library(dsample)Please run demo(mix2) and demo(mix3).
Data are taken from Dalal, Fowlkes, and Hoadley (1989). Details are described in Dezfuli et al. (2009) on pages 144–146.
expr <- str2expression("
  lp <- 0
  for(i in 1:len) lp <- lp + 
    y[i] * log(exp(alpha + beta*temp[i])/(1+exp(alpha + beta*temp[i])))
  for(i in 1:len) lp <- lp + 
    (1-y[i])*log(1/(1+exp(alpha + beta*temp[i])))
  lp <- lp + alpha - exp(alpha)/b
  lp <- exp(lp)
")
sets <- list(
  alpha=runif(n=nd, min=10, max=20), 
  beta=runif(n=nd, min=-0.3, max=-0.15)
)
smp <- dsample(expr=expr, rpmat=sets, nk=1e3, n=1e3)
op <- summary(smp)
op$means
#>      alpha       beta 
#> 15.1416129 -0.2345963
op$stdevs
#>      alpha       beta 
#> 1.18252018 0.01836517Data are taken from Prentice (1976). Details are described in OpenBUGS Examples Vol 2. Beetles.
expr <- str2expression("
  sigma <- exp(log.sigma)
  m1 <- exp(log.m1)
  
  lp <- 0
  for(i in 1:len) lp <- lp + 
    yi[i]*m1*log((exp((wi[i]-mu)/sigma)/(1+exp((wi[i]-mu)/sigma))))
  for(i in 1:len) lp <- lp + 
    (ni[i]-yi[i])*log(( 1- (exp((wi[i]-mu)/sigma)/(1+exp((wi[i]-mu)/sigma)))^m1 ))
  lp <- lp + (a-1)*log.m1 - 2*(e+1)*log.sigma
  lp <- lp - 0.5*((mu-c1)/d)^2
  lp <- lp - m1/b - 1/(f*sigma^2)
  lp <- exp(lp)
")
sets <- list(
  mu=runif(nd, min=1.75, max=1.85), 
  log.sigma=runif(nd, min=-5, max=-3), 
  log.m1=runif(nd, min=-2, max=0.1)
)
smp <- dsample(expr=expr, rpmat=sets, nk=1e3, n=1e3)
op <- summary(smp)
op$means
#>        mu log.sigma    log.m1 
#>  1.813845 -4.082532 -1.174099
op$stdevs
#>        mu log.sigma    log.m1 
#> 0.0154026 0.2642583 0.3701782Data are taken from Ratkowsky (1986). Details are described in OpenBUGS Examples Vol 2.Dugongs.
expr <- str2expression("
  lp <- (len/2 + k - 1)*log(tau)
  for(i in 1:len) lp <- lp - 
    tau*0.5*(y.length[i] - alpha+beta*gamma^x.age[i])^2
  lp <- lp - tau*k - tau.alpha*alpha^2*0.5 - tau.beta*beta^2*0.5
  lp <- exp(lp)
")
sets <- list(
  alpha=runif(nd, min=2, max=3), 
  beta=runif(nd, min=0.5, max=1.5), 
  gamma=runif(nd, min=0.5, max=1.5), 
  tau=runif(nd, min=0.2, max=200)
)
smp <- dsample(expr=expr, rpmat=sets, nk=1e3, n=1e3)
op <- summary(smp)
op$means
#>       alpha        beta       gamma         tau 
#>   2.5921814   0.9837057   0.8154180 122.4837366
op$stdevs
#>      alpha       beta      gamma        tau 
#>  0.1859048  0.1783082  0.1047462 51.0445042Data are taken from Diggle and Marron (1988).
expr <- str2expression("
  ll <- 0
  ll <- ll + (cum.x.until.k[kappa]-0.5)*log(theta) + 
        (cum.x.after.k[kappa]-0.5)*log(lambda) - 
        kappa*theta -  (len-kappa)*lambda
  lp <- ll  + 1.5*log(alpha) + 1.5*log(beta) - 
        (theta+1)*alpha - (lambda+1)*beta
  lp <- exp(lp)
")
sets <- list(
  kappa=sample(x=30:50, size=nd, replace=TRUE),
  theta=runif(nd, min=2.2, max=4),
  lambda=runif(nd, min=0.6, max=1.4),
  alpha=runif(nd, min=0, max=2),
  beta=runif(nd, min=0, max=4)
)
smp <- dsample(expr=expr, rpmat=sets, nk=1e3, n=1e3)
op <- summary(smp)
op$means
#>      kappa      theta     lambda      alpha       beta 
#> 40.1420000  3.0530883  0.9149556  0.6408854  1.3262175
op$stdevs
#>     kappa     theta    lambda     alpha      beta 
#> 2.6150860 0.3075382 0.1258025 0.3889245 0.7792260Data are taken from Gaver and O’Muircheartaigh (1987). Details are described in OpenBUGS Examples Vol 2..
expr <- str2expression("
  ll <- 0
  for(i in 1:len){
    sum.cmd <- gsub(' ', '', paste('ll <- ll +(failure[', i,']+alpha-1)*log(lambda', i,')'))
    eval(parse(text=sum.cmd))
  }
  for(i in 1:len){
    sum.cmd <- gsub(' ', '', paste('ll <- ll - (time[', i,']+bb)*lambda', i))
    eval(parse(text=sum.cmd))
  }
  
  lp <- ll + (10*alpha+gg-1)*log(bb) - delta*bb
  lp <- exp(lp)
")
sets <- list(
  bb=runif(nd, 0, 4),
  lambda1=runif(nd, 0, 0.2),
  lambda2=runif(nd, 0, 0.4),
  lambda3=runif(nd, 0, 0.25),
  lambda4=runif(nd, 0, 0.25),
  lambda5=runif(nd, 0, 2),
  lambda6=runif(nd, 0, 1.5),
  lambda7=runif(nd, 0, 2),
  lambda8=runif(nd, 0, 2),
  lambda9=runif(nd, 0, 4),
  lambda10=runif(nd, 0, 3.5)
)
smp <- dsample(expr=expr, rpmat=sets, nk=5e4, n=3e3)
op <- summary(smp)
op$means
#>         bb    lambda1    lambda2    lambda3    lambda4    lambda5    lambda6 
#> 1.10946266 0.06747204 0.10239138 0.09436450 0.11230018 0.57639415 0.61232911 
#>    lambda7    lambda8    lambda9   lambda10 
#> 0.78275520 0.78171333 1.40242048 1.93788664
op$stdevs
#>         bb    lambda1    lambda2    lambda3    lambda4    lambda5    lambda6 
#> 0.65214851 0.03357516 0.08561880 0.04104042 0.03711780 0.34884930 0.20068897 
#>    lambda7    lambda8    lambda9   lambda10 
#> 0.43586702 0.47294621 0.84314819 0.52456361