| Type: | Package | 
| Title: | Poisson Fixed Effects Robust | 
| Version: | 2.0.0 | 
| Date: | 2020-02-17 | 
| Description: | Computation of robust standard errors of Poisson fixed effects models, following Wooldridge (1999). | 
| License: | MIT + file LICENSE | 
| Depends: | R (≥ 3.1.0) | 
| Imports: | data.table (≥ 1.9.6), glmmML (≥ 1.0) | 
| URL: | https://bitbucket.org/ew-btb/poisson-fe-robust | 
| NeedsCompilation: | no | 
| RoxygenNote: | 6.0.1 | 
| Suggests: | testthat | 
| LazyData: | true | 
| Packaged: | 2020-02-17 20:28:47 UTC; evan | 
| Author: | Evan Wright [aut, cre] | 
| Maintainer: | Evan Wright <enwright@umich.edu> | 
| Repository: | CRAN | 
| Date/Publication: | 2020-02-17 21:40:06 UTC | 
Poisson Fixed Effects Robust
Description
Computation of robust standard errors of Poisson fixed effects models, following Wooldridge (1999).
Details
The DESCRIPTION file:
| Package: | poisFErobust | 
| Type: | Package | 
| Title: | Poisson Fixed Effects Robust | 
| Version: | 2.0.0 | 
| Date: | 2020-02-17 | 
| Authors@R: | person("Evan", "Wright", email = "enwright@umich.edu", role = c("aut", "cre")) | 
| Description: | Computation of robust standard errors of Poisson fixed effects models, following Wooldridge (1999). | 
| License: | MIT + file LICENSE | 
| Depends: | R (>= 3.1.0) | 
| Imports: | data.table (>= 1.9.6), glmmML (>= 1.0) | 
| URL: | https://bitbucket.org/ew-btb/poisson-fe-robust | 
| NeedsCompilation: | no | 
| RoxygenNote: | 6.0.1 | 
| Suggests: | testthat | 
| LazyData: | true | 
| Author: | Evan Wright [aut, cre] | 
| Maintainer: | Evan Wright <enwright@umich.edu> | 
Index of help topics:
ex.dt.bad               Poisson data violating conditional mean
                        assumption
ex.dt.good              Poisson data satisfying conditional mean
                        assumption
pois.fe.robust          Robust standard errors of Poisson fixed effects
                        regression
poisFErobust-package    Poisson Fixed Effects Robust
Author(s)
NA
Maintainer: NA
References
Wooldridge, Jeffrey M. (1999): "Distribution-free estimation of some nonlinear panel data models," Journal of Econometrics, 90, 77-97.
Examples
# ex.dt.good satisfies the conditional mean assumption
data("ex.dt.good")
pois.fe.robust(outcome = "y", xvars = c("x1", "x2"), group.name = "id",
               index.name = "day", data = ex.dt.good)
               
# ex.dt.bad violates the conditional mean assumption
data("ex.dt.bad")
pois.fe.robust(outcome = "y", xvars = c("x1", "x2"), group.name = "id",
               index.name = "day", data = ex.dt.bad)
Poisson data violating conditional mean assumption
Description
A data.table containing id by day observations of Poisson
random variables which violate the conditional mean assumption of
Wooldridge (1999).
Usage
data("ex.dt.bad")Format
A data.table with 450 observations on the following 7 variables.
- id
- a factor with levels - 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- 15- 16- 17- 18- 19- 20- 21- 22- 23- 24- 25- 26- 27- 28- 29- 30- 31- 32- 33- 34- 35- 36- 37- 38- 39- 40- 41- 42- 43- 44- 45- 46- 47- 48- 49- 50
- day
- a numeric vector 
- fe
- a numeric vector 
- x1
- a numeric vector 
- x2
- a numeric vector 
- y
- a numeric vector 
- x1.lead
- a numeric vector 
Details
The data were simulated like 
y <- rpois(1, exp(fe + x1 + x2 + 2.5*x1.lead))
where fe, x1, and x2 are standard normal random variables.
fe varies only across id.
x1.lead is a one period lead of x1 which causes the violation
of the conditional mean assumption.
References
Wooldridge, Jeffrey M. (1999): "Distribution-free estimation of some nonlinear panel data models," Journal of Econometrics, 90, 77-97.
Examples
data("ex.dt.bad")
str(ex.dt.bad)
Poisson data satisfying conditional mean assumption
Description
A data.table containing id by day observations of Poisson
random variables which satisfy the conditional mean assumption of
Wooldridge (1999).
Usage
data("ex.dt.good")Format
A data frame with 500 observations on the following 6 variables.
- id
- a factor with levels - 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- 15- 16- 17- 18- 19- 20- 21- 22- 23- 24- 25- 26- 27- 28- 29- 30- 31- 32- 33- 34- 35- 36- 37- 38- 39- 40- 41- 42- 43- 44- 45- 46- 47- 48- 49- 50
- day
- a numeric vector 
- fe
- a numeric vector 
- x1
- a numeric vector 
- x2
- a numeric vector 
- y
- a numeric vector 
Details
The data were simulated like 
y <- rpois(1, exp(fe + x1 + x2))
where fe, x1, and x2 are standard normal random variables.
fe varies only across id.
References
Wooldridge, Jeffrey M. (1999): "Distribution-free estimation of some nonlinear panel data models," Journal of Econometrics, 90, 77-97.
Examples
data("ex.dt.good")
str(ex.dt.good)
Robust standard errors of Poisson fixed effects regression
Description
Compute standard errors following Wooldridge (1999) for Poisson regression with fixed effects, and a hypothesis test of the conditional mean assumption (3.1).
Usage
pois.fe.robust(outcome, xvars, group.name, data, 
               qcmle.coefs = NULL, allow.set.key = FALSE,
               index.name = NULL)
Arguments
| outcome | character string of the name of the dependent variable. | 
| xvars | vector of character strings of the names of the independent variables. | 
| group.name | character string of the name of the grouping variable. | 
| data | data.table which contains the variables named in other arguments. See details for variable type requirements. | 
| qcmle.coefs | an optional numeric vector of coefficients in the same order as  | 
| allow.set.key | logical. When  | 
| index.name | DEPRECATED (leave as NULL). | 
Details
data must be a data.table containing the following:
- a column named by - outcome, non-negative integer
- columns named according to each string in - xvars, numeric type
- a column named by - group.name, factor type
- a column named by - index.name, integer sequence increasing by one each observation with no gaps within groups
No observation in data may contain a missing value.
Setting allow.set.key to TRUE is recommended to reduce
memory usage; however, it will allow data to be modified
(sorted in-place).
pois.fe.robust also returns the p-value of the hypothesis test of the
conditional mean assumption (3.1) as described in Wooldridge (1999) section 3.3.
Value
A list containing
- coefficients, a numeric vector of coefficients.
- se.robust, a numeric vector of standard errors.
- p.value, the p-value of a hypothesis test of the conditional mean assumption (3.1).
Author(s)
Evan Wright
References
Wooldridge, Jeffrey M. (1999): "Distribution-free estimation of some nonlinear panel data models," Journal of Econometrics, 90, 77-97.
See Also
Examples
# ex.dt.good satisfies the conditional mean assumption
data("ex.dt.good")
pois.fe.robust(outcome = "y", xvars = c("x1", "x2"), group.name = "id",
               index.name = "day", data = ex.dt.good)
               
# ex.dt.bad violates the conditional mean assumption
data("ex.dt.bad")
pois.fe.robust(outcome = "y", xvars = c("x1", "x2"), group.name = "id",
               index.name = "day", data = ex.dt.bad)