Quantify the serial correlation across lags of a given functional 
    time series using the autocorrelation function and a partial autocorrelation
    function for functional time series proposed in 
    Mestre et al. (2021) <doi:10.1016/j.csda.2020.107108>.
    The autocorrelation functions are based on the L2 norm of the lagged covariance 
    operators of the series. Functions are available for estimating the 
    distribution of the autocorrelation functions under the assumption 
    of strong functional white noise.
| Version: | 1.0.0 | 
| Depends: | R (≥ 3.5.0) | 
| Imports: | CompQuadForm, pracma, fda, vars | 
| Suggests: | testthat, fields | 
| Published: | 2020-10-20 | 
| DOI: | 10.32614/CRAN.package.fdaACF | 
| Author: | Guillermo Mestre Marcos [aut, cre],
  José Portela González [aut],
  Gregory Rice [aut],
  Antonio Muñoz San Roque [ctb],
  Estrella Alonso Pérez [ctb] | 
| Maintainer: | Guillermo Mestre Marcos  <guillermo.mestre at comillas.edu> | 
| BugReports: | https://github.com/GMestreM/fdaACF/issues | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| URL: | https://github.com/GMestreM/fdaACF | 
| NeedsCompilation: | no | 
| Citation: | fdaACF citation info | 
| Materials: | NEWS | 
| In views: | FunctionalData, TimeSeries | 
| CRAN checks: | fdaACF results |