lmls: Gaussian Location-Scale Regression
The Gaussian location-scale regression model is a multi-predictor
    model with explanatory variables for the mean (= location) and the standard
    deviation (= scale) of a response variable. This package implements maximum
    likelihood and Markov chain Monte Carlo (MCMC) inference (using algorithms
    from Girolami and Calderhead (2011) <doi:10.1111/j.1467-9868.2010.00765.x>
    and Nesterov (2009) <doi:10.1007/s10107-007-0149-x>), a parametric
    bootstrap algorithm, and diagnostic plots for the model class.
| Version: | 0.1.1 | 
| Depends: | R (≥ 3.5.0) | 
| Imports: | generics (≥ 0.1.0) | 
| Suggests: | bookdown, coda, covr, ggplot2, knitr, mgcv, mvtnorm, numDeriv, patchwork, rmarkdown, testthat (≥ 3.0.0) | 
| Published: | 2024-11-20 | 
| DOI: | 10.32614/CRAN.package.lmls | 
| Author: | Hannes Riebl [aut, cre] | 
| Maintainer: | Hannes Riebl  <hriebl at posteo.de> | 
| BugReports: | https://github.com/hriebl/lmls/issues | 
| License: | MIT + file LICENSE | 
| URL: | https://hriebl.github.io/lmls/, https://github.com/hriebl/lmls | 
| NeedsCompilation: | no | 
| Materials: | README, NEWS | 
| CRAN checks: | lmls results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=lmls
to link to this page.