## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library("metagam") ## ----------------------------------------------------------------------------- library("mgcv") set.seed(1233) shifts <- c(0, .5, 1, 0, -1) datasets <- lapply(shifts, function(x) { ## Simulate data dat <- gamSim(scale = .1, verbose = FALSE) ## Add a shift dat$y <- dat$y + x * dat$x2^2 ## Return data dat }) ## ----------------------------------------------------------------------------- models <- lapply(datasets, function(dat){ b <- gam(y ~ s(x2, bs = "cr"), data = dat) strip_rawdata(b) }) ## ----------------------------------------------------------------------------- meta_analysis <- metagam(models, type = "response") ## ----------------------------------------------------------------------------- plot(meta_analysis, legend = TRUE) ## ----------------------------------------------------------------------------- plot_heterogeneity(meta_analysis) ## ----------------------------------------------------------------------------- plot_heterogeneity(meta_analysis, type = "p")