envoutliers: Methods for Identification of Outliers in Environmental Data
Three semi-parametric methods for detection of outliers in environmental data based on kernel regression and subsequent analysis of smoothing residuals. The first method (Campulova, Michalek, Mikuska and Bokal (2018) <doi:10.1002/cem.2997>) analyzes the residuals using changepoint analysis, the second method is based on control charts (Campulova, Veselik and Michalek (2017) <doi:10.1016/j.apr.2017.01.004>) and the third method (Holesovsky, Campulova and Michalek (2018) <doi:10.1016/j.apr.2017.06.005>) analyzes the residuals using extreme value theory (Holesovsky, Campulova and Michalek (2018) <doi:10.1016/j.apr.2017.06.005>).
| Version: | 1.1.0 | 
| Imports: | MASS, car, changepoint, ecp, graphics, ismev, lokern, robustbase, stats | 
| Suggests: | openair | 
| Published: | 2020-05-07 | 
| DOI: | 10.32614/CRAN.package.envoutliers | 
| Author: | Martina Campulova [cre],
  Martina Campulova [aut],
  Roman Campula [ctb] | 
| Maintainer: | Martina Campulova  <martina.campulova at mendelu.cz> | 
| License: | GPL-2 | 
| NeedsCompilation: | no | 
| Citation: | envoutliers citation info | 
| Materials: | NEWS | 
| In views: | AnomalyDetection | 
| CRAN checks: | envoutliers results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=envoutliers
to link to this page.