| Title: | Make Static HTML Website for Predictive Models | 
| Version: | 1.1 | 
| Description: | Website generator with HTML summaries for predictive models. This package uses 'DALEX' explainers to describe global model behavior. We can see how well models behave (tabs: Model Performance, Auditor), how much each variable contributes to predictions (tabs: Variable Response) and which variables are the most important for a given model (tabs: Variable Importance). We can also compare Concept Drift for pairs of models (tabs: Drifter). Additionally, data available on the website can be easily recreated in current R session. Work on this package was financially supported by the NCN Opus grant 2017/27/B/ST6/01307 at Warsaw University of Technology, Faculty of Mathematics and Information Science. | 
| Depends: | R (≥ 3.4.0) | 
| License: | Apache License 2.0 | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| Imports: | DALEX (≥ 1.0), auditor (≥ 0.3.0), ggplot2 (≥ 3.1.0), whisker (≥ 0.3-2), DT (≥ 0.4), kableExtra (≥ 0.9.0), psych (≥ 1.8.4), archivist (≥ 2.1.0), svglite (≥ 1.2.1), devtools (≥ 2.0.1), breakDown (≥ 0.1.6), drifter (≥ 0.2.1) | 
| Suggests: | ranger, testthat, useful | 
| RoxygenNote: | 7.1.0 | 
| URL: | https://github.com/ModelOriented/modelDown | 
| BugReports: | https://github.com/ModelOriented/modelDown/issues | 
| NeedsCompilation: | no | 
| Packaged: | 2020-04-11 16:08:24 UTC; kromash | 
| Author: | Przemysław Biecek [aut], Magda Tatarynowicz [aut], Kamil Romaszko [aut, cre], Mateusz Urbański [aut] | 
| Maintainer: | Kamil Romaszko <kamil.romaszko@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2020-04-15 00:30:03 UTC | 
Generates a website with HTML summaries for predictive models
Description
Generates a website with HTML summaries for predictive models
Usage
modelDown(..., modules = c("auditor", "drifter", "model_performance",
  "variable_importance", "variable_response"), output_folder = "output",
  repository_name = "repository", should_open_website = interactive())
Arguments
| ... | one or more explainers created with  | 
| modules | modules that should be included in the website | 
| output_folder | folder where the website will be saved | 
| repository_name | name of local archivist repository that will be created | 
| should_open_website | should generated website be automatically opened in default browser | 
Details
Additional arguments that could by passed by name:
- remote_repository_path Path to remote repository that stores folder with archivist repository. If not provided, links to local repository will be shown. 
- device Device to use. Tested for "png" and "svg", but values from - ggplot2::ggsavefunction should be working fine. Defaults to "png".
- vr.vars variables which will be examined in Variable Response module. Defaults to all variables. Example vr.vars = c("var1", "var2") 
- vr.type types of examinations which will be conducteed in Variable Response module. Defaults to "pdp". Example vr.type = c("ale", "pdp") 
Author(s)
Przemysław Biecek, Magda Tatarynowicz, Kamil Romaszko, Mateusz Urbański
Examples
require("ranger")
require("breakDown")
require("DALEX")
# Generate simple modelDown page
HR_data_selected <- HR_data[1000:3000,]
HR_glm_model <- glm(left~., HR_data_selected, family = "binomial")
explainer_glm <- explain(HR_glm_model, data=HR_data_selected, y = HR_data_selected$left)
modelDown::modelDown(explainer_glm,
                     modules = c("model_performance", "variable_importance",
                                 "variable_response"),
                     output_folder = tempdir(),
                     repository_name = "HR",
                     device = "png",
                     vr.vars= c("average_montly_hours"),
                     vr.type = "ale")
# More complex example with all modules
HR_ranger_model <- ranger(as.factor(left) ~ .,
                      data = HR_data, num.trees = 500, classification = TRUE, probability = TRUE)
explainer_ranger <- explain(HR_ranger_model,
                      data = HR_data, y = HR_data$left, function(model, data) {
 return(predict(model, data)$prediction[,2])
}, na.rm=TRUE)
# Two glm models used for drift detection
HR_data1 <- HR_data[1:4000,]
HR_data2 <- HR_data[4000:nrow(HR_data),]
HR_glm_model1 <- glm(left~., HR_data1, family = "binomial")
HR_glm_model2 <- glm(left~., HR_data2, family = "binomial")
explainer_glm1 <- explain(HR_glm_model1, data=HR_data1, y = HR_data1$left)
explainer_glm2 <- explain(HR_glm_model2, data=HR_data2, y = HR_data2$left)
modelDown::modelDown(list(explainer_glm1, explainer_glm2),
  modules = c("auditor", "drifter", "model_performance", "variable_importance",
              "variable_response"),
  output_folder = tempdir(),
  repository_name = "HR",
  remote_repository_path = "some_user/remote_repo_name",
  device = "png",
  vr.vars= c("average_montly_hours", "time_spend_company"),
  vr.type = "ale")