ..., normalize = TRUE)
## S3 method for class 'Line2D'
normal2d(x, ..., normalize = TRUE)
Arguments
| x | Object to compute a 2D normal vector for such as a Line2D object. | 
| ... | Passed to or from other methods. | 
| normalize | If  | 
Value
A Coord2D (normal) vector
Examples
  p <- as_coord2d(x = 2, y = 3)
  normal2d(p)
  normal2d(p, normalize = FALSE)
3D normal vectors
Description
normal3d() is an S3 generic that computes a 3D normal vector.
Usage
normal3d(x, ...)
## S3 method for class 'Coord3D'
normal3d(x, cross, ..., normalize = TRUE)
## S3 method for class 'character'
normal3d(x, ..., normalize = TRUE)
## S3 method for class 'Plane3D'
normal3d(x, ..., normalize = TRUE)
Arguments
| x | Object to compute a 3D normal vector for such as a Plane3D object | 
| ... | Passed to other methods such as  | 
| cross | A Coord3D vector.
We'll compute the normal of  | 
| normalize | If  | 
Value
A Coord3D (normal) vector
Examples
normal3d("xy-plane")
normal3d(as_coord3d(2, 0, 0), cross = as_coord3d(0, 2, 0))
Convert from 3D rotation matrix to axis-angle representation.
Description
rotate3d_to_AA() converts from (post-multiplied) rotation matrix
to an axis-angle representation of 3D rotations.
Usage
rotate3d_to_AA(
  mat = diag(4),
  unit = getOption("affiner_angular_unit", "degrees")
)
Arguments
| mat | 3D rotation matrix (post-multiplied).
If you have a pre-multiplied rotation matrix
simply transpose it with  | 
| unit | A string of the desired angular unit.  Supports the following strings
(note we ignore any punctuation and space characters as well as any trailing  
 | 
See Also
https://en.wikipedia.org/wiki/Axis-angle_representation for more details
about the Axis-angle representation of 3D rotations.
rotate3d() can be used to convert from an axis-angle representation to a rotation matrix.
Examples
 # axis-angle representation of 90 degree rotation about the x-axis
 rotate3d_to_AA(rotate3d("x-axis", 90, unit = "degrees"))
 # find Axis-Angle representation of first rotating about x-axis 180 degrees
 # and then rotating about z-axis 45 degrees
 R <- rotate3d("x-axis", 180, unit = "degrees") %*%
        rotate3d("z-axis", 45, unit = "degrees")
 AA <- rotate3d_to_AA(R)
 # Can use `rotate3d()` to convert back to rotation matrix representation
 all.equal(R, do.call(rotate3d, AA))
1D affine transformation matrices
Description
transform1d(), reflect1d(), scale2d(),
and translate1d() create 1D affine transformation matrix objects.
Usage
transform1d(mat = diag(2L))
project1d(point = as_point1d("origin"), ...)
reflect1d(point = as_point1d("origin"), ...)
scale1d(x_scale = 1)
translate1d(x = as_coord1d(0), ...)
Arguments
| mat | A 2x2 matrix representing a post-multiplied affine transformation matrix.
The last column must be equal to  | 
| point | A Point1D object of length one representing the point
you with to reflect across or project to or an object coercible to one by  | 
| ... | Passed to  | 
| x_scale | Scaling factor to apply to x coordinates | 
| x | A Coord1D object of length one or an object coercible to one by  | 
Details
- transform1d()
- User supplied (post-multiplied) affine transformation matrix 
.
- reflect1d()
- Reflections across a point. 
- scale1d()
- Scale the x-coordinates by multiplicative scale factors. 
- translate1d()
- Translate the coordinates by a Coord1D class object parameter. 
transform1d() 1D affine transformation matrix objects are meant to be
post-multiplied and therefore should not be multiplied in reverse order.
Note the Coord1D class object methods auto-pre-multiply affine transformations
when "method chaining" so pre-multiplying affine transformation matrices
to do a single cumulative transformation instead of a method chain of multiple transformations
will not improve performance as much as as it does in other R packages.
To convert a pre-multiplied 1D affine transformation matrix to a post-multiplied one
simply compute its transpose using t().  To get an inverse transformation matrix
from an existing transformation matrix that does the opposite transformations
simply compute its inverse using solve().
Value
A 2x2 post-multiplied affine transformation matrix with classes "transform1d" and "at_matrix"
Examples
p <- as_coord1d(x = sample(1:10, 3))
# {affiner} affine transformation matrices are post-multiplied
# and therefore should **not** go in reverse order
mat <- transform1d(diag(2)) %*%
         scale1d(2) %*%
         translate1d(x = -1)
p1 <- p$
  clone()$
  transform(mat)
# The equivalent result appyling affine transformations via method chaining
p2 <- p$
  clone()$
  transform(diag(2))$
  scale(2)$
  translate(x = -1)
all.equal(p1, p2)
2D affine transformation matrices
Description
transform2d(), project2d(), reflect2d(), rotate2d(), scale2d(), shear2d(),
and translate2d() create 2D affine transformation matrix objects.
Usage
transform2d(mat = diag(3L))
permute2d(permutation = c("xy", "yx"))
project2d(line = as_line2d("x-axis"), ..., scale = 0)
reflect2d(line = as_line2d("x-axis"), ...)
rotate2d(theta = angle(0), ...)
scale2d(x_scale = 1, y_scale = x_scale)
shear2d(xy_shear = 0, yx_shear = 0)
translate2d(x = as_coord2d(0, 0), ...)
Arguments
| mat | A 3x3 matrix representing a post-multiplied affine transformation matrix.
The last column must be equal to  | 
| permutation | Either "xy" (no permutation) or "yx" (permute x and y axes) | 
| line | A Line2D object of length one representing the line
you with to reflect across or project to or an object coercible to one by  | 
| ... | Passed to  | 
| scale | Oblique projection scale factor.
A degenerate  | 
| theta | An  | 
| x_scale | Scaling factor to apply to x coordinates | 
| y_scale | Scaling factor to apply to y coordinates | 
| xy_shear | Horizontal shear factor:  | 
| yx_shear | Vertical shear factor:  | 
| x | A Coord2D object of length one or an object coercible to one by  | 
Details
- transform2d()
- User supplied (post-multiplied) affine transformation matrix 
.
- project2d()
- Oblique vector projections onto a line parameterized by an oblique projection scale factor. A (degenerate) scale factor of zero results in an orthogonal projection. 
- reflect2d()
- Reflections across a line. To "flip" across both the x-axis and the y-axis use - scale2d(-1).
- rotate2d()
- Rotations around the origin parameterized by an - angle().
- scale2d()
- Scale the x-coordinates and/or the y-coordinates by multiplicative scale factors. 
- shear2d()
- Shear the x-coordinates and/or the y-coordinates using shear factors. 
- translate2d()
- Translate the coordinates by a Coord2D class object parameter. 
transform2d() 2D affine transformation matrix objects are meant to be
post-multiplied and therefore should not be multiplied in reverse order.
Note the Coord2D class object methods auto-pre-multiply affine transformations
when "method chaining" so pre-multiplying affine transformation matrices
to do a single cumulative transformation instead of a method chain of multiple transformations
will not improve performance as much as as it does in other R packages.
To convert a pre-multiplied 2D affine transformation matrix to a post-multiplied one
simply compute its transpose using t().  To get an inverse transformation matrix
from an existing transformation matrix that does the opposite transformations
simply compute its inverse using solve().
Value
A 3x3 post-multiplied affine transformation matrix with classes "transform2d" and "at_matrix"
Examples
p <- as_coord2d(x = sample(1:10, 3), y = sample(1:10, 3))
# {affiner} affine transformation matrices are post-multiplied
# and therefore should **not** go in reverse order
mat <- transform2d(diag(3)) %*%
         reflect2d(as_coord2d(-1, 1)) %*%
         rotate2d(90, "degrees") %*%
         scale2d(1, 2) %*%
         shear2d(0.5, 0.5) %*%
         translate2d(x = -1, y = -1)
p1 <- p$
  clone()$
  transform(mat)
# The equivalent result appyling affine transformations via method chaining
p2 <- p$
  clone()$
  transform(diag(3L))$
  reflect(as_coord2d(-1, 1))$
  rotate(90, "degrees")$
  scale(1, 2)$
  shear(0.5, 0.5)$
  translate(x = -1, y = -1)
all.equal(p1, p2)
3D affine transformation matrices
Description
transform3d(), project3d(), reflect3d(), rotate3d(), scale3d(), shear3d(),
and translate3d() create 3D affine transformation matrix objects.
Usage
transform3d(mat = diag(4L))
permute3d(permutation = c("xyz", "xzy", "yxz", "yzx", "zyx", "zxy"))
project3d(
  plane = as_plane3d("xy-plane"),
  ...,
  scale = 0,
  alpha = angle(45, "degrees")
)
reflect3d(plane = as_plane3d("xy-plane"), ...)
rotate3d(axis = as_coord3d("z-axis"), theta = angle(0), ...)
scale3d(x_scale = 1, y_scale = x_scale, z_scale = x_scale)
shear3d(
  xy_shear = 0,
  xz_shear = 0,
  yx_shear = 0,
  yz_shear = 0,
  zx_shear = 0,
  zy_shear = 0
)
translate3d(x = as_coord3d(0, 0, 0), ...)
Arguments
| mat | A 4x4 matrix representing a post-multiplied affine transformation matrix.
The last column must be equal to  | 
| permutation | Either "xyz" (no permutation), "xzy" (permute y and z axes), "yxz" (permute x and y axes), "yzx" (x becomes z, y becomes x, z becomes y), "zxy" (x becomes y, y becomes z, z becomes x), "zyx" (permute x and z axes) | 
| plane | A Plane3D object of length one representing the plane
you wish to reflect across or project to or an object coercible to one using  | 
| ... | Passed to  | 
| scale | Oblique projection foreshortening scale factor.
A (degenerate)  | 
| alpha | Oblique projection angle (the angle the third axis is projected going off at).
An  | 
| axis | A Coord3D class object or one that can coerced to one by  | 
| theta | An  | 
| x_scale | Scaling factor to apply to x coordinates | 
| y_scale | Scaling factor to apply to y coordinates | 
| z_scale | Scaling factor to apply to z coordinates | 
| xy_shear | Shear factor:  | 
| xz_shear | Shear factor:  | 
| yx_shear | Shear factor:  | 
| yz_shear | Shear factor:  | 
| zx_shear | Shear factor:  | 
| zy_shear | Shear factor:  | 
| x | A Coord3D object of length one or an object coercible to one by  | 
Details
- transform3d()
- User supplied (post-multiplied) affine transformation matrix 
.
- scale3d()
- Scale the x-coordinates and/or the y-coordinates and/or the z-coordinates by multiplicative scale factors. 
- shear3d()
- Shear the x-coordinates and/or the y-coordinates and/or the z-coordinates using shear factors. 
- translate3d()
- Translate the coordinates by a Coord3D class object parameter. 
transform3d() 3D affine transformation matrix objects are meant to be
post-multiplied and therefore should not be multiplied in reverse order.
Note the Coord3D class object methods auto-pre-multiply affine transformations
when "method chaining" so pre-multiplying affine transformation matrices
to do a single cumulative transformation instead of a method chain of multiple transformations
will not improve performance as much as as it does in other R packages.
To convert a pre-multiplied 3D affine transformation matrix to a post-multiplied one
simply compute its transpose using t().  To get an inverse transformation matrix
from an existing transformation matrix that does the opposite transformations
simply compute its inverse using solve().
Value
A 4x4 post-multiplied affine transformation matrix with classes "transform3d" and "at_matrix"
Examples
p <- as_coord3d(x = sample(1:10, 3), y = sample(1:10, 3), z = sample(1:10, 3))
# {affiner} affine transformation matrices are post-multiplied
# and therefore should **not** go in reverse order
mat <- transform3d(diag(4L)) %*%
         rotate3d("z-axis", degrees(90)) %*%
         scale3d(1, 2, 1) %*%
         translate3d(x = -1, y = -1, z = -1)
p1 <- p$
  clone()$
  transform(mat)
# The equivalent result appyling affine transformations via method chaining
p2 <- p$
  clone()$
  transform(diag(4L))$
  rotate("z-axis", degrees(90))$
  scale(1, 2, 1)$
  translate(x = -1, y = -1, z = -1)
all.equal(p1, p2)
Angle vector aware trigonometric functions
Description
sine(), cosine(), tangent(), secant(), cosecant(), and cotangent() are
angle() aware trigonometric functions that allow for a user chosen angular unit.
Usage
sine(x, unit = getOption("affiner_angular_unit", "degrees"))
cosine(x, unit = getOption("affiner_angular_unit", "degrees"))
tangent(x, unit = getOption("affiner_angular_unit", "degrees"))
secant(x, unit = getOption("affiner_angular_unit", "degrees"))
cosecant(x, unit = getOption("affiner_angular_unit", "degrees"))
cotangent(x, unit = getOption("affiner_angular_unit", "degrees"))
Arguments
| x | An angle vector or an object to convert to it (such as a numeric vector) | 
| unit | A string of the desired angular unit.  Supports the following strings
(note we ignore any punctuation and space characters as well as any trailing  
 | 
Value
A numeric vector
Examples
sine(pi, "radians")
cosine(180, "degrees")
tangent(0.5, "turns")
a <- angle(0.5, "turns")
secant(a)
cosecant(a)
cotangent(a)