The LesMiserables network dataset is provided as a gml file, containing 77 nodes and 254 edges.
# Start the timer
t1 <- system.time({
dataset_path <- system.file("extdata", "lesmiserables.gml", package = "arlclustering")
if (dataset_path == "") {
  stop("lesmiserables.gml file not found")
}
g <- arlc_get_network_dataset(dataset_path, "LesMiserables")
  g$graphLabel
  g$totalEdges
  g$totalNodes
  g$averageDegree
})
# Display the total processing time
message("Graph loading Processing Time: ", t1["elapsed"], " seconds\n")
#> Graph loading Processing Time: 0.0140000000000029 secondsNext, we generate transactions from the graph, with a total rows of 59
We obtain the apriori thresholds for the generated transactions. The following are the thresholds for the apriori execution: - The Minimum Support : 0.04 - The Minimum Confidence : 0.5 - The Lift : 19.66667 - The Gross Rules length : 51764 - The selection Ratio : 877
# Start the timer
t3 <- system.time({
  params <- arlc_get_apriori_thresholds(transactions,
                                      supportRange = seq(0.04, 0.06, by = 0.01),
                                      Conf = 0.5)
  params$minSupp
  params$minConf
  params$bestLift
  params$lenRules
  params$ratio
})
# Display the total processing time
message("Graph loading Processing Time: ", t3["elapsed"], " seconds\n")
#> Graph loading Processing Time: 0.141999999999999 secondsWe use the obtained parameters to generate gross rules, where we obtain 51774 rules.
# Start the timer
t4 <- system.time({
  minLenRules <- 1
  maxLenRules <- params$lenRules
  if (!is.finite(maxLenRules) || maxLenRules > 5*length(transactions)) {
    maxLenRules <- 5*length(transactions)
  }
  grossRules <- arlc_gen_gross_rules(transactions,
                                     minSupp = params$minSupp,
                                     minConf = params$minConf,
                                     minLenRules = minLenRules+1,
                                     maxLenRules = maxLenRules)
  grossRules$TotalRulesWithLengthFilter
})
#> Apriori
#> 
#> Parameter specification:
#>  confidence minval smax arem  aval originalSupport maxtime support minlen
#>         0.5    0.1    1 none FALSE            TRUE       5    0.04      2
#>  maxlen target  ext
#>     295  rules TRUE
#> 
#> Algorithmic control:
#>  filter tree heap memopt load sort verbose
#>     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
#> 
#> Absolute minimum support count: 2 
#> 
#> set item appearances ...[0 item(s)] done [0.00s].
#> set transactions ...[77 item(s), 59 transaction(s)] done [0.00s].
#> sorting and recoding items ... [50 item(s)] done [0.00s].
#> creating transaction tree ... done [0.00s].
#> checking subsets of size 1 2 3 4 5 6 7 8 9 10 11 done [0.00s].
#> writing ... [51774 rule(s)] done [0.01s].
#> creating S4 object  ... done [0.01s].We filter out redundant rules from the generated gross rules. Next, we filter out non-significant rules from the non-redundant rules, and we obtain the 1625 rule items.
t5 <- system.time({
  NonRedRules <- arlc_get_NonR_rules(grossRules$GrossRules)
  NonRSigRules <- arlc_get_significant_rules(transactions,
                                             NonRedRules$FiltredRules)
  #NonRSigRules$TotFiltredRules
})
# Display the total number of clusters and the total processing time
message("\nClearing rules Processing Time: ", t5["elapsed"], " seconds\n")
#> 
#> Clearing rules Processing Time: 0.330000000000002 secondsWe clean the final set of rules to prepare for clustering. Then, we generate clusters based on the cleaned rules. The total identified clusters is 7 clusters.
t6 <- system.time({
  cleanedRules <- arlc_clean_final_rules(NonRSigRules$FiltredRules)
  clusters <- arlc_generate_clusters(cleanedRules)
  #clusters$TotClusters
})
# Display the total number of clusters and the total processing time
message("Cleaning final rules Processing Time: ", t6["elapsed"], " seconds\n")
#> Cleaning final rules Processing Time: 0.0990000000000002 secondsFinally, we visualize the identified clusters.
arlc_clusters_plot(g$graph,
                   g$graphLabel,
                   clusters$Clusters)
#> 
#> Total Identified Clusters: 7
#>  =========================
#>   Community 01:12 17 24 25 26 27 28 30 35 36 37 38 39 42 49 50 52 55 56 58 59 60 61 62 63 64 65 66 67 69 70 71 72 76 77
#>   Community 02:17 18 19 20 21 22 23 24
#>   Community 03:24 25 26 27 28 32 49 56 69 70 71 72
#>   Community 04:25 26 27 28 30 32 42 44 49 56 59 69 70 71 72 73 76
#>   Community 05:26 27 28 30 32 42 44 49 50 52 56 58 59 63 65 69 70 71 72 73 76
#>   Community 06:30 32 35 36 37 38 39
#>   Community 07:43 69 70 71
#>  =========================