A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization algorithm. MADGRAD is a 'best-of-both-worlds' optimizer with the generalization performance of stochastic gradient descent and at least as fast convergence as that of Adam, often faster. A drop-in optim_madgrad() implementation is provided based on Defazio et al (2020) <doi:10.48550/arXiv.2101.11075>.
| Version: | 0.1.0 | 
| Imports: | torch (≥ 0.3.0), rlang | 
| Suggests: | testthat (≥ 3.0.0) | 
| Published: | 2021-05-10 | 
| DOI: | 10.32614/CRAN.package.madgrad | 
| Author: | Daniel Falbel [aut, cre, cph], RStudio [cph], MADGRAD original implementation authors. [cph] | 
| Maintainer: | Daniel Falbel <daniel at rstudio.com> | 
| License: | MIT + file LICENSE | 
| NeedsCompilation: | no | 
| Materials: | README | 
| CRAN checks: | madgrad results | 
| Reference manual: | madgrad.html , madgrad.pdf | 
| Package source: | madgrad_0.1.0.tar.gz | 
| Windows binaries: | r-devel: madgrad_0.1.0.zip, r-release: madgrad_0.1.0.zip, r-oldrel: madgrad_0.1.0.zip | 
| macOS binaries: | r-release (arm64): madgrad_0.1.0.tgz, r-oldrel (arm64): madgrad_0.1.0.tgz, r-release (x86_64): madgrad_0.1.0.tgz, r-oldrel (x86_64): madgrad_0.1.0.tgz | 
Please use the canonical form https://CRAN.R-project.org/package=madgrad to link to this page.