| Title: | Enhanced Least Absolute Shrinkage and Selection Operator Regression Model | 
| Version: | 1.1 | 
| Author: | Pi Guo | 
| Maintainer: | Pi Guo <guopi.01@163.com> | 
| Description: | Performs some enhanced variable selection algorithms based on the least absolute shrinkage and selection operator for regression model. | 
| Depends: | R (≥ 3.0.2),glmnet,SiZer,datasets | 
| License: | GPL-2 | 
| LazyData: | true | 
| Packaged: | 2015-10-06 09:39:48 UTC; Administrator | 
| NeedsCompilation: | no | 
| Repository: | CRAN | 
| Date/Publication: | 2015-10-06 14:04:20 | 
Bootstrap ranking LASSO model.
Description
This function performs a LASSO logistic regression model using a bootstrap ranking procedure.
Usage
BRLasso(x, y, B = 5, Boots = 100, kfold = 10)
Arguments
| x | the predictor matrix | 
| y | the response variable, a factor object with values of 0 and 1 | 
| B | the external loop for intersection operation, with the default value 5 | 
| Boots | the internal loop for bootstrap sampling, with the default value 100 | 
| kfold | the K-fold cross validation, with the default value 10 | 
References
Guo, P., Zeng, F., Hu, X., Zhang, D., Zhu, S., Deng, Y., & Hao, Y. (2015). Improved Variable Selection Algorithm Using a LASSO-Type Penalty, with an Application to Assessing Hepatitis B Infection Relevant Factors in Community Residents. PLoS One, 27;10(7):e0134151.
Examples
library(datasets)
head(iris)
X <- as.matrix(subset(iris,iris$Species!="setosa")[,-5])
Y <- as.factor(ifelse(subset(iris,iris$Species!="setosa")[,5]=='versicolor',0,1))
# Fitting a bootstrap ranking LASSO (BRLASSO) logistic regression model
BRLasso.fit <- BRLasso(x=X, y=Y, B=2, Boots=10, kfold=10)
# Variables selected by the BRLASSO model
BRLasso.fit$var.selected
# Coefficients of the selected variables
BRLasso.fit$var.coef