Spatio-temporal causal inference based on point process data. 
    You provide the raw data of locations and timings of treatment and 
    outcome events, specify counterfactual scenarios, and the package 
    estimates causal effects over specified spatial and temporal windows.
    See Papadogeorgou, et  al. (2022) <doi:10.1111/rssb.12548> and
    Mukaigawara, et al. (2024) <doi:10.31219/osf.io/5kc6f>.
| Version: | 0.3.4 | 
| Depends: | R (≥ 3.5.0) | 
| Imports: | data.table, dplyr, furrr, ggplot2, ggpubr, latex2exp, mclust, progressr, purrr, sf, spatstat.explore, spatstat.geom, spatstat.model, spatstat.univar, terra, tidyr, tidyselect, tidyterra | 
| Suggests: | elevatr, geosphere, gridExtra, ggthemes, knitr, readr, gridGraphics | 
| Published: | 2025-01-07 | 
| DOI: | 10.32614/CRAN.package.geocausal | 
| Author: | Mitsuru Mukaigawara  [cre, aut],
  Lingxiao Zhou [aut],
  Georgia Papadogeorgou  [aut],
  Jason Lyall  [aut],
  Kosuke Imai  [aut] | 
| Maintainer: | Mitsuru Mukaigawara  <mitsuru_mukaigawara at g.harvard.edu> | 
| License: | MIT + file LICENSE | 
| URL: | https://github.com/mmukaigawara/geocausal | 
| NeedsCompilation: | no | 
| Materials: | README, NEWS | 
| CRAN checks: | geocausal results |