The epocakir package makes clinical coding of patients with kidney disease using clinical practice guidelines easy. The guidelines used are the evidence-based KDIGO guidelines. This package covers acute kidney injury (AKI), anemia, and chronic liver disease(CKD).
aki_staging(): Classification of AKI staging
(aki_stages) with automatic selection of:
aki_bCr(): AKI based on baseline creatinineaki_SCr(): AKI based on changes in serum
creatinineaki_UO(): AKI based on urine outputanemia(): Classification of anemia
Classification of albuminuria
(Albuminuria_stages)
Albuminuria_staging_ACR(): Albuminuria based on Albumin
excretion rateAlbuminuria_staging_AER(): Albuminuria based on
Albumin-to-creatinine ratioeGFR(): Estimation of glomerular filtration rate
with automatic selection of:
eGFR_adult_SCr(): eGFR based on the 2009 CKD-EPI
creatinine equationeGFR_adult_SCysC(): eGFR based on the 2012 CKD-EPI
cystatin C equationeGFR_adult_SCr_SCysC(): eGFR based on the 2012 CKD-EPI
creatinine-cystatin C equationeGFR_child_SCr(): eGFR based on the pediatric
creatinine-based equationeGFR_child_SCr_BUN(): eGFR based on the pediatric
creatinine-BUN equationeGFR_child_SCysC(): eGFR based on the pediatric
cystatin C-based equationGFR_staging(): Staging of GFR
(GFR_stages)
Multiple utility functions including:
conversion_factors: Conversion factors used throughout
the KDIGO guidelinesas_metric(): Conversion of a measured value into metric
unitsdob2age(): Calculation of age from a date of birthbinary2factor(): Conversion of binary data into factors
based on a column namecombine_date_time_cols(): Combining separate date and
time columns into a single date and time columncombn_changes: Generating changes between
measurementsAutomatic conversion of units class objects
Tidy output allowing seamless integration with functions from the tidyverse
Tidyeval via programming with dplyr
Comprehensive tests and coverage
Often clinical data must be cleansed and tidied before analysis can
begin. To assist in this, several utility functions have been included.
To explore these, consider a sample clinical dataset
clinical_obvs:
# Example workflow: clinical_obvs <- read.csv("cohort.csv")
glimpse(clinical_obvs)
#> Rows: 3
#> Columns: 9
#> $ `Patient Number` <chr> "p10001", "p10002", "p10003"
#> $ `Admission Date` <chr> "2020-03-05", "2020-03-06", "2020-03-17"
#> $ `Admission Time` <chr> "14:01:00", "09:10:00", "12:48:00"
#> $ Discharge_date   <chr> "2020-03-10", "2020-03-16", "2020-03-18"
#> $ Discharge_time   <chr> "16:34:00", "18:51:00", "09:12:00"
#> $ `Date of Birth`  <chr> "1956-01-09", "1997-12-04", "1973-05-28"
#> $ Male             <lgl> TRUE, FALSE, TRUE
#> $ Height           <dbl> 182, 161, 168
#> $ Surgery          <lgl> FALSE, FALSE, TRUE
tidy_obvs <- clinical_obvs %>%
  combine_date_time_cols() %>%
  mutate(
    Age = dob2age(`Date of Birth`),
    Height = as_metric(height = set_units(as.numeric(Height), "cm"))
  ) %>%
  binary2factor(Male, Surgery)
glimpse(tidy_obvs)
#> Rows: 3
#> Columns: 8
#> $ `Patient Number`     <chr> "p10001", "p10002", "p10003"
#> $ `Admission DateTime` <dttm> 2020-03-05 14:01:00, 2020-03-06 09:10:00, 2020-03…
#> $ Discharge_DateTime   <dttm> 2020-03-10 16:34:00, 2020-03-16 18:51:00, 2020-0…
#> $ `Date of Birth`      <chr> "1956-01-09", "1997-12-04", "1973-05-28"
#> $ Male                 <ord> Male, Not_Male, Male
#> $ Height               [m] 1.82 [m], 1.61 [m], 1.68 [m]
#> $ Surgery              <ord> Not_Surgery, Not_Surgery, Surgery
#> $ Age                  <Duration> 2202854400s (~69.8 years), 880502400s (~27.9 yea…Make sure to use set_units() from the units
package to convert all measurements into unit objects for automatic unit
conversion in epocakir.
Next consider the sample aki_pt_data dataset. It is
possible to use aki_staging() to automatically classify the
presence and staging of AKI. If a particular method is required, it is
possible to classify AKI using aki_bCr(),
aki_SCr() or aki_UO().
# Example workflow: aki_pt_data <- read.csv("aki.csv")
head(aki_pt_data)
#> # A tibble: 6 × 7
#>      SCr_    bCr_ pt_id_ dttm_      UO_ aki_staging_type aki_       
#>   [mg/dl] [mg/dl] <chr>  <dttm> [ml/kg] <chr>            <ord>      
#> 1     2       1.5 <NA>   NA          NA aki_bCr          No AKI     
#> 2     2.5     1.5 <NA>   NA          NA aki_bCr          AKI Stage 1
#> 3     3       1.5 <NA>   NA          NA aki_bCr          AKI Stage 2
#> 4     3.5     1.5 <NA>   NA          NA aki_bCr          AKI Stage 2
#> 5     4       1.5 <NA>   NA          NA aki_bCr          AKI Stage 3
#> 6     4.5     1.5 <NA>   NA          NA aki_bCr          AKI Stage 3
aki_staging(aki_pt_data,
  SCr = "SCr_", bCr = "bCr_", UO = "UO_",
  dttm = "dttm_", pt_id = "pt_id_"
)
#>  [1] No AKI      AKI Stage 1 AKI Stage 2 AKI Stage 2 AKI Stage 3 AKI Stage 3
#>  [7] No AKI      No AKI      AKI Stage 1 No AKI      No AKI      AKI Stage 1
#> [13] No AKI      No AKI      No AKI      AKI Stage 1 No AKI      AKI Stage 2
#> [19] AKI Stage 3 AKI Stage 1 AKI Stage 3 AKI Stage 2 No AKI      AKI Stage 1
#> [25] AKI Stage 3 AKI Stage 3 No AKI     
#> Levels: No AKI < AKI Stage 1 < AKI Stage 2 < AKI Stage 3
aki_pt_data %>%
  mutate(aki = aki_staging(
    SCr = SCr_, bCr = bCr_, UO = UO_,
    dttm = dttm_, pt_id = pt_id_
  )) %>%
  select(pt_id_, SCr_:dttm_, aki)
#> # A tibble: 27 × 5
#>    pt_id_    SCr_    bCr_ dttm_               aki        
#>    <chr>  [mg/dl] [mg/dl] <dttm>              <ord>      
#>  1 <NA>       2       1.5 NA                  No AKI     
#>  2 <NA>       2.5     1.5 NA                  AKI Stage 1
#>  3 <NA>       3       1.5 NA                  AKI Stage 2
#>  4 <NA>       3.5     1.5 NA                  AKI Stage 2
#>  5 <NA>       4       1.5 NA                  AKI Stage 3
#>  6 <NA>       4.5     1.5 NA                  AKI Stage 3
#>  7 pt1        3.4    NA   2020-10-23 09:00:00 No AKI     
#>  8 pt1        3.9    NA   2020-10-25 21:00:00 No AKI     
#>  9 pt1        3      NA   2020-10-20 09:00:00 AKI Stage 1
#> 10 pt2        3.4    NA   2020-10-18 22:00:00 No AKI     
#> # ℹ 17 more rows
aki_pt_data %>%
  mutate(aki = aki_SCr(
    SCr = SCr_, dttm = dttm_, pt_id = pt_id_
  )) %>%
  select(pt_id_, SCr_:dttm_, aki)
#> # A tibble: 27 × 5
#>    pt_id_    SCr_    bCr_ dttm_               aki        
#>    <chr>  [mg/dl] [mg/dl] <dttm>              <ord>      
#>  1 <NA>       2       1.5 NA                  No AKI     
#>  2 <NA>       2.5     1.5 NA                  No AKI     
#>  3 <NA>       3       1.5 NA                  No AKI     
#>  4 <NA>       3.5     1.5 NA                  No AKI     
#>  5 <NA>       4       1.5 NA                  No AKI     
#>  6 <NA>       4.5     1.5 NA                  No AKI     
#>  7 pt1        3.4    NA   2020-10-23 09:00:00 No AKI     
#>  8 pt1        3.9    NA   2020-10-25 21:00:00 No AKI     
#>  9 pt1        3      NA   2020-10-20 09:00:00 AKI Stage 1
#> 10 pt2        3.4    NA   2020-10-18 22:00:00 No AKI     
#> # ℹ 17 more rowsSimilarly, eGFR() offers the ability to automatically
select the appropriate formula to estimate the glomerular filtration
rate. If a particular formula is required, then
eGFR_adult_SCr, eGFR_adult_SCysC,
eGFR_adult_SCr_SCysC, eGFR_child_SCr,
eGFR_child_SCr_BUN, or eGFR_child_SCysC can be
used.
# Example workflow: aki_pt_data <- read.csv("aki.csv")
head(eGFR_pt_data)
#> # A tibble: 6 × 10
#>    SCr_ SCysC_  Age_ male_ black_ height_  BUN_ eGFR_calc_type_ eGFR_ pediatric_
#>   [mg/… [mg/L] [yea… <lgl> <lgl>      [m] [mg/… <chr>           [mL/… <lgl>     
#> 1   0.5   NA      20 FALSE FALSE       NA    NA eGFR_adult_SCr   139. FALSE     
#> 2  NA      0.4    20 FALSE FALSE       NA    NA eGFR_adult_SCy…  162. FALSE     
#> 3   0.5    0.4    20 FALSE FALSE       NA    NA eGFR_adult_SCr…  167. FALSE     
#> 4   0.5   NA      30 FALSE TRUE        NA    NA eGFR_adult_SCr   150. FALSE     
#> 5  NA      0.4    30 FALSE TRUE        NA    NA eGFR_adult_SCy…  155. FALSE     
#> 6   0.5    0.4    30 FALSE TRUE        NA    NA eGFR_adult_SCr…  171. FALSE
eGFR(eGFR_pt_data,
  SCr = "SCr_", SCysC = "SCysC_",
  Age = "Age_", height = "height_", BUN = "BUN_",
  male = "male_", black = "black_", pediatric = "pediatric_"
)
#> Units: [mL/(min*1.73m^2)]
#>  [1] 139.32466 161.68446 166.81886 150.52336 155.33226 171.35616 139.32466
#>  [8]  66.77365  96.41798 150.52336  64.15027  99.04045  49.63420 161.68446
#> [15]  97.06854  53.62373 155.33226  99.70870  49.63420  66.77365  56.10368
#> [22]  53.62373  64.15027  57.62964 155.99874 173.48118 178.86404 168.53768
#> [29] 166.66552 183.72895 155.99874  71.64555 103.37985 168.53768  68.83077
#> [36] 106.19167  66.06766 173.48118 116.50660  71.37808 166.66552 119.67546
#> [43]  66.06766  71.64555  67.33849  71.37808  68.83077  69.17003  99.12000
#> [50] 148.21219 165.89761
eGFR_pt_data %>%
  dplyr::mutate(eGFR = eGFR(
    SCr = SCr_, SCysC = SCysC_,
    Age = Age_, height = height_, BUN = BUN_,
    male = male_, black = black_, pediatric = pediatric_
  )) %>%
  select(SCr_:pediatric_, eGFR)
#> # A tibble: 51 × 11
#>       SCr_ SCysC_    Age_ male_ black_ height_    BUN_ eGFR_calc_type_     eGFR_
#>    [mg/dl] [mg/L] [years] <lgl> <lgl>      [m] [mg/dl] <chr>               [mL/…
#>  1     0.5   NA        20 FALSE FALSE       NA      NA eGFR_adult_SCr      139. 
#>  2    NA      0.4      20 FALSE FALSE       NA      NA eGFR_adult_SCysC    162. 
#>  3     0.5    0.4      20 FALSE FALSE       NA      NA eGFR_adult_SCr_SCy… 167. 
#>  4     0.5   NA        30 FALSE TRUE        NA      NA eGFR_adult_SCr      150. 
#>  5    NA      0.4      30 FALSE TRUE        NA      NA eGFR_adult_SCysC    155. 
#>  6     0.5    0.4      30 FALSE TRUE        NA      NA eGFR_adult_SCr_SCy… 171. 
#>  7     0.5   NA        20 FALSE FALSE       NA      NA eGFR_adult_SCr      139. 
#>  8    NA      1.2      20 FALSE FALSE       NA      NA eGFR_adult_SCysC     66.8
#>  9     0.5    1.2      20 FALSE FALSE       NA      NA eGFR_adult_SCr_SCy…  96.4
#> 10     0.5   NA        30 FALSE TRUE        NA      NA eGFR_adult_SCr      150. 
#> # ℹ 41 more rows
#> # ℹ 2 more variables: pediatric_ <lgl>, eGFR [mL/(min*1.73m^2)]
eGFR_pt_data %>%
  dplyr::mutate(eGFR = eGFR_adult_SCr(
    SCr = SCr_, Age = Age_, male = male_, black = black_
  )) %>%
  select(SCr_:pediatric_, eGFR)
#> # A tibble: 51 × 11
#>       SCr_ SCysC_    Age_ male_ black_ height_    BUN_ eGFR_calc_type_     eGFR_
#>    [mg/dl] [mg/L] [years] <lgl> <lgl>      [m] [mg/dl] <chr>               [mL/…
#>  1     0.5   NA        20 FALSE FALSE       NA      NA eGFR_adult_SCr      139. 
#>  2    NA      0.4      20 FALSE FALSE       NA      NA eGFR_adult_SCysC    162. 
#>  3     0.5    0.4      20 FALSE FALSE       NA      NA eGFR_adult_SCr_SCy… 167. 
#>  4     0.5   NA        30 FALSE TRUE        NA      NA eGFR_adult_SCr      150. 
#>  5    NA      0.4      30 FALSE TRUE        NA      NA eGFR_adult_SCysC    155. 
#>  6     0.5    0.4      30 FALSE TRUE        NA      NA eGFR_adult_SCr_SCy… 171. 
#>  7     0.5   NA        20 FALSE FALSE       NA      NA eGFR_adult_SCr      139. 
#>  8    NA      1.2      20 FALSE FALSE       NA      NA eGFR_adult_SCysC     66.8
#>  9     0.5    1.2      20 FALSE FALSE       NA      NA eGFR_adult_SCr_SCy…  96.4
#> 10     0.5   NA        30 FALSE TRUE        NA      NA eGFR_adult_SCr      150. 
#> # ℹ 41 more rows
#> # ℹ 2 more variables: pediatric_ <lgl>, eGFR [mL/(min*1.73m^2)]See https://alwinw.github.io/epocakir/reference/index.html for more usage details and package reference.
See https://kdigo.org/guidelines/ for full KDIGO guidelines.