Package 'crosstalkr'

May 17, 2024

Title Analysis of Graph-Structured Data with a Focus on Protein-Protein Interaction Networks

Version 1.0.5

Description Provides a general toolkit for drug target identification. We include functionality to reduce large graphs to subgraphs and prioritize nodes. In addition to being optimized for use with generic graphs, we also provides support to analyze protein-protein interactions networks from online repositories. For more details on core method, refer to Weaver et al. (2021) <https: //journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008755>.

License GPL (>= 3)

biocViews

Imports rlang, magrittr, withr, readr, dplyr, stringr, tidyr, tibble, igraph (>= 1.2.0), Matrix, ensembldb, foreach, doParallel, Rcpp, iterators, ggplot2, STRINGdb

LinkingTo Rcpp

Encoding UTF-8

RoxygenNote 7.2.3

Suggests tidygraph, ggraph, testthat (>= 2.0.0), knitr, EnsDb.Hsapiens.v86, rmarkdown, here

Config/testthat/edition 2

VignetteBuilder knitr

Depends R (>= 2.10)

NeedsCompilation yes

Author Davis Weaver [aut, cre] (0000-0003-3086-497X)

Maintainer Davis Weaver <davis.weaver@case.edu>

Repository CRAN

Date/Publication 2024-05-17 11:40:09 UTC

R topics documented:

add_expression	 3
add_value	 3
as_gene_symbol	 4
bootstrap_null	 4
calc_dnp_i	6
calc_np	 6
calc_np_all	7
calc_np_all_legacy	7
calc_np_i	8
check_crosstalk	9
combine_null	 9
compute_crosstalk	10
compute_dnp	12
compute_np	12
compute_null_dnp	13
crosstalkr	14
crosstalk_subgraph	15
detect_inputtype	 16
dist_calc	 16
ensembl_type	 17
experiment_breakout	 17
fcalc_np_all	 18
final_combine	 18
final_dist_calc	 19
get_neighbors	 19
get_random_graph	 20
get_topn	 20
gfilter	 21
gfilter.ct	 22
gfilter.igraph_method	 22
gfilter.np	 23
gfilter.value	 23
is_ensembl	 24
is_entrez	 25
load_ppi	 25
match_seeds	 26
node_repression	 26
norm_colsum	 27
plot_ct	 28
ppi_intersection	 28
ppi_union	 29
prep_biogrid	 30
prep_stringdb	 30
sparseRWR	 31
supported_species	 32
tidy_expression	 32

add_expression

	to_taxon_id	 	 		•		•		 		 •		•	•	 •	 33
Index																34

3

add_expression attach expression values from user-provided expression vector to graph.

Description

attach expression values from user-provided expression vector to graph.

Usage

add_expression(exp, g)

Arguments

exp	expression vector - assumed to be a named vector where the values are expres-
	sion and the names are the gene name
g	igraph object - will be filtered so that only nodes found in both exp and g are kept

Value

subgraph of g containing only shared keys with exp and with expression attached.

add_value Attach a generic user-provided value to graph

Description

Attach a generic user-provided value to graph

Usage

```
add_value(val, g, val_name = "value")
```

Arguments

val	named numeric vector where the names correspond to vertices in g
g	igraph object - will be filtered so that only nodes found in both exp and g are kept
val_name	str key for val

Value

subgraph of g containing only shared keys with val and val attached

as_gene_symbol

Description

Convert from most other representations of gene name to gene.symbol

Usage

as_gene_symbol(x, edb = NULL)

Arguments

X	vector of ensemble.gene ids, ensemble.peptide ids, ensemble.transcript ids or entrez gene ids
edb	ensemble database object

Value

vector of gene symbols

Examples

```
#1) from numeric formatted entrez id
as_gene_symbol(1956)
#2) from character formatted entrez id
as_gene_symbol("1956")
#3) from ensemble gene id
as_gene_symbol("ENSG00000146648")
#4) From a vector of entrez ids
as_gene_symbol(c("123", "1956", "2012"))
```

bootstrap_null

Bootstrap null distribution for RWR

Description

This function will generate a bootstrapped null distribution to identify significant vertices in a PPI given a set of user-defined seed proteins. Bootstrapping is done by performing random walk with repeats repeatedly over "random" sets of seed proteins. Degree distribution of user-provided seeds is used to inform sampling.

bootstrap_null

Usage

```
bootstrap_null(
    seed_proteins,
    g,
    n = 1000,
    agg_int = 100,
    gamma = 0.6,
    eps = 1e-10,
    tmax = 1000,
    norm = TRUE,
    set_seed = NULL,
    cache = NULL,
    seed_name = NULL,
    ncores = 1
)
```

Arguments

seed_proteins	user defined seed proteins
g	igraph object
n	number of random walks with repeats to create null distribution
agg_int	number of runs before we need to aggregate the results - necessary to save mem- ory. set at lower numbers to save even more memory.
gamma	restart probability
eps	maximum allowed difference between the computed probabilities at the steady state
tmax	the maximum number of iterations for the RWR
norm	if True, w is normalized by dividing each value by the column sum.
set_seed	integer to set random number seed - for reproducibility
cache	A filepath to a folder downloaded files should be stored
seed_name	Name to give the cached ngull distribution - must be a character string
ncores	Number of cores to use - defaults to 1. Significant speedup can be achieved by using multiple cores for computation.

Value

data frame containing mean/ standard deviation for null distribution

Examples

```
#g <- prep_biogrid()
#bootstrap_null(seed_proteins = c("EGFR", "KRAS"), g= g, ncores = 1, n = 10)</pre>
```

calc_dnp_i

Description

helper function to calculate dnp for one sample

Usage

calc_dnp_i(df, g, v_rm = NULL, keep_all = TRUE)

Arguments

df	dataframe with one cell line + log expression
g	igraph object containing ppi info
v_rm	passed to node_repression()
keep_all	logical flag denoting if we should keep genes that we didn't calculate dnp for

Value

same dataframe with dnp calculated for each gene.

ca]	_C_	np

calculate network potential for one node.

Description

calculate network potential for one node.

Usage

calc_np(c_i, c_j)

Arguments

c_i	expression for a given node.
c_j	vector of expressions for each neighbor of c_i

calc_np_all

function to calculate the network potential for each protein in a userprovided vector - cpp internal version

Description

function to calculate the network potential for each protein in a user-provided vector - cpp internal version

Usage

```
calc_np_all(exp, g, v = "default", neighbors = NULL)
```

Arguments

exp	expression vector - assumed to be a named vector where the values are expres- sion and the names are the gene name
g	igraph object - will be filtered so that only nodes found in both exp and g are kept
v	character vector of nodes over which to calculate network potential.
neighbors	named list containing the neighbors for each node of graph g. If not provided, it will be computed

Value

dataframe containing network potential for each of the inputed gene names.

calc_np_all_legacy	function to calculate the network potential for each protein in a user-
	provided vector

Description

Mostly just used to help debug the CPP version - not exported

Usage

```
calc_np_all_legacy(
  exp,
  g,
  v = as.character(names(igraph::V(g))),
  neighbors = NULL
)
```

Arguments

exp	expression vector - assumed to be a named vector where the values are expres- sion and the names are the gene name
g	igraph object - will be filtered so that only nodes found in both exp and g are kept
v	character vector of nodes over which to calculate network potential.
neighbors	named list containing the neighbors for each node of graph g. If not provided, it will be computed

Value

dataframe containing network potential for each of the inputed gene names.

calc_np_i

helper function to calculate np for one sample

Description

helper function to calculate np for one sample

Usage

calc_np_i(df, g)

Arguments

df	dataframe with one cell line + log expression
g	igraph object containing ppi info

Value

same dataframe with np calculated for each gene.

check_crosstalk Check to make sure incoming object is a valid crosstalk df.

Description

This function is a helper function for plot_ct that verifies the input is a valid output of compute_crosstalk

Usage

```
check_crosstalk(crosstalk_df)
```

Arguments

crosstalk_df a dataframe containing the results of compute_crosstalk

Value

message if not correct object type, null otherwise

combine_null .combine function for compute_null foreach looping structure

Description

.combine function for compute_null foreach looping structure

Usage

```
combine_null(x)
```

Arguments

x aggregated data structure

Value

data.frame

compute_crosstalk

Identify proteins with a statistically significant relationship to userprovided seeds.

Description

compute_crosstalk returns a dataframe of proteins that are significantly associated with userdefined seed proteins. These identified "crosstalkers" can be combined with the user-defined seed proteins to identify functionally relevant subnetworks. Affinity scores for every protein in the network are calculated using a random-walk with repeats (sparseRWR). Significance is determined by comparing these affinity scores to a bootstrapped null distribution (see bootstrap_null). If using non-human PPI from string, refer to the stringdb documentation for how to specify proteins

Usage

```
compute_crosstalk(
  seed_proteins,
  g = NULL,
  use_ppi = TRUE,
  ppi = "stringdb",
  species = "homo sapiens",
  n = 1000,
  union = FALSE,
  intersection = FALSE,
  gamma = 0.6,
  eps = 1e - 10,
  tmax = 1000,
  norm = TRUE,
  set_seed,
  cache = NULL,
 min_score = 700,
  seed_name = NULL,
  ncores = 1,
  significance_level = 0.95,
  p_adjust = "bonferroni",
  agg_int = 100,
  return_g = FALSE
)
```

Arguments

seed_proteins	user defined seed proteins
g	igraph network object.
use_ppi	bool, should g be a protein-protein interaction network? If false, user must provide an igraph object in g

ppi	character string describing the ppi to use: currently only "stringdb" and "bi- ogrid" are supported.	
species	character string describing the species of interest. For a list of supported species, see supported_species. Non human species are only compatible with "stringdb"	
n	number of random walks with repeats to create null distribution	
union	bool, should we take the union of string db and biogrid to compute the PPI? Only applicable for the human PPI	
intersection	bool, should we take the intersection of string db and biogrid to compute the PPI? Only applicable for the human PPI	
gamma	restart probability	
eps	maximum allowed difference between the computed probabilities at the steady state	
tmax	the maximum number of iterations for the RWR	
norm	if True, w is normalized by dividing each value by the column sum.	
set_seed	integer to set random number seed - for reproducibility	
cache	A filepath to a folder downloaded files should be stored	
min_score	minimum connectivity score for each edge in the network.	
seed_name	Name to give the cached ngull distribution - must be a character string	
ncores	Number of cores to use - defaults to 1. Significant speedup can be achieved by using multiple cores for computation.	
significance_level		
	user-defined significance level for hypothesis testing	
p_adjust	adjustment method to correct for multiple hypothesis testing: defaults to "holm". see p.adjust.methods for other potential adjustment methods.	
agg_int	number of runs before we need to aggregate the results - necessary to save mem- ory. set at lower numbers to save even more memory.	
return_g	bool, should we return the graph used? mostly for internal use	

Value

data frame containing affinity score, p-value, for all "crosstalkers" related to a given set of seeds

Examples

#1) easy to use for querying biological networks - n = 10000 is more appropriate for actual analyses
#compute_crosstalk(c("EGFR", "KRAS"), n =10)

#2) Also works for any other kind of graph- just specify g (must be igraph formatted as of now)
g <- igraph::sample_gnp(n = 1000, p = 10/1000)
compute_crosstalk(c(1,3,5,8,10), g = g, use_ppi = FALSE, n = 100)</pre>

compute_dnp

main function to compute delta np for every gene in a given dataframe - assumes compute_np has already been run for a given dataset

Description

This function takes a tidy dataframe as input containing RNA sequencing data for one or more samples and conducts in-silico repression. Make sure to run with the same arguments for ppi and cache to maintain consistency for a given pipeline.

Usage

```
compute_dnp(
  cache = NULL,
  df,
  experiment_name,
  ppi,
  ncores = 1,
  min_score = NULL
)
```

Arguments

cache	user-provided filepath for where to store data etc	
df	dataframe output of compute_np	
experiment_name		
	name of the experiment for saving output.	
ppi	should we use biogrid or stringdb for the PPI	
ncores	number of cores to use for calculations	
min_score	if ppi is stringdb, which mininum score should we use to filter edges?	

Value

data.frame

compute_np

main function to compute np from a user-provided expression matrix.

Description

main function to compute np from a user-provided expression matrix.

compute_null_dnp

Usage

```
compute_np(
  cache = NULL,
  experiment_name,
  ppi = "biogrid",
  min_score = NULL,
  exp_mat,
  mir_paper = TRUE,
  ncores = 1
)
```

Arguments

cache	user-provided filepath for where to store data etc
experiment_name	
	name of the experiment for saving output.
ppi	should we use biogrid or stringdb for the PPI
min_score	if ppi is stringdb, which mininum score should we use to filter edges?
exp_mat	expression matrix where columns are samples and rows are features
mir_paper	are we running this in the context of the mir paper? a few quirks of that data
ncores	number of cores to use for calculations

Value

tidy data frame with one column for expression and another for np

compute_null_dnp	function to compute null distribution of dnp
------------------	--

Description

compute_null_dnp calculates a null distribution for the change in network potential for for each node in a cell signaling network.

Usage

```
compute_null_dnp(
  cache = NULL,
  df,
  ppi = "biogrid",
  n,
  n_genes = 50,
  experiment_name,
  ncores = 4,
  min_score = NULL
)
```

crosstalkr

Arguments

cache	user-provided filepath for where to store data etc	
df	<pre>output of compute_dnp()</pre>	
ppi	should we use biogrid or stringdb for the PPI	
n	number of permutations	
n_genes	integer describing number of genes per sample that we will compute the null distribution for	
experiment_name		
	name of the experiment for saving output.	
ncores	number of cores to use for calculations	
min_score	if ppi is stringdb, which mininum score should we use to filter edges?	

Details

The input for this function will be the output of compute_dnp(). To compute the null distribution, the nodes in the provided cell signaling network will be randomly permuted n times, with dnp computed or each new cell signaling network. The mean and standard error of dnp for this set of random networks will constitute the null model that we will use for comparison. Be warned that this operation is extremely expensive computationally. It is recommended to either use a high-performance cluster or limit the computation of the null distribution to a small number of nodes. To distribute the workload over multiple cores, just specify ncores.

Value

df, also saves to cache if specified

See Also

compute_dnp() and compute_np()

crosstalkr

crosstalkr: A package for the identification of functionally relevant subnetworks from high-dimensional omics data.

Description

crosstalkr provides a key user function, compute_crosstalk as well as several additional functions that assist in setup and visualization (under development).

crosstalkr functions

compute_crosstalk calculates affinity scores of all proteins in a network relative to user-provided seed proteins. Users can use the human interactome or provide a network represented as an igraph object.

sparseRWR performs random walk with restarts on a sparse matrix. Compared to dense matrix implementations, this should be extremely fast.

bootstrap_null Generates a null distribution based on n calls to sparseRWR

setup_init manages download and storage of interactome data to speed up future analysis

plot_ct allows users to visualize the subnetwork identified in compute_crosstalk. This function relies on the ggraph framework. Users are encouraged to use ggraph or other network visualization packages for more customized figures.

crosstalk_subgraph converts the output of compute_crosstalk to a tidygraph object containing only the identified nodes and their connections to the user-provided seed_proteins. This function also adds degree, degree_rank, and seed_label as attributes to the identified subgraph to assist in plotting.

crosstalk_subgraph Helper function to generate subgraph from crosstalk_df output of compute_crosstalk

Description

Useful if the user wants to carry out further analysis or design custom visualizations.

Usage

```
crosstalk_subgraph(crosstalk_df, g, seed_proteins, tg = TRUE)
```

Arguments

crosstalk_df	a dataframe containing the results of compute_crosstalk
g	igraph network object.
seed_proteins	user defined seed proteins
tg	bool do we want to tidy the graph for plotting?

Value

a tidygraph structure containing information about the crosstalkr subgraph

Examples

```
## Not run:
ct_df <- compute_crosstalk(c("EGFR", "KRAS"))
g <- prep_biogrid()
crosstalk_subgraph(ct_df, g = g, seed_proteins = c("EGFR", "KRAS"))
```

End(Not run)

detect_inputtype

Description

Determine which format of gene is used to specify by user-defined seed proteins

Usage

detect_inputtype(x)

Arguments

x vector of gene symbols

Value

"gene_symbol", "entrez_id", "ensemble_id" or "other"

dist_calc	Internal function that computes the mean/stdev for each gene from a
	wide-format data frame.

Description

This function is called by the high-level function "bootstrap_null". Not expected to be used by end-users - we only export it so that environments inside foreach loops can find it.

Usage

```
dist_calc(df, seed_proteins)
```

Arguments

df	: numeric vector
seed_proteins	user defined seed proteins

Value

data.frame containing summary statistics for the computed null distribution

ensembl_type

Description

Determine if ensembl id is a Protein, gene, or transcript_id

Usage

```
ensembl_type(x)
```

Arguments

х

vector or single gene symbol

Value

character: "PROTEINID", "GENEID", "TRANSCRIPTID"

experiment_breakout *helper function to split experiment names into constituent parts*

Description

this is highly specific to the miR paper

Usage

```
experiment_breakout(df)
```

Arguments

df dataframe

Value

data.frame

fcalc_np_all

Description

Function to calculate the network potential for vertices v

Usage

fcalc_np_all(neighbors, vertices, v, exp)

Arguments

neighbors	list of neighbors for every node in the graph, type Rcpp::list
vertices	node list for graph, type Rcpp::StringVector
v	list of nodes for which we plan to calculate network potential
exp	named vector of expression for each node in vertices

final_combine	final .combine function to run in compute_null_dnp foreach looping
	structure

Description

final .combine function to run in compute_null_dnp foreach looping structure

Usage

final_combine(x)

Arguments

x aggregated info

Value

data.frame

final_dist_calc Internal function that computes the mean/stdev for each gene from a wide-format data frame.

Description

This function is called by the high-level function "bootstrap_null".

Usage

```
final_dist_calc(df_list)
```

Arguments

df_list : list of dataframes from foreach loop in bootstrap_null

Value

data.frame

get_neighbors	function to get graph neighbors (along with their expression values)
	for a given gene in a given network g

Description

just a wrapper around igraph::neighbors() for convenience

Usage

```
get_neighbors(gene, g)
```

Arguments

gene	gene to grab neighbors from.
g	igraph object - will be filtered so that only nodes found in both exp and g are kept

Value

named numeric vector.

get_random_graph

Description

currently just a wrapper for igraph::rewire but may add more functionality in the future

Usage

get_random_graph(g)

Arguments

g graph to be permuted

Value

igraph

See Also

igraph::rewire()

get_topn	Helper function for compute_null_dnp - returns the top n genes by dnp
	for each sample

Description

Helper function for compute_null_dnp - returns the top n genes by dnp for each sample

Usage

get_topn(df, n_genes)

Arguments

df	<pre>output of compute_dnp()</pre>
n_genes	integer describing number of genes per sample that we will compute the null
	distribution for

gfilter

Description

Generic function to filter either an igraph object or a PPI network

Usage

```
gfilter(
  method = NULL,
  g = NULL,
  val = NULL,
  use_ppi,
  igraph_method = NULL,
  n = 100,
  desc = TRUE,
  ...
)
```

Arguments

method	str
g	igraph object
val	named numeric vector - some measure of node state (i.e. gene expression in the case of a PPI)
use_ppi	bool - should we use a ppi from online repository?
igraph_method	bool - is the user-provided method an igraph node scoring function?
n	int - number of nodes to include in the returned subgraph
desc	bool - do we want the top or bottom examples of the provided metric
	additional params passed to load_ppi() or compute_crosstalk()

Value

igraph

See Also

gfilter.ct, gfilter.np, gfilter.igraph_method

gfilter.ct

Description

Method to filter the graph based on parameters passed to compute_crosstalk

Usage

```
gfilter.ct(seeds, return_df = FALSE, ...)
```

Arguments

seeds	vector (str or numeric) user provided vertex ids to use as seeds in the random walk with restarts'
return_df	bool should we return a list containing the filtered graph + the RWR output that was used to do the filtering?
	additional arguments passed to compute_crosstalk()

Value

igraph object

gfilter.igraph_method *Method to filter graph based on any igraph method that scores verticies.*

Description

Method to filter graph based on any igraph method that scores verticies.

Usage

```
gfilter.igraph_method(g, use_ppi = TRUE, method, n = 500, desc, val_name, ...)
```

Arguments

g	igraph object
use_ppi	bool - should we use a ppi from online repository?
method	str
n	int - number of nodes to include in the returned subgraph
desc	bool - do we want the top or bottom examples of the provided metric
val_name	str
	additional parameters passed to load_ppi

gfilter.np

Value

igraph

gfilter.np

Method to filter graph based on network potential values.

Description

convenience function - it just calls gfilter.value after computing np

Usage

gfilter.np(g, val, use_ppi = TRUE, n = 500, desc, ...)

Arguments

g	igraph object
val	named numeric vector - some measure of node state (i.e. gene expression in the case of a PPI)
use_ppi	bool - should we use a ppi from online repository?
n	int - number of nodes to include in the returned subgraph
desc	bool - do we want the top or bottom examples of the provided metric
	additional params passed to load_ppi() or compute_crosstalk()

Details

For more information on network potential, see related paper

Value

igraph

gfilter.value	Method to filter graph based of	on user provided value
---------------	---------------------------------	------------------------

Description

Method to filter graph based on user provided value

Usage

```
gfilter.value(g, val, use_ppi = TRUE, n = 500, val_name = "value", desc, ...)
```

Arguments

g	igraph object
val	named numeric vector - some measure of node state (i.e. gene expression in the case of a PPI)
use_ppi	bool - should we use a ppi from online repository?
n	int - number of nodes to include in the returned subgraph
val_name	str
desc	bool - do we want the top or bottom examples of the provided metric
	additional params passed to load_ppi() or compute_crosstalk()

Value

igraph

is_ensembl	Determine if a character vector contains ensembl gene_ids	
------------	---	--

Description

Determine if a character vector contains ensembl gene_ids

Usage

is_ensembl(x)

Arguments

x vector or single gene symbol

Value

logical

is_entrez

Description

Determine if a character vector contains entrez gene_ids

Usage

is_entrez(x)

Arguments

х

vector or single gene symbol

Value

logical

load_ppi

Helper function to load requested PPI w/ parameters

Description

Helper function to load requested PPI w/ parameters

Usage

```
load_ppi(
  cache = NULL,
  union = FALSE,
  intersection = FALSE,
  species = "9606",
  min_score = 0,
  ppi = "stringdb"
)
```

Arguments

cache	A filepath to a folder downloaded files should be stored
union	bool
intersection	bool
species	species code either using latin species name or taxon id
<pre>min_score</pre>	minimum connectivity score for each edge in the network.
ppi	str

Value

igraph object

match_seeds	Identify random sets of seeds with similar degree distribution to parent
	seed proteins

Description

This function will generate n character vectors of seeds to be passed to sparseRWR as part of the construction of a boostrapped null distribution for significance testing.

Usage

```
match_seeds(g, seed_proteins, n, set_seed = NULL)
```

Arguments

g	igraph object representing the network under study. specified by "ppi" in boot- strap_null
seed_proteins	user defined seed proteins
n	number of random walks with repeats to create null distribution
set_seed	integer to set random number seed - for reproducibility

Value

list of character vectors: randomly generated seed proteins with a similar degree distribution to parent seed proteins

node_repression	Function to eliminate a node from a network g and calculate the
	change in some measure of network state

Description

this function is still under development.

Usage

```
node_repression(
   g,
   v_rm = as.character(names(igraph::V(g))),
   exp,
   state_function = calc_np_all,
   neighbors_only = TRUE,
   ...
)
```

26

norm_colsum

Arguments

g	igraph network object
v_rm	index of vertices to remove
exp	expression vector for nodes in graph g
state_function	function to use to calculate network state before and after node_repression
neighbors_only	logical designating whether state function should be calculated for all nodes or just neighbors
	additional parameters passed to state function.

norm_colsum	Function to normalize adjacency matrix by dividing each value by the colsum.

Description

Function to normalize adjacency matrix by dividing each value by the colsum.

Usage

```
norm_colsum(w)
```

Arguments

W

The adjacency matrix of a given graph in sparse format - dgCMatrix

Value

input matrix, normalized by column sums

Examples

```
# 1) Normalize by column sum on a simple matrix
v1 = (c(1,1,1,0))
v2 = c(0,0,0,1)
v3 = c(1,1,1,0)
v4 = c(0,0,0,1)
w = matrix(data = c(v1,v2,v3,v4), ncol = 4, nrow = 4)
norm_colsum(w)
```

plot_ct

Description

Convenience function for plotting crosstalkers - if you want to make more customized/dynamic figures, there are lots of packages that can facilitate that, including: visnetwork, ggraph, and even the base R plotting library

Usage

```
plot_ct(crosstalk_df, g, label_prop = 0.1, prop_keep = 0.4)
```

Arguments

crosstalk_df	a dataframe containing the results of compute_crosstalk
g	igraph network object.
label_prop	Proportion of nodes to label - based on degree
prop_keep	How many proteins do we want to keep in the visualization (as a proportion of total) - subsets on top x proteins ranked by affinity score

Value

NULL, draws the identified subgraph to device\

Examples

```
## Not run:
ct_df <- compute_crosstalk(c("EGFR", "KRAS"))
g <- prep_biogrid()
plot_ct(ct_df, g = g)
## End(Not run)
```

ppi_intersection	Function to allow users to choose the intersection of stringdb and bi-
	ogrid Only works with the human PPI. min_score parameter only ap-
	plies to strindb

Description

Function to allow users to choose the intersection of stringdb and biogrid Only works with the human PPI. min_score parameter only applies to strindb

ppi_union

Usage

ppi_intersection(cache = NULL, min_score = 800, edb = "default")

Arguments

cache	A filepath to a folder downloaded files should be stored
min_score	minimum connectivity score for each edge in the network.
edb	ensemble database object

Value

igraph object corresponding to PPI following intersection

ppi_union	Function to allow users to choose the union of stringdb and biogrid Only works with the human PPI. min_score parameter only applies to strindb

Description

Function to allow users to choose the union of stringdb and biogrid Only works with the human PPI. min_score parameter only applies to strindb

Usage

ppi_union(cache = NULL, min_score = 0, edb = "default")

Arguments

cache	A filepath to a folder downloaded files should be stored
min_score	minimum connectivity score for each edge in the network.
edb	ensemble database object

Value

igraph object corresponding to PPI following union

prep_biogrid

Description

Prepare biogrid for use in analyses

Usage

```
prep_biogrid(cache = NULL)
```

Arguments

cache

A filepath to a folder downloaded files should be stored

Value

igraph object built from the adjacency matrix downloaded from thebiogrid.org.

prep_stringdb

Prepare Stringdb for use in analyses

Description

Basically a wrapper around the get_graph method from the stringdb package

Usage

```
prep_stringdb(
  cache = NULL,
  edb = "default",
  min_score = 200,
  version = "11.5",
  species = "homo sapiens"
)
```

Arguments

cache	A filepath to a folder downloaded files should be stored
edb	ensemble database object
<pre>min_score</pre>	minimum connectivity score for each edge in the network.
version	stringdb version
species	species code either using latin species name or taxon id

Value

igraph object built from the adjacency matrix downloaded from stringdb.

sparseRWR

Description

This function borrows heavily from the RWR function in the RANKS package (cite here)

Usage

```
sparseRWR(seed_proteins, w, gamma = 0.6, eps = 1e-10, tmax = 1000, norm = TRUE)
```

Arguments

seed_proteins	user defined seed proteins
W	The adjacency matrix of a given graph in sparse format - dgCMatrix
gamma	restart probability
eps	maximum allowed difference between the computed probabilities at the steady
	state
tmax	the maximum number of iterations for the RWR
norm	if True, w is normalized by dividing each value by the column sum.

Value

numeric vector, affinity scores for all nodes in graph relative to provided seeds

Examples

```
# 1) Run Random walk with restarts on a simple matrix
v1 = (c(1,1,1,0))
v2 = c(0, 0, 0, 1)
v3 = c(1, 1, 1, 0)
v4 = c(0, 0, 0, 1)
w = matrix(data = c(v1,v2,v3,v4), ncol = 4, nrow = 4)
sparseRWR(seed_proteins = c(1,3), w = w, norm = TRUE)
# 2) Works just as well on a sparse matrix
v1 = (c(1,1,1,0))
v2 = c(0, 0, 0, 1)
v3 = c(1, 1, 1, 0)
v4 = c(0, 0, 0, 1)
w = matrix(data = c(v1, v2, v3, v4), ncol = 4, nrow = 4)
w = Matrix::Matrix(w, sparse = TRUE)
sparseRWR(seed_proteins = c(1,4), w = w, norm = TRUE)
#3) Sample workflow for use with human protein-protein interaction network
#g <- prep_biogrid()</pre>
#w <- igraph::as_adjacency_matrix(g)</pre>
#sparseRWR(seed_proteins = c("EGFR", "KRAS"), w = w, norm = TRUE)
```

supported_species returns a dataframe with information on supported species

Description

returns a dataframe with information on supported species

Usage

supported_species()

Value

dataframe

tidy_expression	helper function to convert expression matrix to tidy dataframe (if not
	already)

Description

helper function to convert expression matrix to tidy dataframe (if not already)

Usage

tidy_expression(df)

Arguments

df dataframe

Value

data.frame

to_taxon_id

Description

helper to convert user-inputs to ncbi reference taxonomy.

Usage

```
to_taxon_id(species)
```

Arguments

species user-inputted species

Value

string corresponding to taxon id

Index

add_expression, 3 add_value, 3 as_gene_symbol, 4 bootstrap_null, 4 calc_dnp_i,6 calc_np, 6 calc_np_all, 7 calc_np_all_legacy, 7 calc_np_i, 8 check_crosstalk, 9 combine_null, 9 compute_crosstalk, 10 compute_crosstalk(), 21-24 compute_dnp, 12 compute_dnp(), *14*, *20* compute_np, *12*, 12 compute_np(), 14 compute_null_dnp, 13 crosstalk_subgraph, 15 crosstalkr, 14 detect_inputtype, 16 dist_calc, 16 ensembl_type, 17 experiment_breakout, 17 fcalc_np_all, 18 final_combine, 18 final_dist_calc, 19 get_neighbors, 19 get_random_graph, 20 get_topn, 20 gfilter, 21 gfilter.ct, 21, 22 gfilter.igraph_method, 21, 22 gfilter.np, 21, 23 gfilter.value, 23

igraph::neighbors(), 19
igraph::rewire(), 20
is_ensembl, 24
is_entrez, 25

load_ppi, 22, 25 load_ppi(), 21, 23, 24

match_seeds, 26

node_repression, 26
node_repression(), 6
norm_colsum, 27

plot_ct, 28
ppi_intersection, 28
ppi_union, 29
prep_biogrid, 30
prep_stringdb, 30

sparseRWR, 31
supported_species, 32

tidy_expression, 32
to_taxon_id, 33