mdmb: Model Based Treatment of Missing Data
    Contains model-based treatment of missing data for regression 
    models with missing values in covariates or the dependent 
    variable using maximum likelihood or Bayesian estimation 
    (Ibrahim et al., 2005; <doi:10.1198/016214504000001844>;
    Luedtke, Robitzsch, & West, 2020a, 2020b;
    <doi:10.1080/00273171.2019.1640104><doi:10.1037/met0000233>).
    The regression model can be nonlinear (e.g., interaction 
    effects, quadratic effects or B-spline functions). 
    Multilevel models with missing data in predictors are
    available for Bayesian estimation. Substantive-model compatible 
    multiple imputation can be also conducted.
| Version: | 1.9-22 | 
| Depends: | R (≥ 3.1) | 
| Imports: | CDM, coda, graphics, miceadds (≥ 3.2-23), Rcpp, sirt, stats, utils | 
| LinkingTo: | miceadds, Rcpp, RcppArmadillo | 
| Suggests: | MASS | 
| Enhances: | JointAI, jomo, mice, smcfcs | 
| Published: | 2024-07-15 | 
| DOI: | 10.32614/CRAN.package.mdmb | 
| Author: | Alexander Robitzsch [aut, cre], Oliver Luedtke [aut] | 
| Maintainer: | Alexander Robitzsch  <robitzsch at ipn.uni-kiel.de> | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| URL: | https://github.com/alexanderrobitzsch/mdmb,
https://sites.google.com/site/alexanderrobitzsch2/software | 
| NeedsCompilation: | yes | 
| Citation: | mdmb citation info | 
| Materials: | README, NEWS | 
| In views: | MissingData, MixedModels | 
| CRAN checks: | mdmb results | 
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=mdmb
to link to this page.