## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, message = FALSE--------------------------------------------------- library(multilevelPSA) ## ----------------------------------------------------------------------------- getSimulatedData <- function(nvars=3, ntreat=100, treat.mean=.6, treat.sd=.5, ncontrol=1000, control.mean=.4, control.sd=.5) { if(length(treat.mean) == 1) { treat.mean = rep(treat.mean, nvars) } if(length(treat.sd) == 1) { treat.sd = rep(treat.sd, nvars) } if(length(control.mean) == 1) { control.mean = rep(control.mean, nvars) } if(length(control.sd) == 1) { control.sd = rep(control.sd, nvars) } df <- c(rep(0, ncontrol), rep(1, ntreat)) for(i in 1:nvars) { df <- cbind(df, c(rnorm(ncontrol, mean=control.mean[i], sd=control.sd[i]), rnorm(ntreat, mean=treat.mean[i], sd=treat.sd[i]))) } df <- as.data.frame(df) names(df) <- c('treat', letters[1:nvars]) return(df) } ## ----message=FALSE, results = 'hide'------------------------------------------ test.df2 <- getSimulatedData( treat.mean=.6, control.mean=.4) ## ----results = 'hide'--------------------------------------------------------- psranges2 <- psrange(test.df2, test.df2$treat, treat ~ ., samples=seq(100,1000,by=100), nboot=20) ## ----fig.height = 7, out.width='100%', fig.width = 6.5------------------------ plot(psranges2)