Linkspotter is a package of the R software that mainly allows to calculate and visualize using a graph all the bivariate links of a dataset.
Its main features are:
It also offers a customizable user interface, allowing to:
Available link coefficients are:
Behind a proxy:
Load the package:
Take a look at the documentation:
The examples are carried out using “iris” data.
## [1] 0.6992338## Number of variables: 5 
## Number of couples: 10 
## Number of observations: 150 
## Coef.: pearson, spearman, kendall, mic, MaxNMI
## Start time: 2020-07-23 12:22:54 
## Correlation coef. computation finished: 2020-07-23 12:22:54##    id           X1           X2 typeOfCouple    pearson   spearman     kendall
## 1   1 Sepal.Length  Sepal.Width      num.num -0.1175698 -0.1667777 -0.07699679
## 2   2 Sepal.Length Petal.Length      num.num  0.8717538  0.8818981  0.71851593
## 3   3 Sepal.Length  Petal.Width      num.num  0.8179411  0.8342888  0.65530856
## 4   4 Sepal.Length      Species     num.fact         NA         NA          NA
## 5   5  Sepal.Width Petal.Length      num.num -0.4284401 -0.3096351 -0.18599442
## 6   6  Sepal.Width  Petal.Width      num.num -0.3661259 -0.2890317 -0.15712566
## 7   7  Sepal.Width      Species     num.fact         NA         NA          NA
## 8   8 Petal.Length  Petal.Width      num.num  0.9628654  0.9376668  0.80689069
## 9   9 Petal.Length      Species     num.fact         NA         NA          NA
## 10 10  Petal.Width      Species     num.fact         NA         NA          NA
##          mic    MaxNMI correlationType
## 1  0.2770503 0.2033015        negative
## 2  0.7682996 0.6992338        positive
## 3  0.6683281 0.6322728        positive
## 4         NA 0.4873895         nominal
## 5  0.4391362 0.3789867        negative
## 6  0.4354146 0.3703042        negative
## 7         NA 0.2606311         nominal
## 8  0.9182958 0.8351786        positive
## 9         NA 0.8702060         nominal
## 10        NA 0.8920899         nominalThe Pearson correlation matrix:
corMatrixPearson<-corCouplesToMatrix(x1_x2_val = corCouples[,c('X1','X2',"pearson")])
print(corMatrixPearson)##              Petal.Length Petal.Width Sepal.Length Sepal.Width Species
## Petal.Length    1.0000000   0.9628654    0.8717538  -0.4284401      NA
## Petal.Width     0.9628654   1.0000000    0.8179411  -0.3661259      NA
## Sepal.Length    0.8717538   0.8179411    1.0000000  -0.1175698      NA
## Sepal.Width    -0.4284401  -0.3661259   -0.1175698   1.0000000      NA
## Species                NA          NA           NA          NA       1The MaxNMI matrix:
corMatrixMaxNMI<-corCouplesToMatrix(x1_x2_val = corCouples[,c('X1','X2',"MaxNMI")])
print(corMatrixMaxNMI)##              Petal.Length Petal.Width Sepal.Length Sepal.Width   Species
## Petal.Length    1.0000000   0.8351786    0.6992338   0.3789867 0.8702060
## Petal.Width     0.8351786   1.0000000    0.6322728   0.3703042 0.8920899
## Sepal.Length    0.6992338   0.6322728    1.0000000   0.2033015 0.4873895
## Sepal.Width     0.3789867   0.3703042    0.2033015   1.0000000 0.2606311
## Species         0.8702060   0.8920899    0.4873895   0.2606311 1.0000000##            var group
## 1 Petal.Length     1
## 2  Petal.Width     2
## 3 Sepal.Length     3
## 4  Sepal.Width     4
## 5      Species     2Complete Linkspotter computation:
## Number of variables: 5 
## Number of couples: 10 
## Number of observations: 150 
## Coef.: pearson, spearman, kendall, mic, MaxNMI
## Start time: 2020-07-23 12:22:55 
## Correlation coef. computation finished: 2020-07-23 12:22:56
## Clustering computation finished: 2020-07-23 12:22:56
## Total Computation time: 0.885 secsComplete Linkspotter computation from an external file:
##                     Length Class      Mode     
## computationTime      1     -none-     character
## launchShiny          1     -none-     function 
## dataset              5     data.frame list     
## targetVar            0     -none-     NULL     
## corDF               10     data.frame list     
## corMatrices          5     -none-     list     
## corGroups            2     data.frame list     
## clusteringCorMethod  1     -none-     character
## defaultMinCor        1     -none-     numeric  
## defaultCorMethod     1     -none-     character
## corMethods           5     -none-     characterThen launch the user interface using:
Help:
The variables correspond to the nodes and their links correspond to the edges. Node color depends on the clustering. Edge color depends on the correlation direction quantitative couples (blue: positive correlation, red: negative correlation).
It produces the following:
Its type depends on the nature of the corresponding link:
It displays all the measurements calculated for the link corresponding to the clicked edge. When at least one of the variables is qualitative, only the MaxNMI has a value.
It produces the following:
Its type depends on the nature of the corresponding variable:
Its type depends on the nature of the variable:
This tab displays 2 tables:
The Correlation coefficient option allows you to choose the coefficient of correlation to be considered among those calculated initially.
Linkspotter uses and combine features coming from several other R packages, namely infotheo, minerva, energy, mclust, shiny, visNetwork, rAmCharts and ggplot2.