
Easily add logs to your functions, without interfering with the global environment.
The package is available on CRAN. Install it with:
install.packages("chronicler")You can install the development version from GitHub with:
# install.packages("devtools")
devtools::install_github("b-rodrigues/chronicler"){chronicler} provides the record()
function, which allows you to modify functions so that they provide
enhanced output. This enhanced output consists in a detailed log, and by
chaining decorated functions, it becomes possible to have a complete
trace of the operations that led to the final output. These decorated
functions work exactly the same as their undecorated counterparts, but
some care is required for correctly handling them. This introduction
will give you a quick overview of this package’s functionality.
Let’s first start with a simple example, by decorating the
sqrt() function:
library(chronicler)
r_sqrt <- record(sqrt)
a <- r_sqrt(1:5)Object a is now an object of class
chronicle. Let’s take a closer look at a:
a
#> OK! Value computed successfully:
#> ---------------
#> Just
#> [1] 1.000000 1.414214 1.732051 2.000000 2.236068
#> 
#> ---------------
#> This is an object of type `chronicle`.
#> Retrieve the value of this object with unveil(.c, "value").
#> To read the log of this object, call read_log(.c).a is now made up of several parts. The first part:
OK! Value computed successfully:
---------------
Just
[1] 1.000000 1.414214 1.732051 2.000000 2.236068simply provides the result of sqrt() applied to
1:5 (let’s ignore the word Just on the third
line for now; for more details see the Maybe Monad
vignette). The second part tells you that there’s more to it:
---------------
This is an object of type `chronicle`.
Retrieve the value of this object with unveil(.c, "value").
To read the log of this object, call read_log().The value of the sqrt() function applied to its
arguments can be obtained using unveil(), as explained:
unveil(a, "value")
#> [1] 1.000000 1.414214 1.732051 2.000000 2.236068A log also gets generated and can be read using
read_log():
read_log(a)
#> [1] "OK `sqrt` at 10:07:05 (0.000s)" "Total: 0.000 secs"This is especially useful for objects that get created using multiple calls:
r_sqrt <- record(sqrt)
r_exp <- record(exp)
r_mean <- record(mean)
b <- 1:10 |>
  r_sqrt() |>
  bind_record(r_exp) |>
  bind_record(r_mean)(bind_record() is used to chain multiple decorated
functions and will be explained in detail in the next section.)
read_log(b)
#> [1] "OK `sqrt` at 10:07:05 (0.000s)" "OK `exp` at 10:07:05 (0.000s)" 
#> [3] "OK `mean` at 10:07:05 (0.000s)" "Total: 0.000 secs"
unveil(b, "value")
#> [1] 11.55345record() works with any function, but not yet with
{ggplot2}.
To avoid having to define every function individually, like this:
r_sqrt <- record(sqrt)
r_exp <- record(exp)
r_mean <- record(mean)you can use the record_many() function.
record_many() takes a list of functions (as strings) as an
input and puts generated code in your system’s clipboard. You can then
paste the code into your text editor. The gif below illustrates how
record_many() works:
 
bind_record() is used to pass the output from one
decorated function to the next:
library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(ggplot2)
r_group_by <- record(group_by)
r_select <- record(select)
r_summarise <- record(summarise)
r_filter <- record(filter)
output <- starwars %>%
  r_select(height, mass, species, sex) %>%
  bind_record(r_group_by, species, sex) %>%
  bind_record(r_filter, sex != "male") %>%
  bind_record(r_summarise,
              mass = mean(mass, na.rm = TRUE)
              )read_log(output)
#> [1] "OK `select` at 10:07:05 (0.002s)"    "OK `group_by` at 10:07:05 (0.002s)" 
#> [3] "OK `filter` at 10:07:05 (0.002s)"    "OK `summarise` at 10:07:05 (0.002s)"
#> [5] "Total: 0.008 secs"The value can then be accessed and worked on as usual using
unveil(), as explained above:
unveil(output, "value")
#> # A tibble: 9 × 3
#> # Groups:   species [9]
#>   species    sex              mass
#>   <chr>      <chr>           <dbl>
#> 1 Clawdite   female           55  
#> 2 Droid      none             69.8
#> 3 Human      female           56.3
#> 4 Hutt       hermaphroditic 1358  
#> 5 Kaminoan   female          NaN  
#> 6 Mirialan   female           53.1
#> 7 Tholothian female           50  
#> 8 Togruta    female           57  
#> 9 Twi'lek    female           55This package also ships with a dedicated pipe, %>=%
which you can use instead of bind_record():
output_pipe <- starwars %>%
  r_select(height, mass, species, sex) %>=%
  r_group_by(species, sex) %>=%
  r_filter(sex != "male") %>=%
  r_summarise(mean_mass = mean(mass, na.rm = TRUE))unveil(output_pipe, "value")
#> # A tibble: 9 × 3
#> # Groups:   species [9]
#>   species    sex            mean_mass
#>   <chr>      <chr>              <dbl>
#> 1 Clawdite   female              55  
#> 2 Droid      none                69.8
#> 3 Human      female              56.3
#> 4 Hutt       hermaphroditic    1358  
#> 5 Kaminoan   female             NaN  
#> 6 Mirialan   female              53.1
#> 7 Tholothian female              50  
#> 8 Togruta    female              57  
#> 9 Twi'lek    female              55Using the %>=% is not recommended in non-interactive
sessions and bind_record() is recommend in such
settings.
By default, errors and warnings get caught and composed in the log:
errord_output <- starwars %>%
  r_select(height, mass, species, sex) %>=% 
  r_group_by(species, sx) %>=% # typo, "sx" instead of "sex"
  r_filter(sex != "male") %>=%
  r_summarise(mass = mean(mass, na.rm = TRUE))errord_output
#> NOK! Value computed unsuccessfully:
#> ---------------
#> Nothing
#> 
#> ---------------
#> This is an object of type `chronicle`.
#> Retrieve the value of this object with unveil(.c, "value").
#> To read the log of this object, call read_log(.c).Reading the log tells you which function failed, and with which error message:
read_log(errord_output)
#> [1] "OK `select` at 10:07:05 (0.001s)"    
#> [2] "NOK `group_by` at 10:07:05 (0.023s)" 
#> [3] "NOK `filter` at 10:07:05 (0.000s)"   
#> [4] "NOK `summarise` at 10:07:05 (0.000s)"
#> [5] "Total: 0.024 secs"It is also possible to only capture errors, or capture errors,
warnings and messages using the strict parameter of
record()
# Only errors:
r_sqrt <- record(sqrt, strict = 1)
r_sqrt(-10) |>
  read_log()
#> Warning in .f(.value, ...): NaNs produced
#> [1] "OK `sqrt` at 10:07:05 (0.000s)" "Total: 0.000 secs"
# Errors and warnings:
r_sqrt <- record(sqrt, strict = 2)
r_sqrt(-10) |>
  read_log()
#> [1] "NOK `sqrt` at 10:07:05 (0.000s)" "Total: 0.000 secs"
# Errors, warnings and messages
my_f <- function(x){
  message("this is a message")
  10
}
record(my_f, strict = 3)(10) |>
                         read_log()
#> [1] "NOK `my_f` at 10:07:05 (0.000s)" "Total: 0.000 secs"You can provide a function to record(), which will be
evaluated on the output. This makes it possible to, for example, monitor
the size of a data frame throughout the pipeline:
r_group_by <- record(group_by)
r_select <- record(select, .g = dim)
r_summarise <- record(summarise, .g = dim)
r_filter <- record(filter, .g = dim)
output_pipe <- starwars %>%
  r_select(height, mass, species, sex) %>=%
  r_group_by(species, sex) %>=%
  r_filter(sex != "male") %>=%
  r_summarise(mass = mean(mass, na.rm = TRUE))The $log_df element of a chronicle object
contains detailed information:
unveil(output_pipe, "log_df")
#>   ops_number     outcome  function
#> 1          1 OK! Success    select
#> 2          2 OK! Success  group_by
#> 3          3 OK! Success    filter
#> 4          4 OK! Success summarise
#>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      arguments
#> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ., height, mass, species, sex
#> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  c("structure(list(height = c(172L, 167L, 96L, 202L, 150L, 178L, ", "165L, 97L, 183L, 182L, 188L, 180L, 228L, 180L, 173L, 175L, 170L, ", "180L, 66L, 170L, 183L, 200L, 190L, 177L, 175L, 180L, 150L, NA, ", "88L, 160L, 193L, 191L, 170L, 185L, 196L, 224L, 206L, 183L, 137L, ", "112L, 183L, 163L, 175L, 180L, 178L, 79L, 94L, 122L, 163L, 188L, ", "198L, 196L, 171L, 184L, 188L, 264L, 188L, 196L, 185L, 157L, 183L, ", "183L, 170L, 166L, 165L, 193L, 191L, 183L, 168L, 198L, 229L, 213L, ", "167L, 96L, 193L, 191L, 178L, 216L, 234L, 188L, 178L, 206L, NA, ", \n"NA, NA, NA, NA), mass = c(77, 75, 32, 136, 49, 120, 75, 32, 84, ", "77, 84, NA, 112, 80, 74, 1358, 77, 110, 17, 75, 78.2, 140, 113, ", "79, 79, 83, NA, NA, 20, 68, 89, 90, NA, 45, 66, 82, NA, NA, NA, ", "40, NA, NA, 80, NA, 55, 15, 45, NA, 65, 84, 82, 87, NA, 50, NA, ", "NA, 80, NA, 85, NA, NA, 80, 56.2, 50, NA, 80, NA, 79, 55, 102, ", "88, NA, NA, NA, 48, NA, 57, 159, 136, 79, 48, 80, NA, NA, NA, ", "NA, NA), species = c(\\"Human\\", \\"Droid\\", \\"Droid\\", \\"Human\\", \\"Human\\", ", "\\"Human\\", \\"Human\\", \\"Droid\\", \\"Human\\", \\"Human\\", \\"Human\\", \\"Human\\", ", \n"\\"Wookiee\\", \\"Human\\", \\"Rodian\\", \\"Hutt\\", \\"Human\\", NA, \\"Yoda's species\\", ", "\\"Human\\", \\"Human\\", \\"Droid\\", \\"Trandoshan\\", \\"Human\\", \\"Human\\", \\"Mon Calamari\\", ", "\\"Human\\", \\"Human\\", \\"Ewok\\", \\"Sullustan\\", \\"Human\\", \\"Neimodian\\", ", "\\"Human\\", \\"Human\\", \\"Gungan\\", \\"Gungan\\", \\"Gungan\\", \\"Human\\", \\"Toydarian\\", ", "\\"Dug\\", \\"Human\\", \\"Human\\", \\"Zabrak\\", \\"Twi'lek\\", \\"Twi'lek\\", \\"Aleena\\", ", "\\"Vulptereen\\", \\"Xexto\\", \\"Toong\\", \\"Human\\", \\"Cerean\\", \\"Nautolan\\", ", \n"\\"Zabrak\\", \\"Tholothian\\", \\"Iktotchi\\", \\"Quermian\\", \\"Kel Dor\\", \\"Chagrian\\", ", "NA, NA, \\"Human\\", \\"Geonosian\\", \\"Mirialan\\", \\"Mirialan\\", \\"Human\\", ", "\\"Human\\", \\"Human\\", \\"Human\\", \\"Clawdite\\", \\"Besalisk\\", \\"Kaminoan\\", ", "\\"Kaminoan\\", \\"Human\\", \\"Droid\\", \\"Skakoan\\", \\"Muun\\", \\"Togruta\\", \\"Kaleesh\\", ", "\\"Wookiee\\", \\"Human\\", NA, \\"Pau'an\\", \\"Human\\", \\"Human\\", \\"Human\\", ", "\\"Droid\\", \\"Human\\"), sex = c(\\"male\\", \\"none\\", \\"none\\", \\"male\\", \\"female\\", ", "\\"male\\", \\"female\\", \\"none\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", ", \n"\\"male\\", \\"male\\", \\"hermaphroditic\\", \\"male\\", NA, \\"male\\", \\"male\\", ", "\\"male\\", \\"none\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", \\"female\\", \\"male\\", ", "\\"male\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", \\"female\\", \\"male\\", \\"male\\", ", "\\"male\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", \\"female\\", \\"male\\", \\"male\\", ", "\\"female\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", ", "\\"male\\", \\"female\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", NA, NA, \\"male\\", ", \n"\\"male\\", \\"female\\", \\"female\\", \\"female\\", \\"male\\", \\"male\\", \\"male\\", ", "\\"female\\", \\"male\\", \\"male\\", \\"female\\", \\"female\\", \\"none\\", \\"male\\", ", "\\"male\\", \\"female\\", \\"male\\", \\"male\\", \\"male\\", NA, \\"male\\", \\"male\\", ", "\\"female\\", \\"male\\", \\"none\\", \\"female\\")), row.names = c(NA, -87L), class = c(\\"tbl_df\\", ", "\\"tbl\\", \\"data.frame\\"))"), species, sex
#> 3 c("structure(list(height = c(172L, 167L, 96L, 202L, 150L, 178L, ", "165L, 97L, 183L, 182L, 188L, 180L, 228L, 180L, 173L, 175L, 170L, ", "180L, 66L, 170L, 183L, 200L, 190L, 177L, 175L, 180L, 150L, NA, ", "88L, 160L, 193L, 191L, 170L, 185L, 196L, 224L, 206L, 183L, 137L, ", "112L, 183L, 163L, 175L, 180L, 178L, 79L, 94L, 122L, 163L, 188L, ", "198L, 196L, 171L, 184L, 188L, 264L, 188L, 196L, 185L, 157L, 183L, ", "183L, 170L, 166L, 165L, 193L, 191L, 183L, 168L, 198L, 229L, 213L, ", "167L, 96L, 193L, 191L, 178L, 216L, 234L, 188L, 178L, 206L, NA, ", \n"NA, NA, NA, NA), mass = c(77, 75, 32, 136, 49, 120, 75, 32, 84, ", "77, 84, NA, 112, 80, 74, 1358, 77, 110, 17, 75, 78.2, 140, 113, ", "79, 79, 83, NA, NA, 20, 68, 89, 90, NA, 45, 66, 82, NA, NA, NA, ", "40, NA, NA, 80, NA, 55, 15, 45, NA, 65, 84, 82, 87, NA, 50, NA, ", "NA, 80, NA, 85, NA, NA, 80, 56.2, 50, NA, 80, NA, 79, 55, 102, ", "88, NA, NA, NA, 48, NA, 57, 159, 136, 79, 48, 80, NA, NA, NA, ", "NA, NA), species = c(\\"Human\\", \\"Droid\\", \\"Droid\\", \\"Human\\", \\"Human\\", ", "\\"Human\\", \\"Human\\", \\"Droid\\", \\"Human\\", \\"Human\\", \\"Human\\", \\"Human\\", ", \n"\\"Wookiee\\", \\"Human\\", \\"Rodian\\", \\"Hutt\\", \\"Human\\", NA, \\"Yoda's species\\", ", "\\"Human\\", \\"Human\\", \\"Droid\\", \\"Trandoshan\\", \\"Human\\", \\"Human\\", \\"Mon Calamari\\", ", "\\"Human\\", \\"Human\\", \\"Ewok\\", \\"Sullustan\\", \\"Human\\", \\"Neimodian\\", ", "\\"Human\\", \\"Human\\", \\"Gungan\\", \\"Gungan\\", \\"Gungan\\", \\"Human\\", \\"Toydarian\\", ", "\\"Dug\\", \\"Human\\", \\"Human\\", \\"Zabrak\\", \\"Twi'lek\\", \\"Twi'lek\\", \\"Aleena\\", ", "\\"Vulptereen\\", \\"Xexto\\", \\"Toong\\", \\"Human\\", \\"Cerean\\", \\"Nautolan\\", ", \n"\\"Zabrak\\", \\"Tholothian\\", \\"Iktotchi\\", \\"Quermian\\", \\"Kel Dor\\", \\"Chagrian\\", ", "NA, NA, \\"Human\\", \\"Geonosian\\", \\"Mirialan\\", \\"Mirialan\\", \\"Human\\", ", "\\"Human\\", \\"Human\\", \\"Human\\", \\"Clawdite\\", \\"Besalisk\\", \\"Kaminoan\\", ", "\\"Kaminoan\\", \\"Human\\", \\"Droid\\", \\"Skakoan\\", \\"Muun\\", \\"Togruta\\", \\"Kaleesh\\", ", "\\"Wookiee\\", \\"Human\\", NA, \\"Pau'an\\", \\"Human\\", \\"Human\\", \\"Human\\", ", "\\"Droid\\", \\"Human\\"), sex = c(\\"male\\", \\"none\\", \\"none\\", \\"male\\", \\"female\\", ", "\\"male\\", \\"female\\", \\"none\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", ", \n"\\"male\\", \\"male\\", \\"hermaphroditic\\", \\"male\\", NA, \\"male\\", \\"male\\", ", "\\"male\\", \\"none\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", \\"female\\", \\"male\\", ", "\\"male\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", \\"female\\", \\"male\\", \\"male\\", ", "\\"male\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", \\"female\\", \\"male\\", \\"male\\", ", "\\"female\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", ", "\\"male\\", \\"female\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", NA, NA, \\"male\\", ", \n"\\"male\\", \\"female\\", \\"female\\", \\"female\\", \\"male\\", \\"male\\", \\"male\\", ", "\\"female\\", \\"male\\", \\"male\\", \\"female\\", \\"female\\", \\"none\\", \\"male\\", ", "\\"male\\", \\"female\\", \\"male\\", \\"male\\", \\"male\\", NA, \\"male\\", \\"male\\", ", "\\"female\\", \\"male\\", \\"none\\", \\"female\\")), class = c(\\"grouped_df\\", ", "\\"tbl_df\\", \\"tbl\\", \\"data.frame\\"), row.names = c(NA, -87L), groups = structure(list(", "    species = c(\\"Aleena\\", \\"Besalisk\\", \\"Cerean\\", \\"Chagrian\\", \\"Clawdite\\", ", "    \\"Droid\\", \\"Dug\\", \\"Ewok\\", \\"Geonosian\\", \\"Gungan\\", \\"Human\\", \\"Human\\", ", \n"    \\"Hutt\\", \\"Iktotchi\\", \\"Kaleesh\\", \\"Kaminoan\\", \\"Kaminoan\\", \\"Kel Dor\\", ", "    \\"Mirialan\\", \\"Mon Calamari\\", \\"Muun\\", \\"Nautolan\\", \\"Neimodian\\", ", "    \\"Pau'an\\", \\"Quermian\\", \\"Rodian\\", \\"Skakoan\\", \\"Sullustan\\", \\"Tholothian\\", ", "    \\"Togruta\\", \\"Toong\\", \\"Toydarian\\", \\"Trandoshan\\", \\"Twi'lek\\", ", "    \\"Twi'lek\\", \\"Vulptereen\\", \\"Wookiee\\", \\"Xexto\\", \\"Yoda's species\\", ", "    \\"Zabrak\\", NA), sex = c(\\"male\\", \\"male\\", \\"male\\", \\"male\\", \\"female\\", ", "    \\"none\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", \\"female\\", \\"male\\", ", \n"    \\"hermaphroditic\\", \\"male\\", \\"male\\", \\"female\\", \\"male\\", \\"male\\", ", "    \\"female\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", ", "    \\"male\\", \\"male\\", \\"male\\", \\"female\\", \\"female\\", \\"male\\", \\"male\\", ", "    \\"male\\", \\"female\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", \\"male\\", ", "    \\"male\\", NA), .rows = structure(list(46L, 70L, 51L, 58L, 69L, ", "        c(2L, 3L, 8L, 22L, 74L, 86L), 40L, 29L, 62L, 35:37, c(5L, ", "        7L, 27L, 34L, 42L, 65L, 73L, 84L, 87L), c(1L, 4L, 6L, ", \n"        9L, 10L, 11L, 12L, 14L, 17L, 20L, 21L, 24L, 25L, 28L, ", "        31L, 33L, 38L, 41L, 50L, 61L, 66L, 67L, 68L, 80L, 83L, ", "        85L), 16L, 55L, 78L, 72L, 71L, 57L, 63:64, 26L, 76L, ", "        52L, 32L, 82L, 56L, 15L, 75L, 30L, 54L, 77L, 49L, 39L, ", "        23L, 45L, 44L, 47L, c(13L, 79L), 48L, 19L, c(43L, 53L", "        ), c(18L, 59L, 60L, 81L)), ptype = integer(0), class = c(\\"vctrs_list_of\\", ", "    \\"vctrs_vctr\\", \\"list\\"))), class = c(\\"tbl_df\\", \\"tbl\\", \\"data.frame\\"", "), row.names = c(NA, -41L), .drop = TRUE))"\n), sex != "male"
#> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   c("structure(list(height = c(167L, 96L, 150L, 165L, 97L, 175L, 200L, ", "150L, 185L, 163L, 178L, 184L, 170L, 166L, 165L, 168L, 213L, 167L, ", "96L, 178L, NA, NA, NA), mass = c(75, 32, 49, 75, 32, 1358, 140, ", "NA, 45, NA, 55, 50, 56.2, 50, NA, 55, NA, NA, NA, 57, NA, NA, ", "NA), species = c(\\"Droid\\", \\"Droid\\", \\"Human\\", \\"Human\\", \\"Droid\\", ", "\\"Hutt\\", \\"Droid\\", \\"Human\\", \\"Human\\", \\"Human\\", \\"Twi'lek\\", \\"Tholothian\\", ", "\\"Mirialan\\", \\"Mirialan\\", \\"Human\\", \\"Clawdite\\", \\"Kaminoan\\", \\"Human\\", ", \n"\\"Droid\\", \\"Togruta\\", \\"Human\\", \\"Droid\\", \\"Human\\"), sex = c(\\"none\\", ", "\\"none\\", \\"female\\", \\"female\\", \\"none\\", \\"hermaphroditic\\", \\"none\\", ", "\\"female\\", \\"female\\", \\"female\\", \\"female\\", \\"female\\", \\"female\\", \\"female\\", ", "\\"female\\", \\"female\\", \\"female\\", \\"female\\", \\"none\\", \\"female\\", \\"female\\", ", "\\"none\\", \\"female\\")), class = c(\\"grouped_df\\", \\"tbl_df\\", \\"tbl\\", ", "\\"data.frame\\"), row.names = c(NA, -23L), groups = structure(list(", "    species = c(\\"Clawdite\\", \\"Droid\\", \\"Human\\", \\"Hutt\\", \\"Kaminoan\\", ", \n"    \\"Mirialan\\", \\"Tholothian\\", \\"Togruta\\", \\"Twi'lek\\"), sex = c(\\"female\\", ", "    \\"none\\", \\"female\\", \\"hermaphroditic\\", \\"female\\", \\"female\\", \\"female\\", ", "    \\"female\\", \\"female\\"), .rows = structure(list(16L, c(1L, 2L, ", "    5L, 7L, 19L, 22L), c(3L, 4L, 8L, 9L, 10L, 15L, 18L, 21L, ", "    23L), 6L, 17L, 13:14, 12L, 20L, 11L), ptype = integer(0), class = c(\\"vctrs_list_of\\", ", "    \\"vctrs_vctr\\", \\"list\\"))), row.names = c(NA, -9L), .drop = TRUE, class = c(\\"tbl_df\\", ", "\\"tbl\\", \\"data.frame\\")))"\n), mean(mass, na.rm = TRUE)
#>   message          start_time            end_time          run_time     g
#> 1      NA 2025-08-18 10:07:05 2025-08-18 10:07:05 0.0007088184 secs 87, 4
#> 2      NA 2025-08-18 10:07:05 2025-08-18 10:07:05 0.0009276867 secs    NA
#> 3      NA 2025-08-18 10:07:05 2025-08-18 10:07:05 0.0008466244 secs 23, 4
#> 4      NA 2025-08-18 10:07:05 2025-08-18 10:07:05 0.0010926723 secs  9, 3
#>   diff_obj lag_outcome
#> 1     NULL        <NA>
#> 2     NULL OK! Success
#> 3     NULL OK! Success
#> 4     NULL OK! SuccessIt is thus possible to take a look at the output of the function
provided (dim()) using check_g():
check_g(output_pipe)
#>   ops_number  function     g
#> 1          1    select 87, 4
#> 2          2  group_by    NA
#> 3          3    filter 23, 4
#> 4          4 summarise  9, 3We can see that the dimension of the dataframe was (87, 4) after the
call to select(), (23, 4) after the call to
filter() and finally (9, 3) after the call to
summarise().
Another possibility for advanced logging is to use the
diff argument in record, which defaults to “none”. Setting
it to “full” provides, at each step of a workflow, the diff between the
input and the output:
r_group_by <- record(group_by)
r_select <- record(select, diff = "full")
r_summarise <- record(summarise, diff = "full")
r_filter <- record(filter, diff = "full")
output_pipe <- starwars %>%
  r_select(height, mass, species, sex) %>=%
  r_group_by(species, sex) %>=%
  r_filter(sex != "male") %>=%
  r_summarise(mass = mean(mass, na.rm = TRUE))Let’s compare the input and the output to
r_filter(sex != "male"):
# The following line generates a data frame with columns `ops_number`, `function` and `diff_obj`
# it is possible to filter on the step of interest using the `ops_number` or the `function` column
diff_pipe <- check_diff(output_pipe)
diff_pipe %>%
  filter(`function` == "filter") %>%  # <- backticks around `function` are required
  pull(diff_obj)
#> [[1]]
#> < input                                 
#> > output                                
#> @@ 1,15 / 1,15 @@                       
#> < # A tibble: 87 × 4                    
#> > # A tibble: 23 × 4                    
#> < # Groups:   species, sex [41]         
#> > # Groups:   species, sex [9]          
#>      height  mass species sex           
#>       <int> <dbl> <chr>   <chr>         
#> <  1    172    77 Human   male          
#>    2    167    75 Droid   none          
#>    3     96    32 Droid   none          
#> <  4    202   136 Human   male          
#>    5    150    49 Human   female        
#> <  6    178   120 Human   male          
#>    7    165    75 Human   female        
#>    8     97    32 Droid   none          
#> >  6    175  1358 Hutt    hermaphroditic
#> >  7    200   140 Droid   none          
#> <  9    183    84 Human   male          
#> >  8    150    NA Human   female        
#> < 10    182    77 Human   male          
#> >  9    185    45 Human   female        
#> > 10    163    NA Human   female        
#> < # ℹ 77 more rows                      
#> > # ℹ 13 more rowsIf you are familiar with the version control software
Git, you should have no problem reading this output. The
input was a data frame of 87 rows and 4 columns, and the output only had
23 rows. Rows that were in the input, and got removed from the output,
are highlighted (in the terminal, but not here, due to the color
scheme). If diff is set to “summary”, then only a summary
is provided:
r_group_by <- record(group_by)
r_select <- record(select, diff = "summary")
r_summarise <- record(summarise, diff = "summary")
r_filter <- record(filter, diff = "summary")
output_pipe <- starwars %>%
  r_select(height, mass, species, sex) %>=%
  r_group_by(species, sex) %>=%
  r_filter(sex != "male") %>=%
  r_summarise(mass = mean(mass, na.rm = TRUE))
diff_pipe <- check_diff(output_pipe)
diff_pipe %>%
  filter(`function` == "filter") %>%  # <- backticks around `function` are required
  pull(diff_obj)
#> [[1]]
#> 
#> Found differences in 5 hunks:
#>   8 insertions, 8 deletions, 7 matches (lines)
#> 
#> Diff map (line:char scale is 1:1 for single chars, 1:1 for char seqs):
#>   DDII..D..D.D..DDDIIIIIIBy combining .g and diff, it is possible to
have a very clear overview of what happened to the very first input
throughout the pipeline. diff functionality is provided by
the {diffobj} package.
This package provides a record() implementation for
{ggplot2} called record_ggplot(). It is a
separate function for two main reasons:
# Notice the double "g" in "mpgg" 
plot_1 <- ggplot(data = mtcars) + geom_point(aes(y = hp, x = mpgg))
# The error is not thrown here due to ggplot's lazy evaluationThe error will only be thrown when you force evaluation, for example
by printing plot_1.
The function record_ggplot() takes the ggplot
specification as the first argument. It can also take the
strict argument mentioned above.
r_plot_1 <- record_ggplot(ggplot(data = mtcars) + geom_point(aes(y = hp, x = mpg)))The output of this function is the same as for
record():
unveil(r_plot_1, "value")
read_log(r_plot_1)
#> [1] "OK `ggplot(data = mtcars) + geom_point(aes(y = hp, x = mpg))` at 10:07:06 (0.064s)"
#> [2] "Total: 0.064 secs"I’d like to thank armcn, Kupac for their blog posts (here)
and packages (maybe) which
inspired me to build this package. Thank you as well to TimTeaFan
for his help with writing the %>=% infix operator, nigrahamuk
for showing me a nice way to catch errors, and finally Mwavu
for pointing me towards the right direction with an issue I’ve had as I
started working on this package. Thanks to Putosaure for designing the hex
logo.