| Type: | Package | 
| Title: | An Implementation of the Artificial Hydrocarbon Networks | 
| Version: | 0.3.1 | 
| Description: | Implementation of the Artificial Hydrocarbon Networks for data modeling. | 
| Depends: | R (≥ 3.3.0) | 
| License: | GPL-3 | file LICENSE | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| Suggests: | knitr, rmarkdown | 
| URL: | https://github.com/jroberayalas/ahnr | 
| BugReports: | https://github.com/jroberayalas/ahnr/issues | 
| VignetteBuilder: | knitr | 
| Imports: | matrixcalc, pracma, purrr, pdist, ggplot2, visNetwork, magrittr | 
| RoxygenNote: | 6.0.1 | 
| NeedsCompilation: | no | 
| Packaged: | 2018-06-18 20:23:14 UTC; JRAS | 
| Author: | Jose Roberto Ayala Solares [aut, cre] | 
| Maintainer: | Jose Roberto Ayala Solares <ichbinjras@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2018-06-18 21:57:16 UTC | 
fit
Description
Function to train an Artificial Hydrocarbon Network (AHN).
Usage
fit(Sigma, n, eta, maxIter = 2000)
Arguments
| Sigma | a list with two data frames. One for the inputs X, and one for the outputs Y. | 
| n | number of particles to use. | 
| eta | learning rate of the algorithm. Default is  | 
| maxIter | maximum number of iterations. | 
Value
an object of class "ahn" with the following components:
- network: structure of the AHN trained. 
- Yo: original output variable. 
- Ym: predicted output variable. 
- eta: learning rate. 
- minOverallError: minimum error achieved. 
- variableNames: names of the input variables. 
Examples
# Create data
x <- 2 * runif(1000) - 1;
x <- sort(x)
y <- (x < 0.1) * (0.05 * runif(100) + atan(pi*x)) +
    (x >= 0.1 & x < 0.6) * (0.05 * runif(1000) + sin(pi*x)) +
    (x >= 0.6) * (0.05 * runif(1000) + cos(pi*x))
# Create Sigma list
Sigma <- list(X = data.frame(x = x), Y = data.frame(y = y))
# Train AHN
ahn <- fit(Sigma, 5, 0.01, 500)
Checks if argument is a ahn object
Description
Checks if argument is a ahn object
Usage
is.ahn(x)
Arguments
| x | An R object | 
predict
Description
Function to simulate a trained Artificial Hydrocarbon Network.
Usage
## S3 method for class 'ahn'
predict(object, ...)
Arguments
| object | an object of class " | 
| ... | further arguments passed to or from other methods. | 
Value
predicted output values for inputs in newdata.
Examples
## Not run: 
# Create data
x <- 2 * runif(1000) - 1;
x <- sort(x)
y <- (x < 0.1) * (0.05 * runif(100) + atan(pi*x)) +
    (x >= 0.1 & x < 0.6) * (0.05 * runif(1000) + sin(pi*x)) +
    (x >= 0.6) * (0.05 * runif(1000) + cos(pi*x))
# Create Sigma list
Sigma <- list(X = data.frame(x = x), Y = data.frame(y = y))
# Train AHN
ahn <- fit(Sigma, 5, 0.01, 500)
# Test AHN
X <- data.frame(x = x)
ysim <- predict(ahn, X)
## End(Not run)
Summary Artificial Hydrocarbon Network
Description
Summary method for objects of class ahn.
Usage
## S3 method for class 'ahn'
summary(object, ...)
Arguments
| object | an object of class " | 
| ... | further arguments passed to or from other methods. | 
Value
summary description of the AHN.
Examples
## Not run: 
# Create data
x <- 2 * runif(1000) - 1;
x <- sort(x)
y <- (x < 0.1) * (0.05 * runif(100) + atan(pi*x)) +
    (x >= 0.1 & x < 0.6) * (0.05 * runif(1000) + sin(pi*x)) +
    (x >= 0.6) * (0.05 * runif(1000) + cos(pi*x))
# Create Sigma list
Sigma <- list(X = data.frame(x = x), Y = data.frame(y = y))
# Train AHN
ahn <- fit(Sigma, 5, 0.01, 500)
# Summary AHN
summary(ahn)
## End(Not run)
Visualize Artificial Hydrocarbon Network
Description
Visualize method for objects of class ahn.
Usage
visualize(x, ...)
Arguments
| x | an object of class " | 
| ... | further arguments passed to visNetwork functions. | 
Value
dynamic visualization of the AHN.
Examples
## Not run: 
# Create data
x <- 2 * runif(1000) - 1;
x <- sort(x)
y <- (x < 0.1) * (0.05 * runif(100) + atan(pi*x)) +
    (x >= 0.1 & x < 0.6) * (0.05 * runif(1000) + sin(pi*x)) +
    (x >= 0.6) * (0.05 * runif(1000) + cos(pi*x))
# Create Sigma list
Sigma <- list(X = data.frame(x = x), Y = data.frame(y = y))
# Train AHN
ahn <- fit(Sigma, 5, 0.01, 500)
# Visualize AHN
visualize(ahn)
## End(Not run)