The Dolphins network dataset is provided as a gml file, containing 62 nodes and 159 edges.
# Start the timer
t1 <- system.time({
  dataset_path <- system.file("extdata", "dolphins.gml", package = "arlclustering")
  if (dataset_path == "") {
    stop("dolphins.gml file not found")
  }
  
  g <- arlc_get_network_dataset(dataset_path, "Dolphins")
  g$graphLabel
  g$totalEdges
  g$totalNodes
  g$averageDegree
})
# Display the total processing time
message("Graph loading Processing Time: ", t1["elapsed"], " seconds\n")
#> Graph loading Processing Time: 0.0129999999999999 secondsNext, we generate transactions from the graph, with a total rows of 53.
We obtain the apriori thresholds for the generated transactions. The following are the thresholds for the apriori execution: - The Minimum Support : 0.05 - The Minimum Confidence : 0.5 - The Lift : 13.25 - The Gross Rules length : 201 - The selection Ratio : 4
# Start the timer
t3 <- system.time({
  params <- arlc_get_apriori_thresholds(transactions,
                                      supportRange = seq(0.05, 0.07, by = 0.01),
                                      Conf = 0.5)
  params$minSupp
  params$minConf
  params$bestLift
  params$lenRules
  params$ratio
})
# Display the total processing time
message("Graph loading Processing Time: ", t3["elapsed"], " seconds\n")
#> Graph loading Processing Time: 0.044 secondsWe use the obtained parameters to generate gross rules, where we obtain 201 rules.
# Start the timer
t4 <- system.time({
  minLenRules <- 1
  maxLenRules <- params$lenRules
  if (!is.finite(maxLenRules) || maxLenRules > 5*length(transactions)) {
    maxLenRules <- 5*length(transactions)
  }
  
  grossRules <- arlc_gen_gross_rules(transactions,
                                     minSupp = params$minSupp,
                                     minConf = params$minConf,
                                     minLenRules = minLenRules+1,
                                     maxLenRules = maxLenRules)
  #grossRules$TotalRulesWithLengthFilter
})
#> Apriori
#> 
#> Parameter specification:
#>  confidence minval smax arem  aval originalSupport maxtime support minlen
#>         0.5    0.1    1 none FALSE            TRUE       5    0.05      2
#>  maxlen target  ext
#>     201  rules TRUE
#> 
#> Algorithmic control:
#>  filter tree heap memopt load sort verbose
#>     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
#> 
#> Absolute minimum support count: 2 
#> 
#> set item appearances ...[0 item(s)] done [0.00s].
#> set transactions ...[62 item(s), 53 transaction(s)] done [0.00s].
#> sorting and recoding items ... [46 item(s)] done [0.00s].
#> creating transaction tree ... done [0.00s].
#> checking subsets of size 1 2 3 4 done [0.00s].
#> writing ... [201 rule(s)] done [0.00s].
#> creating S4 object  ... done [0.00s].We filter out redundant rules from the generated gross rules. Next, we filter out non-significant rules from the non-redundant rules, and we obtain the 172 rule items.
t5 <- system.time({
  NonRedRules <- arlc_get_NonR_rules(grossRules$GrossRules)
  NonRSigRules <- arlc_get_significant_rules(transactions,
                                             NonRedRules$FiltredRules)
  #NonRSigRules$TotFiltredRules
})
# Display the total number of clusters and the total processing time
message("\nClearing rules Processing Time: ", t5["elapsed"], " seconds\n")
#> 
#> Clearing rules Processing Time: 0.179 secondsWe clean the final set of rules to prepare for clustering. Then, we generate clusters based on the cleaned rules. The total identified clusters is 17 clusters.
t6 <- system.time({
  cleanedRules <- arlc_clean_final_rules(NonRSigRules$FiltredRules)
  clusters <- arlc_generate_clusters(cleanedRules)
  #clusters$TotClusters
})
# Display the total number of clusters and the total processing time
message("Cleaning final rules Processing Time: ", t6["elapsed"], " seconds\n")
#> Cleaning final rules Processing Time: 0.0140000000000002 secondsFinally, we visualize the identified clusters.
arlc_clusters_plot(g$graph,
                   g$graphLabel,
                   clusters$Clusters)
#> 
#> Total Identified Clusters: 17
#>  =========================
#>   Community 01:2 8 14 26 58
#>   Community 02:6 7 18 42
#>   Community 03:7 10 14 18 42 58
#>   Community 04:9 37
#>   Community 05:10 14 18 55 58
#>   Community 06:11 43
#>   Community 07:15 17 21 34 38 39 41 44
#>   Community 08:16 30 52
#>   Community 09:17 34 35 39 41 44 51
#>   Community 10:18 27 42 55
#>   Community 11:19 22 25 30 46 52
#>   Community 12:22 25 30 44 46 51 52
#>   Community 13:34 38 39 53
#>   Community 14:38 39 51 60
#>   Community 15:42 55 58
#>   Community 16:43 48
#>   Community 17:44 53
#>  =========================