## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = FALSE ) ## ----------------------------------------------------------------------------- # install.packages("bml") ## ----setup-------------------------------------------------------------------- # library(bml) # data(coalgov) # # # Examine the data structure # head(coalgov[, c("gid", "pid", "pname", "n", "finance", "dur_wkb", "event_wkb")]) ## ----------------------------------------------------------------------------- # mod1 <- bml( # Surv(dur_wkb, event_wkb) ~ 1 + majority + # mm( # id = id(pid, gid), # vars = vars(finance), # fn = fn(w ~ 1/n, c = TRUE), # RE = TRUE # ), # family = "Weibull", # data = coalgov, # seed = 1 # ) # # summary(mod1) ## ----------------------------------------------------------------------------- # mod2 <- bml( # Surv(dur_wkb, event_wkb) ~ 1 + # majority + # mm( # id = id(pid, gid), # vars = vars(finance), # fn = fn(w ~ 1 / (1 + (n - 1) * exp(-(b0 + b1 * pseat))), c = TRUE), # RE = TRUE # ), # family = "Weibull", # priors = c("b.w ~ dnorm(0,1)"), # weakly informative prior on the weight parameters # data = coalgov, # seed = 1, # monitor = TRUE # ) # # summary(mod2) ## ----------------------------------------------------------------------------- # # Diagnostic plot for weight parameter # monetPlot(mod2, parameter = "b.w.1[1]", label = "Seat share effect") # # # MCMC diagnostics # mcmcDiag(mod2, parameters = "b.w.1[1]")