The filibustr
package provides data utilities for research on the U.S. Congress. This
package provides a uniform interface for accessing data from sources
such as Voteview, the Legislative Effectiveness Scores, and more.
Accessing your data using these functions removes many of the manual
steps involved with importing data. This has two primary benefits:
filibustr is inspired by the baseballr
package, which provides similar conveniences for baseball analytics
data.
You can install the stable version of filibustr from CRAN with:
install.packages("filibustr")You can install the development version of filibustr from GitHub with:
# install.packages("devtools")
devtools::install_github("feinleib/filibustr")There are four functions that retrieve data from Voteview:
get_voteview_members(): data on members (Presidents,
Senators, and Representatives).get_voteview_parties(): data on parties (size and
ideology)get_voteview_rollcall_votes(): results of recorded
votes (overall results, not positions of individual members)get_voteview_member_votes(): individual members’ votes
on recorded votesThese functions share a common interface and arguments.
For demonstration, here is the table returned by
get_voteview_parties().
library(filibustr)
get_voteview_parties()
#> # A tibble: 845 × 9
#>    congress chamber   party_code party_name       n_members nominate_dim1_median
#>       <int> <fct>          <int> <fct>                <int>                <dbl>
#>  1        1 President       5000 Pro-Administrat…         1               NA    
#>  2        1 House           4000 Anti-Administra…        29                0.018
#>  3        1 House           5000 Pro-Administrat…        31                0.576
#>  4        1 Senate          4000 Anti-Administra…         9               -0.238
#>  5        1 Senate          5000 Pro-Administrat…        20                0.427
#>  6        2 President       5000 Pro-Administrat…         1               NA    
#>  7        2 House           4000 Anti-Administra…        32               -0.022
#>  8        2 House           5000 Pro-Administrat…        40                0.533
#>  9        2 Senate          4000 Anti-Administra…        14               -0.392
#> 10        2 Senate          5000 Pro-Administrat…        17                0.446
#> # ℹ 835 more rows
#> # ℹ 3 more variables: nominate_dim2_median <dbl>, nominate_dim1_mean <dbl>,
#> #   nominate_dim2_mean <dbl>Note: Especially when working with large datasets, reading data from Voteview can take a long time. Here are two strategies to speed up your data import:
local_path instead of having to download data from
online.mirai to download Voteview data in
parallel. See
vignette("parallel-downloads", package = "filibustr") for
more info on parallel data downloads.The function get_les() retrieves Legislative
Effectiveness Scores data from the Center for Effective Lawmaking.
Here is an example table returned by get_les().
get_les(chamber = "senate")
#> # A tibble: 2,635 × 88
#>    last     first state congress cgnum icpsr  year dem   majority elected female
#>    <chr>    <chr> <fct>    <int> <int> <int> <int> <lgl> <lgl>      <int> <lgl> 
#>  1 Abourezk James SD          93     1 13000  1972 TRUE  TRUE        1972 FALSE 
#>  2 Allen    James AL          93     3 12100  1972 TRUE  TRUE        1968 FALSE 
#>  3 Bayh     Birch IN          93     6 10800  1972 TRUE  TRUE        1962 FALSE 
#>  4 Bentsen  Lloyd TX          93    10   660  1972 TRUE  TRUE        1970 FALSE 
#>  5 Bible    Alan  NV          93    11   688  1972 TRUE  TRUE        1954 FALSE 
#>  6 Biden    Jose… DE          93    12 14101  1972 TRUE  TRUE        1972 FALSE 
#>  7 Burdick  Quen… ND          93    16  1252  1972 TRUE  TRUE        1960 FALSE 
#>  8 Byrd     Robe… WV          93    18  1366  1972 TRUE  TRUE        1958 FALSE 
#>  9 Cannon   Howa… NV          93    19  1482  1972 TRUE  TRUE        1958 FALSE 
#> 10 Chiles   Lawt… FL          93    21 13101  1972 TRUE  TRUE        1970 FALSE 
#> # ℹ 2,625 more rows
#> # ℹ 77 more variables: afam <lgl>, latino <lgl>, votepct <dbl>, chair <lgl>,
#> #   subchr <lgl>, seniority <int>, state_leg <lgl>, state_leg_prof <dbl>,
#> #   maj_leader <lgl>, min_leader <lgl>, votepct_sq <dbl>, power <lgl>,
#> #   freshman <lgl>, sensq <int>, deleg_size <int>, party_code <int>,
#> #   bioname <chr>, bioguide_id <chr>, born <int>, died <int>, dwnom1 <dbl>,
#> #   dwnom2 <dbl>, meddist <dbl>, majdist <dbl>, cbill1 <int>, caic1 <int>, …There are non-trivial differences between the House and Senate datasets, so take care when joining House and Senate data.
The function get_hvw_data() retrives replication data
for Harbridge-Yong, Volden, and
Wiseman (2023).
Here are the tables returned by get_hvw_data():
get_hvw_data("house")
#> # A tibble: 9,825 × 109
#>    thomas_num thomas_name     icpsr congress  year st_name    cd dem   elected
#>         <int> <chr>           <int>    <int> <int> <fct>   <int> <lgl>   <int>
#>  1          1 Abdnor, James   14000       93  1973 SD          2 FALSE    1972
#>  2          2 Abzug, Bella    13001       93  1973 NY         20 TRUE     1970
#>  3          3 Adams, Brock    10700       93  1973 WA          7 TRUE     1964
#>  4          4 Addabbo, Joseph 10500       93  1973 NY          7 TRUE     1960
#>  5          5 Albert, Carl       NA       93  1973 OK          3 NA       1946
#>  6          6 Alexander, Bill 12000       93  1973 AR          1 TRUE     1968
#>  7          7 Anderson, John  10501       93  1973 IL         16 FALSE    1960
#>  8          8 Anderson, Glenn 12001       93  1973 CA         35 TRUE     1968
#>  9          9 Andrews, Ike    14001       93  1973 NC          4 TRUE     1972
#> 10         10 Andrews, Mark   10569       93  1973 ND          1 FALSE    1963
#> # ℹ 9,815 more rows
#> # ℹ 100 more variables: female <lgl>, votepct <dbl>, dwnom1 <dbl>,
#> #   deleg_size <int>, speaker <lgl>, subchr <lgl>, ss_bills <int>,
#> #   ss_aic <int>, ss_abc <int>, ss_pass <int>, ss_law <int>, s_bills <int>,
#> #   s_aic <int>, s_abc <int>, s_pass <int>, s_law <int>, c_bills <int>,
#> #   c_aic <int>, c_abc <int>, c_pass <int>, c_law <int>, afam <lgl>,
#> #   latino <lgl>, power <lgl>, budget <lgl>, chair <lgl>, state_leg <lgl>, …
get_hvw_data("senate")
#> # A tibble: 2,228 × 104
#>    last  first state  cabc  caic cbill  claw cpass  sabc  saic sbill  slaw spass
#>    <chr> <chr> <fct> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
#>  1 Grav… Mike  AK        0     0    17     0     0     2     0    48     0     1
#>  2 Stev… Ted   AK        0     0     9     0     0     6     0    71     3     6
#>  3 Allen James AL        0     0     5     0     0     2     0    14     0     1
#>  4 Spar… John  AL        1     0    23     0     1     7     0    62     0     7
#>  5 Fulb… James AR        0     0     0     0     0     9     0    31     3     8
#>  6 McCl… John  AR        0     0     3     0     0     3     0    20     1     2
#>  7 Fann… Paul  AZ        0     0     4     0     0     1     0    32     1     1
#>  8 Gold… Barry AZ        0     0     6     0     0     0     0    13     0     0
#>  9 Cran… Alan  CA        7     0    17     1     7     5     0    64     2     4
#> 10 Tunn… John  CA        0     0     1     0     0     4     0    35     0     1
#> # ℹ 2,218 more rows
#> # ℹ 91 more variables: ssabc <int>, ssaic <int>, ssbill <int>, sslaw <int>,
#> #   sspass <int>, congress <int>, cgnum <int>, icpsr <int>, year <int>,
#> #   dem <lgl>, majority <lgl>, elected <int>, female <lgl>, afam <lgl>,
#> #   latino <lgl>, votepct <dbl>, dwnom1 <dbl>, chair <lgl>, subchr <lgl>,
#> #   seniority <int>, state_leg <lgl>, state_leg_prof <dbl>, maj_leader <lgl>,
#> #   min_leader <lgl>, allbill <int>, allaic <int>, allabc <int>, …The House and Senate data do not have the same number of variables, or the same variable names, so it is not trivial to join the two tables.
The following functions retrieve data tables from Senate.gov.
get_senate_sessions(): The start and end dates of each
legislative session of the Senate. (table
link)get_senate_cloture_votes(): Senate actions on cloture
motions and cloture votes. (table
link)These functions take no arguments, and they always return the full data table from the Senate website.
This package also provides some smaller utility functions for working with congressional data.
year_of_congress() returns the starting year for a
given Congress.congress_in_year() returns the Congress number for a
given year.current_congress() returns the number of the current
Congress, which is currently 119. current_congress() is
equivalent to congress_in_year(Sys.Date()).get_voteview_cast_codes() returns a key to the
cast_code column in
get_voteview_member_votes().read_html_table() is a general-use function for reading
HTML tables from online. It’s a nice shortcut for a common
rvest workflow that otherwise takes 3 functions. (It’s what
powers the Senate.gov functions!)If you notice any bugs, or have suggestions for new features, please submit an issue on the Issues page of this package’s GitHub repository!
This package uses data from the following websites and research: