We’ll fit some linear and non-linear models for dominant height, and compare them. We’ll use the first 10 strata of the exemple dataset exfm16.
library(forestmangr)
library(dplyr)
library(tidyr)
data(exfm14)
data_ex <- exfm14 %>% filter(strata%in%1:10)
data_ex
#> # A tibble: 485 × 4
#>   strata  plot   age    dh
#>    <dbl> <dbl> <dbl> <dbl>
#> 1      1     2    30  12.3
#> 2      1     2    42  16.3
#> 3      1     2    54  17.6
#> 4      1     2    66  18.9
#> 5      1     2    78  21.0
#> 6      1     2    90  20.5
#> # ℹ 479 more rowsIn order to fit Schumacher’s dominant height model, we can use
lm_table. Thanks to the log and
inv functions, there is no need to create new
variables:
mod1 <- lm_table(data_ex, log(dh) ~ inv(age))
mod1
#>         b0        b1      Rsqr  Rsqr_adj Std.Error
#> 1 3.484289 -24.84688 0.5774814 0.5766066 0.1489379To fit a non-linear model, like Chapman-Richards’ we can use the
nls_table function. This function uses
Levenberg-Marquardt’s algorithm by default, in order to assure a good
fit. Since this is a non-linear fit, we have to input initial values for
all coefficients:
mod2 <- nls_table(data_ex, dh ~ b0 * (1 - exp( -b1 * age )  )^b2, 
          mod_start = c( b0=23, b1=0.03, b2 = 1.3  ) )
mod2
#>         b0         b1       b2
#> 1 25.07289 0.04864685 2.210243If we wanted to fit one model of each stratum, we can use the
.groups argument:
mod1 <- lm_table(data_ex, log(dh) ~ inv(age), .groups = "strata")
mod1
#>    strata       b0        b1      Rsqr  Rsqr_adj Std.Error
#> 1       1 3.409597 -23.89531 0.6735579 0.6626765 0.1231461
#> 2       2 3.438958 -20.93546 0.5838795 0.5748334 0.1161602
#> 3       3 3.466038 -24.71091 0.5240282 0.5145088 0.1672240
#> 4       4 3.503344 -23.68113 0.6594713 0.6511657 0.1146404
#> 5       5 3.536465 -26.23788 0.5750804 0.5692596 0.1571615
#> 6       6 3.541486 -26.18396 0.5843789 0.5758968 0.1589094
#> 7       7 3.546067 -28.33781 0.7170698 0.7125789 0.1331317
#> 8       8 3.385322 -22.29504 0.5114795 0.4966758 0.1641533
#> 9       9 3.444338 -23.34891 0.5151849 0.5062068 0.1638949
#> 10     10 3.411819 -24.00458 0.5749233 0.5585742 0.1491196mod2 <- nls_table(data_ex, dh ~ b0 * (1 - exp( -b1 * age )  )^b2, 
          mod_start = c( b0=23, b1=0.03, b2 = 1.3  ),
          .groups = "strata" )
mod2
#>    strata       b0         b1        b2
#> 1       1 22.38251 0.06883817 3.9495071
#> 2       2 23.61424 0.08097176 5.4171092
#> 3       3 24.09040 0.05813164 2.9428225
#> 4       4 29.73188 0.02172249 0.8875606
#> 5       5 26.74705 0.04163860 1.8799458
#> 6       6 25.63739 0.05955898 3.4005108
#> 7       7 26.68246 0.03878189 1.8419905
#> 8       8 23.35938 0.05159001 2.2394412
#> 9       9 27.31603 0.02544091 0.9842925
#> 10     10 22.95016 0.06214439 3.3861913If the fit is not ideal, it’s possible to use a dataframe with
starting values for each stratum, and use it as an input for
mod_start:
tab_start <- data.frame(strata = c(1:10), 
              rbind(
              data.frame(b0=rep(23, 5),b1=rep(0.03,5),b2=rep(1.3,5) ), 
              data.frame(b0=rep(23, 5),b1=rep(0.03,5),b2=rep(.5,5) )))
tab_start
#>    strata b0   b1  b2
#> 1       1 23 0.03 1.3
#> 2       2 23 0.03 1.3
#> 3       3 23 0.03 1.3
#> 4       4 23 0.03 1.3
#> 5       5 23 0.03 1.3
#> 6       6 23 0.03 0.5
#> 7       7 23 0.03 0.5
#> 8       8 23 0.03 0.5
#> 9       9 23 0.03 0.5
#> 10     10 23 0.03 0.5mod2 <- nls_table(data_ex, dh ~ b0 * (1 - exp( -b1 * age )  )^b2, 
          mod_start = tab_start,
          .groups = "strata" )
mod2
#>    strata       b0         b1        b2
#> 1       1 22.38251 0.06883817 3.9495071
#> 2       2 23.61424 0.08097176 5.4171092
#> 3       3 24.09040 0.05813164 2.9428225
#> 4       4 29.73188 0.02172249 0.8875606
#> 5       5 26.74705 0.04163860 1.8799458
#> 6       6 25.63740 0.05955884 3.4004949
#> 7       7 26.68250 0.03878163 1.8419741
#> 8       8 23.35905 0.05159620 2.2398949
#> 9       9 27.31667 0.02543790 0.9841984
#> 10     10 22.95016 0.06214456 3.3862119Now we’re going to fit some other models. These are:
Schumacher: \[ Ln(DH) = \beta_0 + \beta_1 * \frac{1}{age} \]
Chapman-Richards: \[ DH = \beta_0 * (1 - exp^{-\beta_1 * age})^{\beta_2} \]
Bayley-Clutter: \[ Ln(DH) = \beta_0 + \beta_1 * \begin{pmatrix} \frac{1}{age} \end{pmatrix} ^{\beta_2} \]
Curtis: \[ DH = \beta_0 + \beta_1 * \frac{1}{age} \]
We’ll fit these models and add their estimated values to the original
data using the merge_est output and naming each estimated
variable with the est_name argument:
data_ex_est <- data_ex %>% 
  lm_table(log(dh) ~ inv(age), .groups = "strata",
           output = "merge_est", est.name = "Schumacher") %>% 
  
  nls_table(dh ~ b0 * (1 - exp( -b1 * age )  )^b2, 
          mod_start = c( b0=23, b1=0.03, b2 = 1.3  ),.groups="strata",
          output ="merge_est",est.name="Chapman-Richards") %>% 
  
  nls_table(log(dh) ~ b0 + b1 * ( inv(age)^b2 ) , 
          mod_start = c( b0=3, b1=-130, b2 = 1.5),.groups = "strata",
          output ="merge_est",est.name = "Bailey-Clutter") %>% 
  
  lm_table(dh ~ inv(age), .groups = "strata",
           output = "merge_est", est.name = "Curtis") 
head(data_ex_est)  
#>   strata plot age       dh Schumacher Chapman-Richards Bailey-Clutter   Curtis
#> 1      1    2  30 12.29841   13.64110         13.10199       12.58661 13.61765
#> 2      1    2  42 16.32000   17.12709         17.86289       18.23334 17.58237
#> 3      1    2  54 17.58000   19.43531         20.31013       20.32246 19.78499
#> 4      1    2  66 18.94000   21.06362         21.45677       21.20276 21.18665
#> 5      1    2  78 21.04000   22.27015         21.97365       21.62661 22.15704
#> 6      1    2  90 20.48000   23.19865         22.20283       21.85316 22.86866Ps: The lm_table function checks if the model has log in
the y variable, and if it does, it removes it automatically when
estimating variables. Because of that, there’s no need to calculate the
exponential for the estimated variables.
In order to compare these models, we’ll calculate the root mean
square error and bias for all models. To do this, we’ll gather all
estimated variables in a single column using tidyr::gather,
group by model, and use the rmse_per and
bias_per functions:
data_ex_est %>% 
  gather(Model, Value, 
         Schumacher, `Chapman-Richards`, `Bailey-Clutter`, Curtis) %>% 
  group_by(Model) %>% 
  summarise(
    RMSE = rmse_per(y = dh, yhat = Value),
    BIAS = bias_per(y = dh, yhat = Value) )
#> # A tibble: 4 × 3
#>   Model             RMSE      BIAS
#>   <chr>            <dbl>     <dbl>
#> 1 Bailey-Clutter    14.8  1.03e+ 0
#> 2 Chapman-Richards  14.7 -7.37e- 4
#> 3 Curtis            14.8 -3.70e-16
#> 4 Schumacher        15.0  1.03e+ 0Another way of comparing and evaluating these models is using
residual graphical analysis. The function resid_plot can
help us with that:
There are other types of plots avaiable, such as histogram:
resid_plot(data_ex_est, "dh", "Schumacher","Chapman-Richards","Bailey-Clutter", "Curtis",
           type = "histogram_curve")And versus:
resid_plot(data_ex_est, "dh", "Schumacher", "Chapman-Richards", "Bailey-Clutter", "Curtis",
           type = "versus")