| Version: | 1.1.1 | 
| Date: | 2025-07-22 | 
| Title: | Difference Measures for Multivariate Gaussian Probability Density Functions | 
| Author: | Henning Rust [aut, cre] | 
| Maintainer: | Henning Rust <henning.rust@met.fu-berlin.de> | 
| Depends: | R (≥ 1.8.0) | 
| Description: | A collection difference measures for multivariate Gaussian probability density functions, such as the Euclidea mean, the Mahalanobis distance, the Kullback-Leibler divergence, the J-Coefficient, the Minkowski L2-distance, the Chi-square divergence and the Hellinger Coefficient. | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| URL: | https://gitlab.met.fu-berlin.de/StatMet/gaussDiff | 
| Packaged: | 2025-07-22 08:36:43 UTC; felif21 | 
| Repository: | CRAN | 
| Date/Publication: | 2025-07-22 10:51:56 UTC | 
| NeedsCompilation: | no | 
Difference measures for multivariate Gaussian pdfs
Description
Various difference measures for Gaussian pdfs are implemented: Euclidean distance of the means, Mahalanobis distance, Kullback-Leibler divergence, J-Coefficient, Minkowski L2-distance, Chi-square divergence and the Hellinger coefficient which is a similarity measure.
Usage
normdiff(mu1,sigma1=NULL,mu2,sigma2=sigma1,inv=FALSE,s=0.5,
method=c("Mahalanobis","KL","J","Chisq",
"Hellinger","L2","Euclidean"))
Arguments
| mu1 | mean value of pdf 1, a vector | 
| sigma1 | covariance matrix of pdf 1 | 
| mu2 | mean value of pdf 2, a vector | 
| sigma2 | covariance matrix of pdf 2 | 
| method | difference measure to be used, see below | 
| inv | if TRUE, 1-Hellinger is reported, default:  | 
| s | exponent for Hellinger coefficient, default:  | 
Details
Equations can be found in H.-H. Bock, Analysis of Symbolic Data, Chapter Dissimilarity Measures for Probability Distributions
Value
A scalar object of class normdiff reporting the distance.
Author(s)
Henning Rust, henning.rust@met.fu-berlin.de
References
H.-H. Bock, Analysis of Symbolic Data, Chapter Dissimilarity measures for Probabilistic Distributions
Examples
library(gaussDiff)
mu1 <- c(0,0,0)
sig1 <- diag(c(1,1,1))
mu2 <- c(1,1,1)
sig2 <- diag(c(0.5,0.5,0.5))
## Euclidean distance
normdiff(mu1=mu1,mu2=mu2,method="Euclidean")
## Mahalanobis distance
normdiff(mu1=mu1,sigma1=sig1,mu2=mu2,method="Mahalanobis")
## Kullback-Leibler divergence
normdiff(mu1=mu1,sigma1=sig1,mu2=mu2,sigma2=sig2,method="KL")
## J-Coefficient
normdiff(mu1=mu1,sigma1=sig1,mu2=mu2,sigma2=sig2,method="J")
## Chi-sqr divergence
normdiff(mu1=mu1,sigma1=sig1,mu2=mu2,sigma2=sig2,method="Chisq")
## Minkowsi L2 distance
normdiff(mu1=mu1,sigma1=sig1,mu2=mu2,sigma2=sig2,method="L2")
## Hellinger coefficient
normdiff(mu1=mu1,sigma1=sig1,mu2=mu2,sigma2=sig2,method="Hellinger")