Personalize drug regimens using individual pharmacokinetic (PK) and 
    pharmacokinetic-pharmacodynamic (PK-PD) profiles. By combining therapeutic 
    drug monitoring (TDM) data with a population model, 'posologyr' offers 
    accurate posterior estimates and helps compute optimal individualized dosing
    regimens. The empirical Bayes estimates are computed following the method 
    described by Kang et al. (2012) <doi:10.4196/kjpp.2012.16.2.97>.
| Version: | 1.2.8 | 
| Depends: | R (≥ 3.5.0) | 
| Imports: | rxode2, stats, mvtnorm, data.table | 
| Suggests: | lotri, rmarkdown, testthat (≥ 3.0.0), ggplot2, magrittr, tidyr | 
| Published: | 2025-02-04 | 
| DOI: | 10.32614/CRAN.package.posologyr | 
| Author: | Cyril Leven  [aut,
    cre, cph],
  Matthew Fidler  [ctb],
  Emmanuelle Comets [ctb],
  Audrey Lavenu [ctb],
  Marc Lavielle [ctb] | 
| Maintainer: | Cyril Leven  <cyril.leven at chu-brest.fr> | 
| BugReports: | https://github.com/levenc/posologyr/issues | 
| License: | AGPL-3 | 
| URL: | https://levenc.github.io/posologyr/,
https://github.com/levenc/posologyr | 
| NeedsCompilation: | no | 
| Citation: | posologyr citation info | 
| Materials: | README, NEWS | 
| In views: | Pharmacokinetics | 
| CRAN checks: | posologyr results |