
Package ‘gena’
October 13, 2022

Type Package

Title Genetic Algorithm and Particle Swarm Optimization

Version 1.0.0

Date 2022-08-08

Description Implements genetic algorithm and particle swarm algorithm for real-valued func-
tions. Various modifications (including hybridization and elitism) of these algorithms are pro-
vided. Implemented functions are based on ideas described in S. Katoch, S. Chauhan, V. Ku-
mar (2020) <doi:10.1007/s11042-020-10139-
6> and M. Clerc (2012) <https://hal.archives-ouvertes.fr/hal-00764996>.

Imports Rcpp (>= 1.0.6)

LinkingTo Rcpp, RcppArmadillo

License GPL (>= 2)

RoxygenNote 7.2.1

NeedsCompilation yes

Author Bogdan Potanin [aut, cre, ctb]

Maintainer Bogdan Potanin <bogdanpotanin@gmail.com>

Repository CRAN

Date/Publication 2022-08-15 08:20:02 UTC

R topics documented:
gena . 2
gena.constr . 7
gena.crossover . 8
gena.hybrid . 10
gena.mating . 12
gena.mutation . 15
gena.population . 16
genaDiff . 17
plot.gena . 19
plot.pso . 20

1

https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1007/s11042-020-10139-6
https://hal.archives-ouvertes.fr/hal-00764996

2 gena

print.gena . 20
print.pso . 21
print.summary.gena . 21
print.summary.pso . 22
pso . 22
pso.nh . 25
pso.velocity . 27
rhypersphere . 28
summary.gena . 29
summary.pso . 30

Index 31

gena Genetic Algorithm

Description

This function allows to use genetic algorithm for numeric global optimization of real-valued func-
tions.

Usage

gena(
fn,
gr = NULL,
lower,
upper,
pop.n = 100,
pop.initial = NULL,
pop.method = "uniform",
mating.method = "rank",
mating.par = NULL,
mating.self = FALSE,
crossover.method = "local",
crossover.par = NULL,
crossover.prob = 0.8,
mutation.method = "constant",
mutation.par = NULL,
mutation.prob = 0.2,
mutation.genes.prob = 1/length(lower),
elite.n = min(10, 2 * round(pop.n/20)),
elite.duplicates = FALSE,
hybrid.method = "rank",
hybrid.par = 2,
hybrid.prob = 0,
hybrid.opt.par = NULL,
hybrid.n = 1,

gena 3

constr.method = NULL,
constr.par = NULL,
maxiter = 100,
is.max = TRUE,
info = TRUE,
...

)

Arguments

fn function to be maximized i.e. fitness function.

gr gradient of the fn.

lower lower bound of the search space.

upper upper bound of the search space.

pop.n integer representing the size of the population.

pop.initial numeric matrix which rows are chromosomes to be included into the initial pop-
ulation. Numeric vector will be coerced to single row matrix.

pop.method the algorithm to be applied for a creation of the initial population. See ’Details’
for additional information.

mating.method the algorithm to be applied for a mating i.e. selection of parents. See ’Details’
for additional information.

mating.par parameters of the mating (selection) algorithm.

mating.self logical; if TRUE then the chromosome may mate with itself i.e. both parents may
be the same chromosome.

crossover.method

an algorithm to be applied for crossover i.e. creation of the children. See ’De-
tails’ for additional information.

crossover.par parameters of the crossover algorithm.

crossover.prob probability of the crossover for each pair of parents.
mutation.method

algorithm to be applied for mutation i.e. random change in some genes of the
children. See ’Details’ for additional information.

mutation.par parameters of the mutation algorithm.

mutation.prob mutation probability for the chromosomes.
mutation.genes.prob

mutation probability for the genes.

elite.n number of the elite children i.e. those which have the highest function value and
will be preserved for the next population.

elite.duplicates

logical; if TRUE then some elite children may have the same genes.

hybrid.method hybrids selection algorithm i.e. mechanism determining which chromosomes
should be subject to local optimization. See ’Details’ for additional information.

hybrid.par parameters of the hybridization algorithm.

4 gena

hybrid.prob probability of generating the hybrids each iteration.

hybrid.opt.par parameters of the local optimization function to be used for hybridization algo-
rithm (including fn and gr).

hybrid.n number of hybrids that appear if hybridization should take place during the iter-
ation.

constr.method the algorithm to be applied for imposing constraints on the chromosomes. See
’Details’ for additional information.

constr.par parameters of the constraint algorithm.

maxiter maximum number of iterations of the algorithm.

is.max logical; if TRUE (default) then fitness function will be maximized. Otherwise it
will be minimized.

info logical; if TRUE (default) then some optimization related information will be
printed each iteration.

... additional parameters to be passed to fn and gr functions.

Details

To find information on particular methods available via pop.method, mating.method, crossover.method,
mutation.method, hybrid.method and constr.method arguments please see ’Details’ section
of gena.population, gena.crossover, gena.mutation, gena.hybrid and gena.constr corre-
spondingly. For example to find information on possible values of mutation.method and mutation.par
arguments see description of method and par arguments of gena.mutation function.

It is possible to provide manually implemented functions for population initialization, mating,
crossover, mutation and hybridization. For example manual mutation function may be provided
through mutation.method argument. It should have the same signature (arguments) as gena.mutation
function and return the same object i.e. the matrix of chromosomes of the appropriate size. Manu-
ally implemented functions for other operators (crossover, mating and so on) may be provided in a
similar way.

By default function does not impose any constraints upon the parameters. If constr.method =
"bounds" then lower and upper constraints will be imposed. Lower bounds should be strictly
smaller then upper bounds.

Currently the only available termination condition is maxiter. We are going to provide some addi-
tional termination conditions during future updates.

Infinite values in lower and upper are substituted with -(.Machine$double.xmax * 0.9) and
.Machine$double.xmax * 0.9 correspondingly.

By default if gr is provided then BFGS algorithm will be used inside optim during hybridization.
Otherwise Nelder-Mead will be used. Manual values for optim arguments may be provided (as a
list) through hybrid.opt.par argument.

Arguments pop.n and elite.n should be even integers and elite.n should be greater then 2. If
these arguments are odd integers then they will be coerced to even integers by adding 1. Also pop.n
should be greater then elite.n at least by 2.

For more information on the genetic algorithm please see Katoch et. al. (2020).

gena 5

Value

This function returns an object of class gena that is a list containing the following elements:

• par - chromosome (solution) with the highest fitness (objective function) value.

• value - value of fn at par.

• population - matrix of chromosomes (solutions) of the last iteration of the algorithm.

• counts - a two-element integer vector giving the number of calls to fn and gr respectively.

• is.max - identical to is.max input argument.

• fitness.history - vector which i-th element is fitness of the best chromosome in i-th itera-
tion.

• iter - last iteration number.

References

S. Katoch, S. Chauhan, V. Kumar (2020). A review on genetic algorithm: past, present, and future.
Multimedia Tools and Applications, 80, 8091-8126. <doi:10.1007/s11042-020-10139-6>

Examples

Consider Ackley function

fn <- function(par, a = 20, b = 0.2)
{

val <- a * exp(-b * sqrt(0.5 * (par[1] ^ 2 + par[2] ^ 2))) +
exp(0.5 * (cos(2 * pi * par[1]) + cos(2 * pi * par[2]))) -
exp(1) - a

return(val)
}

Maximize this function using classical
genetic algorithm setup
set.seed(123)
lower <- c(-5, -100)
upper <- c(100, 5)
opt <- gena(fn = fn,

lower = lower, upper = upper,
hybrid.prob = 0,
a = 20, b = 0.2)

print(opt$par)

Replicate optimization using hybridization
opt <- gena(fn = fn,

lower = lower, upper = upper,
hybrid.prob = 0.2,
a = 20, b = 0.2)

print(opt$par)

Consider Rosenbrock function

6 gena

fn <- function(par, a = 100)
{

val <- -(a * (par[2] - par[1] ^ 2) ^ 2 + (1 - par[1]) ^ 2 +
a * (par[3] - par[2] ^ 2) ^ 2 + (1 - par[2]) ^ 2)

return(val)
}

Apply genetic algorithm
lower <- rep(-10, 3)
upper <- rep(10, 3)
set.seed(123)
opt <- gena(fn = fn,

lower = lower, upper = upper,
a = 100)

print(opt$par)

Improve the results by hybridization
opt <- gena(fn = fn,

lower = lower, upper = upper,
hybrid.prob = 0.2,
a = 100)

print(opt$par)

Provide manually implemented mutation function
which simply randomly sorts genes.
Note that this function should have the same
arguments as gena.mutation.
mutation.my <- function(children, lower, upper,

prob, prob.genes,
method, par, iter)

{
Get dimensional data
children.n <- nrow(children)
genes.n <- ncol(children)

Select chromosomes that should mutate
random_values <- runif(children.n, 0, 1)
mutation_ind <- which(random_values <= prob)

Mutate chromosomes by randomly sorting
their genes
for (i in mutation_ind)
{
children[i,] <- children[i, sample(1:genes.n)]

}

Return mutated chromosomes
return(children)

}

opt <- gena(fn = fn,

gena.constr 7

lower = lower, upper = upper,
mutation.method = mutation.my,
a = 100)

print(opt$par)

gena.constr Constraints

Description

Impose constraints on chromosomes.

Usage

gena.constr(population, method = "bounds", par, iter)

Arguments

population numeric matrix which rows are chromosomes i.e. vectors of parameters values.

method method used to impose constraints.

par additional parameters to be passed depending on the method.

iter iteration number of the genetic algorithm.

Details

If method = "bounds" then chromosomes will be bounded between par$lower and par$upper.

Value

The function returns a list with the following elements:

• population - matrix which rows are chromosomes after constraints have been imposed.

• constr.ind - matrix of logical values which (i, j)-th elements equals TRUE (FALSE otherwise)
if j-th jene of i-th chromosome is a subject to constraint.

Examples

Randomly initialize population
set.seed(123)
population <- gena.population(pop.n = 10,

lower = c(-5, -5),
upper = c(5, 5))

Impose lower and upper bounds constraints
pop.constr <- gena.constr(population,

method = "bounds",
par = list(lower = c(-1, 2),

8 gena.crossover

upper = c(1, 5)))
print(pop.constr)

gena.crossover Crossover

Description

Crossover method (algorithm) to be used in the genetic algorithm.

Usage

gena.crossover(
parents,
fitness = NULL,
prob = 0.8,
method = "local",
par = NULL,
iter = NULL

)

Arguments

parents numeric matrix which rows are parents i.e. vectors of parameters values.

fitness numeric vector which i-th element is the value of fn at point population[i,
].

prob probability of crossover.

method crossover method to be used for making children.

par additional parameters to be passed depending on the method.

iter iteration number of the genetic algorithm.

Details

Denote parents by Cparent which i-th row parents[i,] is a chromosome cparenti i.e. the vector
of parameter values of the function being optimized f(.) that is provided via fn argument of gena.
The elements of chromosome cparentij are genes representing parameters values.

Crossover algorithm determines the way parents produce children. During crossover each of ran-
domly selected pairs of parents cparenti , cparenti+1 produce two children cchildi , cchildi+1 , where i is
odd. Each pair of parents is selected with probability prob. If pair of parents have not been se-
lected for crossover then corresponding children and parents are coincide i.e. cchildi = cparenti and
cchildi+1 = cparenti+1 .

Argument method determines particular crossover algorithm to be applied. Denote by τ the vector
of parameters used by the algorithm. Note that τ corresponds to par.

gena.crossover 9

If method = "split" then each gene of the first child will be equiprobably picked from the first or
from the second parent. So cchildij may be equal to cparentij or cparent(i+1)j with equal probability. The
second child is the reversal of the first one in a sense that if the first child gets particular gene of
the first (second) parent then the second child gets this gene from the first (second) parent i.e. if
cchildij = cparentij then cchild(i+1)j = cparent(i+1)j ; if cchildij = cparent(i+1)j then cchild(i+1)j = cparentij .

If method = "arithmetic" then:

cchildi = τ1c
parent
i + (1− τ1) cparenti+1

cchildi+1 = (1− τ1) cparenti + τ1c
parent
i+1

where τ1 is par[1]. By default par[1] = 0.5.

If method = "local" then the procedure is the same as for "arithmetic" method but τ1 is a uniform
random value between 0 and 1.

If method = "flat" then cchildij is a uniform random number between cparentij and cparent(i+1)j . Similarly
for the second child cchild(i+1)j .

For more information on crossover algorithms please see Kora, Yadlapalli (2017).

Value

The function returns a matrix which rows are children.

References

P. Kora, P. Yadlapalli. (2017). Crossover Operators in Genetic Algorithms: A Review. International
Journal of Computer Applications, 162 (10), 34-36, <doi:10.5120/ijca2017913370>.

Examples

Randomly initialize the parents
set.seed(123)
parents.n <- 10
parents <- gena.population(pop.n = parents.n,

lower = c(-5, -5),
upper = c(5, 5))

Perform the crossover
children <- gena.crossover(parents = parents,

prob = 0.6,
method = "local")

print(children)

10 gena.hybrid

gena.hybrid Hybridization

Description

Hybridization method (algorithm) to be used in the genetic algorithm.

Usage

gena.hybrid(
population,
fitness,
hybrid.n = 1,
method,
par,
opt.par,
info = FALSE,
iter = NULL,
...

)

Arguments

population numeric matrix which rows are chromosomes i.e. vectors of parameters values.
fitness numeric vector which i-th element is the value of fn at point population[i,

].
hybrid.n positive integer representing the number of hybrids.
method hybridization method to improve chromosomes via local search.
par additional parameters to be passed depending on the method.
opt.par parameters of the local optimization function to be used for hybridization algo-

rithm (including fn and gr).
info logical; if TRUE then some optimization related information will be printed each

iteration.
iter iteration number of the genetic algorithm.
... additional parameters to be passed to fn and gr functions.

Details

This function uses gena.mating function to select hybrids. Therefore method and par arguments
will be passed to this function. If some chromosomes selected to become hybrids are duplicated
then these duplicates will not be subject to local optimization i.e. the number of hybrids will be
decreased by the number of duplicates (actual number of hybrids during some iterations may be
lower than hybrid.n).

Currently optim is the only available local optimizer. Therefore opt.par is a list containing pa-
rameters that should be passed to optim.

For more information on hybridization please see El-mihoub et. al. (2006).

gena.hybrid 11

Value

The function returns a list with the following elements:

• population - matrix which rows are chromosomes including hybrids.

• fitness - vector which i-th element is the fitness of the i-th chromosome.

• hybrids.ind - vector of indexes of chromosomes selected for hybridization.

• counts a two-element integer vector giving the number of calls to fn and gr respectively.

References

T. El-mihoub, A. Hopgood, L. Nolle, B. Alan (2006). Hybrid Genetic Algorithms: A Review.
Engineering Letters, 13 (3), 124-137.

Examples

Consider the following fitness function
fn <- function(x)
{

val <- x[1] * x[2] - x[1] ^ 2 - x[2] ^ 2
}

Also let's provide it's gradient (optional)
gr <- function(x)
{

val <- c(x[2] - 2 * x[1],
x[1] - 2 * x[2])

}

Randomly initialize the population
set.seed(123)
n_population <- 10
population <- gena.population(pop.n = n_population,

lower = c(-5, -5),
upper = c(5, 5))

Calculate fitness of each chromosome
fitness <- rep(NA, n_population)
for(i in 1:n_population)
{

fitness[i] <- fn(population[i,])
}

Perform hybridization
hybrids <- gena.hybrid(population = population,

fitness = fitness,
opt.par = list(fn = fn,

gr = gr,
method = "BFGS",
control = list(fnscale = -1,

abstol = 1e-10,
reltol = 1e-10,

12 gena.mating

maxit = 1000)),
hybrid.n = 2,
method = "rank",
par = 0.8)

print(hybrids)

gena.mating Mating

Description

Mating (selection) method (algorithm) to be used in the genetic algorithm.

Usage

gena.mating(
population,
fitness,
parents.n,
method = "rank",
par = NULL,
self = FALSE,
iter = NULL

)

Arguments

population numeric matrix which rows are chromosomes i.e. vectors of parameters values.

fitness numeric vector which i-th element is the value of fn at point population[i,
].

parents.n even positive integer representing the number of parents.

method mating method to be used for selection of parents.

par additional parameters to be passed depending on the method.

self logical; if TRUE then chromosome may mate itself. Otherwise mating is allowed
only between different chromosomes.

iter iteration number of the genetic algorithm.

Details

Denote population by C which i-th row population[i,] is a chromosome ci i.e. the vector of
parameter values of the function being optimized f(.) that is provided via fn argument of gena.
The elements of chromosome cij are genes representing parameters values. Argument fitness is
a vector of function values at corresponding chromosomes i.e. fitness[i] corresponds to fi =
f(ci). Total number of chromosomes in population npopulation equals to nrow(population).

gena.mating 13

Mating algorithm determines selection of chromosomes that will become parents. During mating
each iteration one of chromosomes become a parent until there are nparents (i.e. parents.n) par-
ents selected. Each chromosome may become a parent multiple times or not become a parent at
all.

Denote by csi the i-th of selected parents. Parents csi and csi+1 form a pair that will further produce
a child (offspring), where i is odd. If self = FALSE then for each pair of parents (csi , c

s
i+1) it is

insured that csi 6= csi+1 except the case when there are several identical chromosomes in population.
However self is ignored if method is "tournament", so in this case self-mating is always possible.

Denote by pi the probability of a chromosome to become a parent. Remind that each chromo-
some may become a parent multiple times. Probability pi (fi) is a function of fitness fi. Usually
this function is non-decreasing so more fitted chromosomes have higher probability of becoming a
parent. There is also an intermediate value wi called weight such that:

pi =
wi

npopulation∑
j=1

wj

Therefore all weights wi are proportional to corresponding probabilities pi by the same factor (sum
of weights).

Argument method determines particular mating algorithm to be applied. Denote by τ the vector
of parameters used by the algorithm. Note that τ corresponds to par. The algorithm determines a
particular form of the wi (fi) function which in turn determines pi (fi).

If method = "constant" then all weights and probabilities are equal:

wi = 1 => pi =
1

npopulation

If method = "rank" then each chromosome receives a rank ri based on the fitness fi value. So if
j-th chromosome is the fittest one and k-th chromosome has the lowest fitness value then rj =
npopulation and rk = 1. The relationship between weight wi and rank ri is as follows:

wi =

(
ri

npopulation

)τ1
The greater value of τ1 the greater portion of probability will be delivered to more fitted chromo-
somes. Default value is τ1 = 0.5 so par = 0.5.

If method = "fitness" then weights are calculated as follows:

wi =
(
fi −min

(
f1, ..., fnpopulation

)
+ τ1

)τ2
By default τ1 = 10 and τ2 = 0.5 i.e. par = c(10, 0.5). There is a restriction τ1 ≥ 0 insuring that
expression in brackets is non-negative.

If method = "tournament" then τ1 (i.e. par) chromosomes will be randomly selected with equal
probabilities and without replacement. Then the chromosome with the highest fitness (among these
selected chromosomes) value will become a parent. It is possible to provide representation of this
algorithm via probabilities pi but the formulas are numerically unstable. By default par = min(5,
ceiling(parents.n * 0.1)).

Validation and default values assignment for par is performed inside gena function not in gena.mating.
It allows to perform validation a single time instead of repeating it each iteration of genetic algo-
rithm.

For more information on mating (selection) algorithms please see Shukla et. al. (2015).

14 gena.mating

Value

The function returns a list with the following elements:

• parents - matrix which rows are parents. The number of rows of this matrix equals to
parents.n while the number of columns is ncol(population).

• fitness - vector which i-th element is the fitness of the i-th parent.

• ind - vector which i-th element is the index of i-th parent in population so $parents[i,]
equals to population[ind[i],].

References

A. Shukla, H. Pandey, D. Mehrotra (2015). Comparative review of selection techniques in genetic
algorithm. 2015 International Conference on Futuristic Trends on Computational Analysis and
Knowledge Management (ABLAZE), 515-519, <doi:10.1109/ABLAZE.2015.7154916>.

Examples

Consider the following fitness function
fn <- function(x)
{

val <- x[1] * x[2] - x[1] ^ 2 - x[2] ^ 2
}

Randomly initialize the population
set.seed(123)
pop.nulation <- 10
population <- gena.population(pop.n = pop.nulation,

lower = c(-5, -5),
upper = c(5, 5))

Calculate fitness of each chromosome
fitness <- rep(NA, pop.nulation)
for(i in 1:pop.nulation)
{

fitness[i] <- fn(population[i,])
}

Perform mating to select parents
parents <- gena.mating(population = population,

fitness = fitness,
parents.n = pop.nulation,
method = "rank",
par = 0.8)

print(parents)

gena.mutation 15

gena.mutation Mutation

Description

Mutation method (algorithm) to be used in the genetic algorithm.

Usage

gena.mutation(
children,
lower,
upper,
prob = 0.2,
prob.genes = 1/nrow(children),
method = "constant",
par = 1,
iter = NULL

)

Arguments

children numeric matrix which rows are children i.e. vectors of parameters values.

lower lower bound of the search space.

upper upper bound of the search space.

prob probability of mutation for a child.

prob.genes numeric vector or numeric value representing the probability of mutation of a
child’s gene. See ’Details’.

method mutation method to be used for transforming genes of children.

par additional parameters to be passed depending on the method.

iter iteration number of the genetic algorithm.

Details

Denote children by Cchild which i-th row children[i,] is a chromosome cchildi i.e. the vector
of parameter values of the function being optimized f(.) that is provided via fn argument of gena.
The elements of chromosome cchildij are genes representing parameters values.

Mutation algorithm determines random transformation of children’s genes. Each child may be
selected for mutation with probability prob. If i-th child is selected for mutation and prob.genes is
a vector then j-th gene of this child is transformed with probability prob.genes[j]. If prob.genes
is a constant then this probability is the same for all genes.

Argument method determines particular mutation algorithm to be applied. Denote by τ the vector
of parameters used by the algorithm. Note that τ corresponds to par. Also let’s denote by cmutantij

the value of gene cchildij after mutation.

16 gena.population

If method = "constant" then cmutantij is a uniform random variable between lower[j] and upper[j].

If method = "normal" then cmutantij equals to the sum of cchildij and normal random variable with
zero mean and standard deviation par[j]. By default par is identity vector of length ncol(children)
so par[j] = 1 for all j.

If method = "percent" then cmutantij is generated from cchildij by equiprobably increasing or de-
creasing it by q percent, where q is a uniform random variable between 0 and par[j]. Note that
par may also be a constant then all genes have the same maximum possible percentage change. By
default par = 20.

For more information on mutation algorithms please see Patil, Bhende (2014).

Value

The function returns a matrix which rows are children (after mutation has been applied to some of
them).

References

S. Patil, M. Bhende. (2014). Comparison and Analysis of Different Mutation Strategies to improve
the Performance of Genetic Algorithm. International Journal of Computer Science and Information
Technologies, 5 (3), 4669-4673.

Examples

Randomly initialize some children
set.seed(123)
children.n <- 10
children <- gena.population(pop.n = children.n,

lower = c(-5, -5),
upper = c(5, 5))

Perform the mutation
mutants <- gena.mutation(children = children,

prob = 0.6,
prob.genes = c(0.7, 0.8),
par = 30,
method = "percent")

print(mutants)

gena.population Population

Description

Initialize the population of chromosomes.

Usage

gena.population(pop.n, lower, upper, pop.initial = NULL, method = "uniform")

genaDiff 17

Arguments

pop.n positive integer representing the number of chromosomes in population.

lower numeric vector which i-th element determines the minimum possible value for
i-th gene.

upper numeric vector which i-th element determines the maximum possible value for
i-th gene.

pop.initial numeric matrix which rows are initial chromosomes suggested by user.

method string representing the initialization method to be used. For a list of possible
values see Details.

Details

If "method = uniform" then i-th gene of each chromosome is randomly (uniformly) chosen be-
tween lower[i] and upper[i] bounds. If "method = normal" then i-th gene is generated from a
truncated normal distribution with mean (upper[i] + lower[i]) / 2 and standard deviation (upper[i]
- lower[i]) / 6 where lower[i] and upper[i] are lower and upper truncation bounds corre-
spondingly. If "method = hypersphere" then population is simulated uniformly from the hyper-
sphere with center upper - lower and radius sqrt(sum((upper - lower) ^ 2)) via rhypersphere
function setting type = "inside".

Value

This function returns a matrix which rows are chromosomes.

References

B. Kazimipour, X. Li, A. Qin (2014). A review of population initialization techniques for evolution-
ary algorithms. 2014 IEEE Congress on Evolutionary Computation, 2585-2592, <doi:10.1109/CEC.2014.6900618>.

Examples

set.seed(123)
gena.population(pop.n = 10,

lower = c(-1, -2, -3),
upper = c(1, 0, -1),
pop.initial = rbind(c(0, -1, -2),

c(0.1, -1.2, -2.3)),
method = "normal")

genaDiff Numeric Differentiation

Description

Numeric estimation of the gradient and Hessian.

18 genaDiff

Usage

gena.grad(
fn,
par,
eps = sqrt(.Machine$double.eps) * abs(par),
method = "central-difference",
fn.args = NULL

)

gena.hessian(
fn = NULL,
gr = NULL,
par,
eps = sqrt(.Machine$double.eps) * abs(par),
fn.args = NULL,
gr.args = NULL

)

Arguments

fn function for which gradient or Hessian should be calculated.

par point (parameters’ value) at which fn should be differentiated.

eps numeric vector representing increment of the par. So eps[i] represents incre-
ment of par[i]. If eps is a constant then all increments are the same.

method numeric differentiation method: "central-difference" or "forward-difference".

fn.args list containing arguments of fn except par.

gr gradient function of fn.

gr.args list containing arguments of gr except par.

Details

It is possible to substantially improve numeric Hessian accuracy by using analytical gradient gr. If
both fn and gr are provided then only gr will be used. If only fn is provided for gena.hessian
then eps will be transformed to sqrt(eps) for numeric stability purposes.

Value

Function gena.grad returns a vector that is a gradient of fn at point par calculated via method
numeric differentiation approach using increment eps.

Function gena.hessian returns a matrix that is a Hessian of fn at point par.

Examples

Consider the following function
fn <- function(par, a = 1, b = 2)
{

val <- par[1] * par[2] - a * par[1] ^ 2 - b * par[2] ^ 2

plot.gena 19

}

Calculate the gradient at point (2, 5) respect to 'par'
when 'a = 1' and 'b = 1'
par <- c(2, 5)
fn.args = list(a = 1, b = 1)
gena.grad(fn = fn, par = par, fn.args = fn.args)

Calculate Hessian at the same point
gena.hessian(fn = fn, par = par, fn.args = fn.args)

Repeat calculation of the Hessian using analytical gradient
gr <- function(par, a = 1, b = 2)
{

val <- c(par[2] - 2 * a * par[1],
par[1] - 2 * b * par[2])

}
gena.hessian(gr = gr, par = par, gr.args = fn.args)

plot.gena Plot best found fitnesses during genetic algorithm

Description

Plot best found fitnesses during genetic algorithm

Usage

S3 method for class 'gena'
plot(x, y = NULL, ...)

Arguments

x Object of class "gena"

y this parameter currently ignored

... further arguments (currently ignored)

Value

This function does not return anything.

20 print.gena

plot.pso Plot best found fitnesses during genetic algorithm

Description

Plot best found fitnesses during genetic algorithm

Usage

S3 method for class 'pso'
plot(x, y = NULL, ...)

Arguments

x Object of class "pso"

y this parameter currently ignored

... further arguments (currently ignored)

Value

This function does not return anything.

print.gena Print method for "gena" object

Description

Print method for "gena" object

Usage

S3 method for class 'gena'
print(x, ...)

Arguments

x Object of class "gena"

... further arguments (currently ignored)

Value

This function does not return anything.

print.pso 21

print.pso Print method for "pso" object

Description

Print method for "pso" object

Usage

S3 method for class 'pso'
print(x, ...)

Arguments

x Object of class "pso"

... further arguments (currently ignored)

Value

This function does not return anything.

print.summary.gena Summary for "gena" object

Description

Summary for "gena" object

Usage

S3 method for class 'summary.gena'
print(x, ...)

Arguments

x Object of class "gena"

... further arguments (currently ignored)

Value

This function returns x input argument.

22 pso

print.summary.pso Summary for "pso" object

Description

Summary for "pso" object

Usage

S3 method for class 'summary.pso'
print(x, ...)

Arguments

x Object of class "pso"

... further arguments (currently ignored)

Value

This function returns x input argument.

pso Particle Swarm Optimization

Description

This function allows to use particle swarm algorithm for numeric global optimization of real-valued
functions.

Usage

pso(
fn,
gr = NULL,
lower,
upper,
pop.n = 40,
pop.initial = NULL,
pop.method = "uniform",
nh.method = "random",
nh.par = 3,
nh.adaptive = TRUE,
velocity.method = "hypersphere",
velocity.par = list(w = 1/(2 * log(2)), c1 = 0.5 + log(2), c2 = 0.5 + log(2)),
hybrid.method = "rank",

pso 23

hybrid.par = 2,
hybrid.prob = 0,
hybrid.opt.par = NULL,
hybrid.n = 1,
constr.method = NULL,
constr.par = NULL,
random.order = TRUE,
maxiter = 100,
is.max = TRUE,
info = TRUE,
...

)

Arguments

fn function to be maximized i.e. fitness function.

gr gradient of the fn.

lower lower bound of the search space.

upper upper bound of the search space.

pop.n integer representing the size of the population.

pop.initial numeric matrix which rows are particles to be included into the initial popula-
tion. Numeric vector will be coerced to single row matrix.

pop.method the algorithm to be applied for a creation of the initial population. See ’Details’
for additional information.

nh.method string representing the method (topology) to be used for the creation of neigh-
bourhoods. See ’Details’ for additional information.

nh.par parameters of the topology algorithm.

nh.adaptive logical; if TRUE (default) then neighbourhoods change every time when the best
known (to the swarm) fitnesses value have not increased. Neighbourhoods are
updated according to the topology defined via nh.method argument.

velocity.method

string representing the method to be used for the update of velocities.

velocity.par parameters of the velocity formula.

hybrid.method hybrids selection algorithm i.e. mechanism determining which particles should
be subject to local optimization. See ’Details’ for additional information.

hybrid.par parameters of the hybridization algorithm.

hybrid.prob probability of generating the hybrids each iteration.

hybrid.opt.par parameters of the local optimization function to be used for hybridization algo-
rithm (including fn and gr).

hybrid.n number of hybrids that appear if hybridization should take place during the iter-
ation.

constr.method the algorithm to be applied for imposing constraints on the particles. See ’De-
tails’ for additional information.

24 pso

constr.par parameters of the constraint algorithm.

random.order logical; if TRUE (default) then particles related routine will be implemented in a
random order.

maxiter maximum number of iterations of the algorithm.

is.max logical; if TRUE (default) then fitness function will be maximized. Otherwise it
will be minimized.

info logical; if TRUE (default) then some optimization related information will be
printed each iteration.

... additional parameters to be passed to fn and gr functions.

Details

Default arguments have been set in accordance with SPSO 2011 algorithm proposed by M. Clerc
(2012).

To find information on particular methods available via pop.method, nh.method, velocity.method,
hybrid.method and constr.method arguments please see ’Details’ section of gena.population,
pso.nh, pso.velocity, gena.hybrid and gena.constr correspondingly.

It is possible to provide manually implemented functions for population initialization, neighbour-
hoods creation, velocity updated, hybridization and constraints in a similar way as for gena.

By default function does not impose any constraints upon the parameters. If constr.method =
"bounds" then lower and upper constraints will be imposed. Lower bounds should be strictly
smaller then upper bounds.

Currently the only available termination condition is maxiter. We are going to provide some addi-
tional termination conditions during future updates.

Infinite values in lower and upper are substituted with -(.Machine$double.xmax * 0.9) and
.Machine$double.xmax * 0.9 correspondingly.

By default if gr is provided then BFGS algorithm will be used inside optim during hybridization.
Otherwise Nelder-Mead will be used. Manual values for optim arguments may be provided (as a
list) through hybrid.opt.par argument.

For more information on particle swarm optimization please see M. Clerc (2012).

Value

This function returns an object of class pso that is a list containing the following elements:

• par - particle (solution) with the highest fitness (objective function) value.

• value - value of fn at par.

• population - matrix of particles (solutions) of the last iteration of the algorithm.

• counts - a two-element integer vector giving the number of calls to fn and gr respectively.

• is.max - identical to is.max input argument.

• fitness.history - vector which i-th element is fitness of the best particle in i-th iteration.

• iter - last iteration number.

pso.nh 25

References

M. Clerc (2012). Standard Particle Swarm Optimisation. HAL archieve.

Examples

Consider Ackley function

fn <- function(par, a = 20, b = 0.2)
{

val <- a * exp(-b * sqrt(0.5 * (par[1] ^ 2 + par[2] ^ 2))) +
exp(0.5 * (cos(2 * pi * par[1]) + cos(2 * pi * par[2]))) -
exp(1) - a

return(val)
}

Maximize this function using particle swarm algorithm

set.seed(123)
lower <- c(-5, -100)
upper <- c(100, 5)
opt <- pso(fn = fn,

lower = lower, upper = upper,
a = 20, b = 0.2)

print(opt$par)

Consider Bukin function number 6

fn <- function(x, a = 20, b = 0.2)
{

val <- 100 * sqrt(abs(x[2] - 0.01 * x[1] ^ 2)) + 0.01 * abs(x[1] + 10)
return(val)

}

Minimize this function using initially provided
position for one of the particles
set.seed(777)
lower <- c(-15, -3)
upper <- c(-5, 3)
opt <- pso(fn = fn,

pop.init = c(8, 2),
lower = lower, upper = upper,
is.max = FALSE)

print(opt$par)

pso.nh Neighbourhood

26 pso.nh

Description

Constructs a neighbourhood of each particle using particular topology.

Usage

pso.nh(pop.n = 40, method = "ring", par = 3, iter = 1)

Arguments

pop.n integer representing the size of the population.

method string representing the topology to be used for construction of the neighbour-
hood. See ’Details’ for additional information.

par additional parameters to be passed depending on the method.

iter iteration number of the genetic algorithm.

Details

If method = "ring" then each particle will have par[1] neighbours. By default par[1] = 3. See
section 3.2.1 of M. Clerc (2012) for additional details. If method = "wheel" then there is a single
(randomly selected) particle which informs (and informed by) other particles while there is no
direct communication between other particles. If method = "random" then each particle randomly
informs other par[1] particles and itself. Note that duplicates are possible so sometimes each
particle may inform less then par[1] particles. By default par[1] = 3. See section 3.2.2 of M.
Clerc (2012) for more details. If method = "star" then all particles are fully informed by each
other. If method = "random2" then each particle will be self-informed and informed by the j-th
particle with probability par[1] (value between 0 and 1). By default par[1] = 0.1.

Value

This function returns a list which i-th element is a vector of particles’ indexes which inform i-th
particle i.e. neighbourhood of the i-th particle.

References

Maurice Clerc (2012). Standard Particle Swarm Optimisation. HAL archieve.

Examples

Prepare random number generator
set.seed(123)

Ring topology with 5 neighbours
pso.nh(pop.n = 10, method = "ring", par = 5)

Wheel topology
pso.nh(pop.n = 10, method = "wheel")

Star topology
pso.nh(pop.n = 10, method = "star")

pso.velocity 27

Random topology where each particle
randomly informs 3 other particles
pso.nh(pop.n = 10, method = "random", par = 3)

Random2 topology wehere each particle could
be informed by the other with probability 0.2
pso.nh(pop.n = 10, method = "random2", par = 0.2)

pso.velocity Velocity

Description

Calculates (updates) velocities of the particles.

Usage

pso.velocity(
population,
method = "hypersphere",
par = list(w = 1/(2 * log(2)), c1 = 0.5 + log(2), c2 = 0.5 + log(2)),
velocity,
best.pn,
best.nh,
best.pn.fitness,
best.nh.fitness,
iter = 1

)

Arguments

population numeric matrix which rows are particles i.e. vectors of parameters values.

method string representing method to be used for velocities calculation. See ’Details’
for additional information.

par additional parameters to be passed depending on the method.

velocity matrix which i-th row is a velocity of the i-th particle.

best.pn numeric matrix which i-th row is a best personal position known by the i-th
particle.

best.nh numeric matrix which i-th row is a best personal position in a neighbourhood of
the i-th particle.

best.pn.fitness

numeric vector which i-th row is the value of a fitness function at point best.pn[i,
].

28 rhypersphere

best.nh.fitness

numeric vector which i-th row is the value of a fitness function at point best.nh[i,
].

iter iteration number of the genetic algorithm.

Details

If method = "classic" then classical velocity formula is used:

vi,j,(t+1) = w × vi,j,t + c1 × u1,i,j × bpni,j,t + c2 × u2,i,j × bnhi,j,t

where vi,j,t is a velocity of the i-th particle respect to the j-th component at time t. Random
variables u1,i,j and u2,i,j are i.i.d. respect to all indexes and follow standard uniform distribution
U(0, 1). Variable bpni,j,t is j-th component of the best known particle’s (personal) position up to
time period t. Similarly bnhi,j,t is j-th component of the best of best known particle’s position in
a neighbourhood of the i-th particle. Hyperparameters w, c1 and c2 may be provided via par
argument as a list with elements parw, parc1 and par$c2 correspondingly.

If method = "hypersphere" then rotation invariant formula from sections 3.4.2 and 3.4.3 of M.
Clerc (2012) is used with arguments identical to the classical method. To simulate a random variate
from the hypersphere function rhypersphere is used setting type = "non-uniform".

In accordance with M. Clerc (2012) default values are par$w = 1/(2 * log(2)), par$c1 = 0.5 +
log(2) and par$c2 = 0.5 + log(2).

Value

This function returns a matrix which i-th row represents updated velocity of the i-th particle.

References

Maurice Clerc (2012). Standard Particle Swarm Optimisation. HAL archieve.

rhypersphere Hypersphere

Description

Simulates uniform random variates from the hypersphere.

Usage

rhypersphere(n, dim = 2, radius = 1, center = rep(0, dim), type = "boundary")

summary.gena 29

Arguments

n number of observations to simulate.

dim dimensions of hypersphere.

radius radius of hypersphere.

center center of hypersphere.

type character; if "boundary" (default) then random variates are simulated from the
hypersphere. If "inside" random variates are points lying inside the hyper-
sphere. If "non-uniform" then random variates are non-uniform and simulated
from the inner part of the hypersphere simply by making radius a uniform ran-
dom variable between 0 and radius.

Value

The function returns a vector of random variates.

Examples

set.seed(123)
Get 5 random uniform variates from 3D hypersphere
of radius 10 centered at (2, 3, 1)
rhypersphere(n = 5, dim = 3, radius = 10, center = c(2, 3, 1))

summary.gena Summarizing gena Fits

Description

Summarizing gena Fits

Usage

S3 method for class 'gena'
summary(object, ...)

Arguments

object Object of class "gena"

... further arguments (currently ignored)

Value

This function returns the same list as gena function changing its class to "summary.gena".

30 summary.pso

summary.pso Summarizing pso Fits

Description

Summarizing pso Fits

Usage

S3 method for class 'pso'
summary(object, ...)

Arguments

object Object of class "pso"

... further arguments (currently ignored)

Value

This function returns the same list as pso function changing its class to "summary.pso".

Index

gena, 2, 8, 12, 13, 15, 24, 29
gena.constr, 4, 7, 24
gena.crossover, 4, 8
gena.grad (genaDiff), 17
gena.hessian (genaDiff), 17
gena.hybrid, 4, 10, 24
gena.mating, 10, 12, 13
gena.mutation, 4, 15
gena.population, 4, 16, 24
genaDiff, 17

optim, 4, 10, 24

plot.gena, 19
plot.pso, 20
print.gena, 20
print.pso, 21
print.summary.gena, 21
print.summary.pso, 22
pso, 22, 30
pso.nh, 24, 25
pso.velocity, 24, 27

rhypersphere, 17, 28, 28

summary.gena, 29
summary.pso, 30

31

	gena
	gena.constr
	gena.crossover
	gena.hybrid
	gena.mating
	gena.mutation
	gena.population
	genaDiff
	plot.gena
	plot.pso
	print.gena
	print.pso
	print.summary.gena
	print.summary.pso
	pso
	pso.nh
	pso.velocity
	rhypersphere
	summary.gena
	summary.pso
	Index

