| Type: | Package | 
| Title: | Correlated Weighted Hochberg | 
| Version: | 0.2.0 | 
| Description: | Perform additional multiple testing procedure methods to p.adjust(), such as weighted Hochberg (Tamhane, A. C., & Liu, L., 2008) <doi:10.1093/biomet/asn018>, ICC adjusted Bonferroni method (Shi, Q., Pavey, E. S., & Carter, R. E., 2012) <doi:10.1002/pst.1514> and a new correlation corrected weighted Hochberg for correlated endpoints. | 
| License: | GPL (≥ 3) | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.3.2 | 
| Imports: | dplyr, glue, magrittr, Matrix, tibble | 
| NeedsCompilation: | no | 
| Packaged: | 2024-07-30 20:18:09 UTC; huanxinw | 
| Author: | Xin-Wei Huang | 
| Maintainer: | Xin-Wei Huang <xinweihuangstat@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2024-08-02 12:50:03 UTC | 
corrMCT: Correlated Weighted Hochberg
Description
Perform additional multiple testing procedure methods to p.adjust(), such as weighted Hochberg (Tamhane, A. C., & Liu, L., 2008) doi:10.1093/biomet/asn018, ICC adjusted Bonferroni method (Shi, Q., Pavey, E. S., & Carter, R. E., 2012) doi:10.1002/pst.1514 and a new correlation corrected weighted Hochberg for correlated endpoints.
Author(s)
Maintainer: Xin-Wei Huang xinweihuangstat@gmail.com (ORCID)
Other contributors:
- Jia Hua [contributor] 
- Bhramori Banerjee [contributor] 
- Xuelong Wang [contributor] 
- Qing Li [contributor] 
- Merck & Co., Inc [copyright holder, funder] 
Pipe operator
Description
See magrittr::%>% for details.
Usage
lhs %>% rhs
Arguments
| lhs | A value or the magrittr placeholder. | 
| rhs | A function call using the magrittr semantics. | 
Value
The result of calling rhs(lhs).
Weighted Hochberg method
Description
WHC performs the weighted Hochberg method proposed by Tamhane and Liu (2008).
Usage
WHC(p, w, alpha = 0.05)
Arguments
| p | A numeric vector. A length  | 
| w | A numeric vector. Any non-negative real numbers to denote the
importance of the endpoints. Length must be equal to  | 
| alpha | A real number.  | 
Value
A table contains p-values, weights, adjusted critical values, significance
References
Tamhane, A. C., & Liu, L. (2008). On weighted Hochberg procedures. Biometrika, 95(2), 279-294.
Examples
m <- 5
WHC(
  p = runif(m),
  w = runif(m)
)
ICC adjusted Bonferroni method
Description
corr.Bonferroni performs the ICC adjusted Bonferroni method proposed by
Shi, Pavey, and Carter(2012). Power law approximation by r is tricky, suggested
options was listed in the paper.
Usage
corr.Bonferroni(p, ICC, r = 0, alpha = 0.05)
Arguments
| p | A numeric vector. A length  | 
| ICC | A number. Intraclass correlation correction factor, a real number between (0, 1). | 
| r | A number. Tuning parameter for g** between (0, 1). Default  | 
| alpha | A real number.  | 
Value
A numeric vector of adjusted p-values.
References
Shi, Q., Pavey, E. S., & Carter, R. E. (2012). Bonferroniābased correction factor for multiple, correlated endpoints. Pharmaceutical statistics, 11(4), 300-309.
Examples
m <- 10
corr.Bonferroni(
  p = runif(m),
  ICC = 0.3
)
Correlation adjusted weighted Hochberg method
Description
A new method implement correlation correction based on weighted Hochberg. An ACF is applied for weight reduction to conserve alpha. Details see Huang et al. (2024+). A correlation structure with too many zero leads the method reduce to weighted Hochberg.
Usage
corr.WHC(p, w, corr.mat, a = 0.5, b = 0.6, penalty = NULL, alpha = 0.05)
Arguments
| p | A numeric vector. A length  | 
| w | A numeric vector. Any non-negative real numbers to denote the
importance of the endpoints. Length must be equal to  | 
| corr.mat | A matrix. The dimension must be  | 
| a | A numeric number.  | 
| b | A numeric number.  | 
| penalty | A function. User can define their own penalty function.
The basic rule is the function must be monotone decreasing from 0 to 1,
and range from 1 to  | 
| alpha | A real number.  | 
Value
A table contains p-values, weights, adjusted critical values, significance
References
Huang, X. -W., Hua, J., Banerjee, B., Wang, X., Li, Q. (2024+). Correlated weighted Hochberg procedure. In-preparation.
Examples
m <- 5
corr.WHC(
  p = runif(m),
  w = runif(m),
  corr.mat = cor(matrix(runif(10*m), ncol = m))
)
AR(1) correlation matrix
Description
An easy function to generate a AR(1) correlation matrix.
Usage
corrmat_AR1(m, rho)
Arguments
| m | An integer. Dimension of the correlation matrix. | 
| rho | A number. Correlation coefficient between  | 
Value
A correlation matrix
Examples
corrmat_AR1(
  m = 3,
  rho = 0.2
)
Compound symmetric correlation matrix
Description
An easy function to generate a compound symmetric correlation matrix
Usage
corrmat_CS(m, rho)
Arguments
| m | An integer. Dimension of the correlation matrix. | 
| rho | A number. Correlation coefficient between  | 
Value
A correlation matrix
Examples
corrmat_CS(
  m = 3,
  rho = 0.2
)
Block design correlation matrix
Description
An easy function to generate a block design correlation matrix. Each diagonal
element R_i is a compound symmetric matrix with dimension
d_i \times d_i. Correlation coefficient in each block is \rho_i.
All the off-diagonal elements are 0.
Usage
corrmat_block(d, rho)
Arguments
| d | An integer vector. Length  | 
| rho | A numeric vector. A length  | 
Value
A correlation matrix
Examples
corrmat_block(
  d = c(2,3,4),
  rho = c(0.1, 0.3, 0.5)
)
Block AR(1) design correlation matrix
Description
An easy function to generate a block AR(1) design correlation matrix. Each diagonal
element R_i is an AR(1) correlation matrix with dimension
d_i \times d_i. Correlation coefficient in each block is \rho_i.
All the off-diagonal elements are 0.
Usage
corrmat_blockAR1(d, rho)
Arguments
| d | An integer vector. Length  | 
| rho | A numeric vector. A length  | 
Value
A correlation matrix
Examples
corrmat_blockAR1(
  d = c(2,3,4),
  rho = c(0.1, 0.3, 0.5)
)