| Title: | Confidence Intervals for Standardized Regression Coefficients | 
| Version: | 1.0.6 | 
| Description: | Generates confidence intervals for standardized regression coefficients using delta method standard errors for models fitted by lm() as described in Yuan and Chan (2011) <doi:10.1007/s11336-011-9224-6> and Jones and Waller (2015) <doi:10.1007/s11336-013-9380-y>. The package can also be used to generate confidence intervals for differences of standardized regression coefficients and as a general approach to performing the delta method. A description of the package and code examples are presented in Pesigan, Sun, and Cheung (2023) <doi:10.1080/00273171.2023.2201277>. | 
| URL: | https://github.com/jeksterslab/betaDelta, https://jeksterslab.github.io/betaDelta/ | 
| BugReports: | https://github.com/jeksterslab/betaDelta/issues | 
| License: | MIT + file LICENSE | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| Depends: | R (≥ 3.5.0) | 
| Imports: | numDeriv | 
| Suggests: | knitr, rmarkdown, testthat, betaSandwich | 
| RoxygenNote: | 7.3.3.9000 | 
| NeedsCompilation: | no | 
| Packaged: | 2025-10-19 02:26:13 UTC; root | 
| Author: | Ivan Jacob Agaloos Pesigan | 
| Maintainer: | Ivan Jacob Agaloos Pesigan <r.jeksterslab@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2025-10-19 17:50:07 UTC | 
betaDelta: Confidence Intervals for Standardized Regression Coefficients
Description
Generates confidence intervals for standardized regression coefficients using delta method standard errors for models fitted by lm() as described in Yuan and Chan (2011) doi:10.1007/s11336-011-9224-6 and Jones and Waller (2015) doi:10.1007/s11336-013-9380-y. The package can also be used to generate confidence intervals for differences of standardized regression coefficients and as a general approach to performing the delta method. A description of the package and code examples are presented in Pesigan, Sun, and Cheung (2023) doi:10.1080/00273171.2023.2201277.
Author(s)
Maintainer: Ivan Jacob Agaloos Pesigan r.jeksterslab@gmail.com (ORCID) [copyright holder]
See Also
Useful links:
- Report bugs at https://github.com/jeksterslab/betaDelta/issues 
Estimate Standardized Regression Coefficients and the Corresponding Sampling Covariance Matrix
Description
Estimate Standardized Regression Coefficients and the Corresponding Sampling Covariance Matrix
Usage
BetaDelta(object, type = "mvn", alpha = c(0.05, 0.01, 0.001))
Arguments
| object | Object of class  | 
| type | Character string.
If  | 
| alpha | Numeric vector.
Significance level  | 
Value
Returns an object
of class betadelta which is a list with the following elements:
- call
- Function call. 
- args
- Function arguments. 
- lm_process
- Processed - lmobject.
- gamma
- Asymptotic covariance matrix of the sample covariance matrix. 
- acov
- Asymptotic covariance matrix of the standardized slopes. 
- vcov
- Sampling covariance matrix of the standardized slopes. 
- est
- Vector of standardized slopes. 
Author(s)
Ivan Jacob Agaloos Pesigan
References
Jones, J. A., & Waller, N. G. (2015). The normal-theory and asymptotic distribution-free (ADF) covariance matrix of standardized regression coefficients: Theoretical extensions and finite sample behavior. Psychometrika, 80(2), 365–378. doi:10.1007/s11336-013-9380-y
Pesigan, I. J. A., Sun, R. W., & Cheung, S. F. (2023). betaDelta and betaSandwich: Confidence intervals for standardized regression coefficients in R. Multivariate Behavioral Research. doi:10.1080/00273171.2023.2201277
Yuan, K.-H., & Chan, W. (2011). Biases and standard errors of standardized regression coefficients. Psychometrika, 76(4), 670–690. doi:10.1007/s11336-011-9224-6
See Also
Other Beta Delta Functions: 
DiffBetaDelta()
Examples
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
# Methods -------------------------------------------------------
print(std)
summary(std)
coef(std)
vcov(std)
confint(std, level = 0.95)
Delta Method
Description
Calculates delta method sampling variance-covariance matrix for a function of parameters using a numerical Jacobian.
Usage
Delta(
  coef,
  vcov,
  func,
  ...,
  theta = 0,
  alpha = c(0.05, 0.01, 0.001),
  z = TRUE,
  df = NULL
)
Arguments
| coef | Numeric vector. Vector of parameters. | 
| vcov | Numeric matrix. Matrix of sampling variance-covariance matrix of parameters. | 
| func | R function. 
 | 
| ... | Additional arguments to pass to  | 
| theta | Numeric vector. Parameter values when the null hypothesis is true. | 
| alpha | Numeric vector. Significance level/s. | 
| z | Logical.
If  | 
| df | Numeric.
Degrees of freedom if  | 
Value
Returns an object
of class deltamethod which is a list with the following elements:
- call
- Function call. 
- args
- Function arguments. 
- coef
- Estimates. 
- vcov
- Sampling variance-covariance matrix. 
- jacobian
- Jacobian matrix. 
- fun
- Function used ("Delta"). 
Author(s)
Ivan Jacob Agaloos Pesigan
See Also
Other Delta Method Functions: 
DeltaGeneric()
Examples
object <- glm(
  formula = vs ~ wt + disp,
  family = "binomial",
  data = mtcars
)
func <- function(x) {
  y <- exp(x)
  names(y) <- paste0("exp", "(", names(x), ")")
  y[-1]
}
Delta(
  coef = coef(object),
  vcov = vcov(object),
  func = func,
  alpha = 0.05
)
Delta Method (Generic Object Input)
Description
Calculates delta method sampling variance-covariance matrix for a function of parameters using a numerical Jacobian.
Usage
DeltaGeneric(
  object,
  def,
  theta = 0,
  alpha = c(0.05, 0.01, 0.001),
  z = TRUE,
  df = NULL
)
Arguments
| object | R object.
Fitted model object with  | 
| def | List of character strings. A list of defined functions of parameters. The string should be a valid R expression when parsed and should result a single value when evaluated. | 
| theta | Numeric vector. Parameter values when the null hypothesis is true. | 
| alpha | Numeric vector. Significance level/s. | 
| z | Logical.
If  | 
| df | Numeric.
Degrees of freedom if  | 
Value
Returns an object
of class deltamethod which is a list with the following elements:
- call
- Function call. 
- args
- Function arguments. 
- coef
- Estimates. 
- vcov
- Sampling variance-covariance matrix. 
- jacobian
- Jacobian matrix. 
- fun
- Function used ("DeltaGeneric"). 
Author(s)
Ivan Jacob Agaloos Pesigan
See Also
Other Delta Method Functions: 
Delta()
Examples
object <- glm(
  formula = vs ~ wt + disp,
  family = "binomial",
  data = mtcars
)
def <- list("exp(wt)", "exp(disp)")
DeltaGeneric(
  object = object,
  def = def,
  alpha = 0.05
)
Estimate Differences of Standardized Slopes and the Corresponding Sampling Covariance Matrix
Description
Estimate Differences of Standardized Slopes and the Corresponding Sampling Covariance Matrix
Usage
DiffBetaDelta(object, alpha = c(0.05, 0.01, 0.001))
Arguments
| object | Object of class  | 
| alpha | Numeric vector.
Significance level  | 
Value
Returns an object
of class diffbetadelta which is a list with the following elements:
- call
- Function call. 
- fit
- The argument - object.
- args
- Function arguments. 
- vcov
- Sampling covariance matrix of differences of standardized slopes. 
- est
- Vector of differences of standardized slopes. 
Author(s)
Ivan Jacob Agaloos Pesigan
See Also
Other Beta Delta Functions: 
BetaDelta()
Examples
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
diff <- DiffBetaDelta(std)
# Methods -------------------------------------------------------
print(diff)
summary(diff)
coef(diff)
vcov(diff)
confint(diff, level = 0.95)
Standardized Regression Slopes
Description
Standardized Regression Slopes
Usage
## S3 method for class 'betadelta'
coef(object, ...)
Arguments
| object | Object of class  | 
| ... | additional arguments. | 
Value
Returns a vector of standardized regression slopes.
Author(s)
Ivan Jacob Agaloos Pesigan
Examples
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
coef(std)
Estimates
Description
Estimates
Usage
## S3 method for class 'deltamethod'
coef(object, ...)
Arguments
| object | Object of class  | 
| ... | additional arguments. | 
Value
Returns a vector of estimates.
Author(s)
Ivan Jacob Agaloos Pesigan
Examples
object <- glm(
  formula = vs ~ wt + disp,
  family = "binomial",
  data = mtcars
)
def <- list("exp(wt)", "exp(disp)")
out <- DeltaGeneric(
  object = object,
  def = def,
  alpha = 0.05
)
coef(out)
Differences of Standardized Regression Slopes
Description
Differences of Standardized Regression Slopes
Usage
## S3 method for class 'diffbetadelta'
coef(object, ...)
Arguments
| object | Object of class  | 
| ... | additional arguments. | 
Value
Returns a vector of differences of standardized regression slopes.
Author(s)
Ivan Jacob Agaloos Pesigan
Examples
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
diff <- DiffBetaDelta(std)
coef(diff)
Confidence Intervals for Standardized Regression Slopes
Description
Confidence Intervals for Standardized Regression Slopes
Usage
## S3 method for class 'betadelta'
confint(object, parm = NULL, level = 0.95, ...)
Arguments
| object | Object of class  | 
| parm | a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered. | 
| level | the confidence level required. | 
| ... | additional arguments. | 
Value
Returns a matrix of confidence intervals.
Author(s)
Ivan Jacob Agaloos Pesigan
Examples
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
confint(std, level = 0.95)
Confidence Intervals
Description
Confidence Intervals
Usage
## S3 method for class 'deltamethod'
confint(object, parm = NULL, level = 0.95, ...)
Arguments
| object | Object of class  | 
| parm | a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered. | 
| level | the confidence level required. | 
| ... | additional arguments. | 
Value
Returns a matrix of confidence intervals.
Author(s)
Ivan Jacob Agaloos Pesigan
Examples
object <- glm(
  formula = vs ~ wt + disp,
  family = "binomial",
  data = mtcars
)
def <- list("exp(wt)", "exp(disp)")
out <- DeltaGeneric(
  object = object,
  def = def,
  alpha = 0.05
)
confint(out, level = 0.95)
Confidence Intervals for Differences of Standardized Regression Slopes
Description
Confidence Intervals for Differences of Standardized Regression Slopes
Usage
## S3 method for class 'diffbetadelta'
confint(object, parm = NULL, level = 0.95, ...)
Arguments
| object | Object of class  | 
| parm | a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered. | 
| level | the confidence level required. | 
| ... | additional arguments. | 
Value
Returns a matrix of confidence intervals.
Author(s)
Ivan Jacob Agaloos Pesigan
Examples
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
diff <- DiffBetaDelta(std)
confint(diff)
1982 National Academy of Sciences Doctoral Programs Data
Description
1982 National Academy of Sciences Doctoral Programs Data
Usage
nas1982
Format
Ratings of 46 doctoral programs in psychology in the USA with the following variables:
- QUALITY
- Program quality ratings. 
- NFACUL
- Number of faculty members in the program. 
- NGRADS
- Number of program graduates. 
- PCTSUPP
- Percentage of program graduates who received support. 
- PCTGRT
- Percent of faculty members holding research grants. 
- NARTIC
- Number of published articles attributed to program faculty member. 
- PCTPUB
- Percent of faculty with one or more published article. 
References
National Research Council. (1982). An assessment of research-doctorate programs in the United States: Social and behavioral sciences. doi:10.17226/9781. Reproduced with permission from the National Academy of Sciences, Courtesy of the National Academies Press, Washington, D.C.
Print Method for an Object of Class betadelta
Description
Print Method for an Object of Class betadelta
Usage
## S3 method for class 'betadelta'
print(x, alpha = NULL, digits = 4, ...)
Arguments
| x | Object of class  | 
| alpha | Numeric vector.
Significance level  | 
| digits | Digits to print. | 
| ... | additional arguments. | 
Value
Prints a matrix of standardized regression slopes, standard errors, test statistics, degrees of freedom, p-values, and confidence intervals.
Author(s)
Ivan Jacob Agaloos Pesigan
Examples
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
print(std)
Print Method for an Object of Class deltamethod
Description
Print Method for an Object of Class deltamethod
Usage
## S3 method for class 'deltamethod'
print(x, alpha = NULL, digits = 4, ...)
Arguments
| x | Object of class  | 
| alpha | Numeric vector.
Significance level  | 
| digits | Digits to print. | 
| ... | additional arguments. | 
Value
Returns a matrix of coefficients, standard errors, test statistics, degrees of freedom (if z = FALSE), p-values, and confidence intervals.
Author(s)
Ivan Jacob Agaloos Pesigan
Examples
object <- glm(
  formula = vs ~ wt + disp,
  family = "binomial",
  data = mtcars
)
def <- list("exp(wt)", "exp(disp)")
out <- DeltaGeneric(
  object = object,
  def = def,
  alpha = 0.05
)
print(out)
Print Method for an Object of Class diffbetadelta
Description
Print Method for an Object of Class diffbetadelta
Usage
## S3 method for class 'diffbetadelta'
print(x, alpha = NULL, digits = 4, ...)
Arguments
| x | Object of class  | 
| alpha | Numeric vector.
Significance level  | 
| digits | Digits to print. | 
| ... | additional arguments. | 
Value
Prints a matrix of standardized regression slopes, standard errors, test statistics, degrees of freedom, p-values, and confidence intervals.
Author(s)
Ivan Jacob Agaloos Pesigan
Examples
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
diff <- DiffBetaDelta(std)
print(diff)
Summary Method for an Object of Class betadelta
Description
Summary Method for an Object of Class betadelta
Usage
## S3 method for class 'betadelta'
summary(object, alpha = NULL, digits = 4, ...)
Arguments
| object | Object of class  | 
| alpha | Numeric vector.
Significance level  | 
| digits | Digits to print. | 
| ... | additional arguments. | 
Value
Returns a matrix of standardized regression slopes, standard errors, test statistics, degrees of freedom, p-values, and confidence intervals.
Author(s)
Ivan Jacob Agaloos Pesigan
Examples
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
summary(std)
Summary Method for an Object of Class deltamethod
Description
Summary Method for an Object of Class deltamethod
Usage
## S3 method for class 'deltamethod'
summary(object, alpha = NULL, digits = 4, ...)
Arguments
| object | Object of class  | 
| alpha | Numeric vector.
Significance level  | 
| digits | Digits to print. | 
| ... | additional arguments. | 
Value
Returns a matrix of standardized regression slopes, standard errors, test statistics, degrees of freedom, p-values, and confidence intervals.
Author(s)
Ivan Jacob Agaloos Pesigan
Examples
object <- glm(
  formula = vs ~ wt + disp,
  family = "binomial",
  data = mtcars
)
def <- list("exp(wt)", "exp(disp)")
out <- DeltaGeneric(
  object = object,
  def = def,
  alpha = 0.05
)
summary(out)
Summary Method for an Object of Class diffbetadelta
Description
Summary Method for an Object of Class diffbetadelta
Usage
## S3 method for class 'diffbetadelta'
summary(object, alpha = NULL, digits = 4, ...)
Arguments
| object | Object of class  | 
| alpha | Numeric vector.
Significance level  | 
| digits | Digits to print. | 
| ... | additional arguments. | 
Value
Returns a matrix of standardized regression slopes, standard errors, test statistics, degrees of freedom, p-values, and confidence intervals.
Author(s)
Ivan Jacob Agaloos Pesigan
Examples
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
diff <- DiffBetaDelta(std)
summary(diff)
Sampling Covariance Matrix of the Standardized Regression Slopes
Description
Sampling Covariance Matrix of the Standardized Regression Slopes
Usage
## S3 method for class 'betadelta'
vcov(object, ...)
Arguments
| object | Object of class  | 
| ... | additional arguments. | 
Value
Returns a matrix of the variance-covariance matrix of standardized slopes.
Author(s)
Ivan Jacob Agaloos Pesigan
Examples
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
vcov(std)
Sampling Covariance Matrix
Description
Sampling Covariance Matrix
Usage
## S3 method for class 'deltamethod'
vcov(object, ...)
Arguments
| object | Object of class  | 
| ... | additional arguments. | 
Value
Returns a matrix of the variance-covariance matrix.
Author(s)
Ivan Jacob Agaloos Pesigan
Examples
object <- glm(
  formula = vs ~ wt + disp,
  family = "binomial",
  data = mtcars
)
def <- list("exp(wt)", "exp(disp)")
out <- DeltaGeneric(
  object = object,
  def = def,
  alpha = 0.05
)
vcov(out)
Sampling Covariance Matrix of Differences of Standardized Regression Slopes
Description
Sampling Covariance Matrix of Differences of Standardized Regression Slopes
Usage
## S3 method for class 'diffbetadelta'
vcov(object, ...)
Arguments
| object | Object of class  | 
| ... | additional arguments. | 
Value
Returns a matrix of the variance-covariance matrix of differences of standardized regression slopes.
Author(s)
Ivan Jacob Agaloos Pesigan
Examples
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
diff <- DiffBetaDelta(std)
vcov(diff)