clespr: Composite Likelihood Estimation for Spatial Data
Composite likelihood approach is implemented to estimating statistical models for spatial ordinal and proportional data based on Feng et al. (2014) <doi:10.1002/env.2306>. Parameter estimates are identified by maximizing composite log-likelihood functions using the limited memory BFGS optimization algorithm with bounding constraints, while standard errors are obtained by estimating the Godambe information matrix.
| Version: | 1.1.2 | 
| Depends: | R (≥ 3.2.0) | 
| Imports: | AER (≥ 1.2-5), pbivnorm (≥ 0.6.0), MASS (≥ 7.3-45), magic (≥ 1.5-6), survival (≥ 2.37-5), clordr (≥ 1.0.2), doParallel (≥ 1.0.11), foreach (≥ 1.2.0), utils, stats | 
| Published: | 2018-02-23 | 
| DOI: | 10.32614/CRAN.package.clespr | 
| Author: | Ting Fung (Ralph) Ma [cre, aut],
  Wenbo Wu [aut],
  Jun Zhu [aut],
  Xiaoping Feng [aut],
  Daniel Walsh [ctb],
  Robin Russell [ctb] | 
| Maintainer: | Ting Fung (Ralph) Ma  <tingfung.ma at wisc.edu> | 
| License: | GPL-2 | 
| NeedsCompilation: | no | 
| CRAN checks: | clespr results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=clespr
to link to this page.