bmscstan: Bayesian Multilevel Single Case Models using 'Stan'
Analyse single case analyses against a control group.
    Its purpose is to provide a flexible, with good power and
    low first type error
    approach that can manage at the same time controls' and patient's data.
    The use of Bayesian statistics allows to test both the alternative and
    null hypothesis.
    Scandola, M., & Romano, D. (2020, August 3). <doi:10.31234/osf.io/sajdq>
    Scandola, M., & Romano, D. (2021). <doi:10.1016/j.neuropsychologia.2021.107834>.
| Version: | 1.2.1.0 | 
| Depends: | R (≥ 3.5.0), rstan, ggplot2, bayesplot | 
| Imports: | loo, logspline, LaplacesDemon | 
| Suggests: | reshape2, gridExtra, bridgesampling, testthat, knitr, rmarkdown, covr | 
| Published: | 2022-09-04 | 
| DOI: | 10.32614/CRAN.package.bmscstan | 
| Author: | Michele Scandola  [aut, cre] | 
| Maintainer: | Michele Scandola  <michele.scandola at univr.it> | 
| BugReports: | https://github.com/michelescandola/bmscstan | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| URL: | https://github.com/michelescandola/bmscstan | 
| NeedsCompilation: | no | 
| Citation: | bmscstan citation info | 
| Materials: | README | 
| CRAN checks: | bmscstan results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=bmscstan
to link to this page.