Infrastructure for estimating probabilistic distributional regression models in a Bayesian framework.
  The distribution parameters may capture location, scale, shape, etc. and every parameter may depend
  on complex additive terms (fixed, random, smooth, spatial, etc.) similar to a generalized additive model.
  The conceptual and computational framework is introduced in Umlauf, Klein, Zeileis (2019)
  <doi:10.1080/10618600.2017.1407325> and the R package in Umlauf, Klein, Simon, Zeileis (2021)
  <doi:10.18637/jss.v100.i04>.
| Version: | 1.2-5 | 
| Depends: | R (≥ 3.5.0), coda, colorspace, distributions3 (≥ 0.2.1), mgcv | 
| Imports: | Formula, MBA, mvtnorm, sp, Matrix, survival, methods, parallel | 
| Suggests: | bit, ff, fields, gamlss, gamlss.dist, interp, rjags, BayesX, mapdata, maps, sf, nnet, spatstat, spdep, zoo, keras, splines2, sdPrior, statmod, glogis, glmnet, scoringRules, knitr, rmarkdown, MASS, tensorflow | 
| Published: | 2024-10-11 | 
| DOI: | 10.32614/CRAN.package.bamlss | 
| Author: | Nikolaus Umlauf  [aut, cre],
  Nadja Klein  [aut],
  Achim Zeileis  [aut],
  Meike Koehler [ctb],
  Thorsten Simon  [aut],
  Stanislaus Stadlmann [ctb],
  Alexander Volkmann  [ctb] | 
| Maintainer: | Nikolaus Umlauf  <Nikolaus.Umlauf at uibk.ac.at> | 
| License: | GPL-2 | GPL-3 | 
| URL: | http://www.bamlss.org/ | 
| NeedsCompilation: | yes | 
| Citation: | bamlss citation info | 
| Materials: | NEWS | 
| In views: | Bayesian, MixedModels | 
| CRAN checks: | bamlss results |