## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) num.datasets <- 5 ## ----------------------------------------------------------------------------- library("metagam") ## ----------------------------------------------------------------------------- ## simulate datasets set.seed(123) datasets <- lapply( seq_len(num.datasets), function(x) mgcv::gamSim(scale = x, verbose = FALSE)) ## ----------------------------------------------------------------------------- df <- datasets[[1]] df[df$x2<0.2,] <- NA datasets[[1]] <- df ## ----------------------------------------------------------------------------- df <- datasets[[2]] df[df$x2 > 0.8, ] <- NA datasets[[2]] <- df ## ----------------------------------------------------------------------------- ## fit a generalized additive model to each dataset separately models <- lapply(datasets, function(dat){ ## Full fit using mgcv gamfit <- mgcv::gam(y ~ s(x0, bs = "cr") + s(x1, bs = "cr") + s(x2, bs = "cr"), data = dat) ## Extract the necessary components for performing a meta-analysis ## This removes all subject-specific data strip_rawdata(gamfit) }) ## ----------------------------------------------------------------------------- names(models) <- c("A", "B", "C", "D", "E") ## ----------------------------------------------------------------------------- meta_analysis <- metagam(models, grid_size = 50, terms = "s(x2)") ## ----------------------------------------------------------------------------- plot_dominance(meta_analysis)