| Type: | Package | 
| Title: | Power Analysis for PLS Classification | 
| Version: | 0.2.1 | 
| Description: | It estimates power and sample size for Partial Least Squares-based methods described in Andreella, et al., (2024), <doi:10.48550/arXiv.2403.10289>. | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| RoxygenNote: | 7.3.2 | 
| Imports: | compositions, FKSUM, nipals, MASS, foreach, parallel, simukde, ks, mvtnorm, pROC, caret | 
| Language: | en-US | 
| BugReports: | https://github.com/angeella/powerPLS/issues | 
| URL: | https://github.com/angeella/powerPLS | 
| Depends: | R (≥ 2.10) | 
| NeedsCompilation: | no | 
| Packaged: | 2025-03-05 18:24:57 UTC; Andreella | 
| Author: | Angela Andreella | 
| Maintainer: | Angela Andreella <angela.andreella@unitn.it> | 
| Repository: | CRAN | 
| Date/Publication: | 2025-03-06 00:00:02 UTC | 
AUC test
Description
Performs permutation-based test based on AUC
Usage
AUCTest(X, Y, nperm = 100, A, randomization = FALSE,
Y.prob = FALSE, eps = 0.01, scaling = 'auto-scaling',
post.transformation = TRUE, cross.validation = FALSE,...)
Arguments
| X | data matrix where columns represent the  | 
| Y | data matrix where columns represent the two classes and
rows the  | 
| nperm | number of permutations. Default to 200. | 
| A | number of score components | 
| randomization | Boolean value. Default to  | 
| Y.prob | Boolean value. Default  | 
| eps | Default 0.01.  | 
| scaling | Type of scaling, one of
 | 
| post.transformation | Boolean value.  | 
| cross.validation | Boolean value. Default  | 
| ... | additional arguments related to  | 
Value
List with the following objects:
- pv
- raw p-value. It equals - NAif- randomization = FALSE
- pv_adj
- adjusted p-value. It equals - NAif- randomization = FALSE
- test
- estimated test statistic 
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
See Also
Other test statistics implemented: mccTest, scoreTest,
dQ2Test, sensitivityTest,F1Test, R2Test,
specificityTest, FMTest.
Examples
datas <- simulatePilotData(nvar = 30, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2)
out <- AUCTest(X = datas$X, Y = datas$Y, A = 1)
out
F1 test
Description
Performs permutation-based test based on F1
Usage
F1Test(X, Y, nperm = 200, A, randomization = FALSE,
Y.prob = FALSE, eps = 0.01, scaling = 'auto-scaling',
post.transformation = TRUE,cross.validation = FALSE,...)
Arguments
| X | data matrix where columns represent the  | 
| Y | data matrix where columns represent the two classes and
rows the  | 
| nperm | number of permutations. Default to 200. | 
| A | number of score components | 
| randomization | Boolean value. Default to  | 
| Y.prob | Boolean value. Default  | 
| eps | Default 0.01.  | 
| scaling | Type of scaling, one of
 | 
| post.transformation | Boolean value.  | 
| cross.validation | Boolean value. Default  | 
| ... | additional arguments related to  | 
Value
List with the following objects:
- pv
- raw p-value. It equals - NAif- randomization = FALSE
- pv_adj
- adjusted p-value. It equals - NAif- randomization = FALSE
- test
- estimated test statistic 
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
See Also
Other test statistics implemented: mccTest, scoreTest,
dQ2Test, sensitivityTest,AUCTest, R2Test,
specificityTest, FMTest.
Examples
datas <- simulatePilotData(nvar = 30, clus.size = c(15,15),m = 6,nvar_rel = 5,A = 1)
out <- F1Test(X = datas$X, Y = datas$Y, A = 1)
out
FM test
Description
Performs permutation-based test based on FM
Usage
FMTest(X, Y, nperm = 200, A, randomization = FALSE,
Y.prob = FALSE, eps = 0.01, scaling = 'auto-scaling',
post.transformation = TRUE,cross.validation = FALSE,...)
Arguments
| X | data matrix where columns represent the  | 
| Y | data matrix where columns represent the two classes and
rows the  | 
| nperm | number of permutations. Default to 200. | 
| A | number of score components | 
| randomization | Boolean value. Default to  | 
| Y.prob | Boolean value. Default  | 
| eps | Default 0.01.  | 
| scaling | Type of scaling, one of
 | 
| post.transformation | Boolean value.  | 
| cross.validation | Boolean value. Default  | 
| ... | additional arguments related to  | 
Value
List with the following objects:
- pv
- raw p-value. It equals - NAif- randomization = FALSE
- pv_adj
- adjusted p-value. It equals - NAif- randomization = FALSE
- test
- estimated test statistic 
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
See Also
Other test statistics implemented: mccTest, scoreTest,
dQ2Test, sensitivityTest,AUCTest, R2Test,
specificityTest, F1Test.
Examples
datas <- simulatePilotData(nvar = 30, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 1)
out <- FMTest(X = datas$X, Y = datas$Y, A = 1)
out
Iteration Deflation Algorithm
Description
Performs Iteration Deflation Algorithm
Usage
IDA(X, Y, W)
Arguments
| X | Data matrix where columns represent the  | 
| Y | Vector of class probabilities | 
| W | Weight matrix where columns represent the  | 
Value
Returns a matrix of scores vectors Tscore.
Author(s)
Angela Andreella
References
Stocchero, M., & Paris, D. (2016). Post-transformation of PLS2 (ptPLS2) by orthogonal matrix: a new approach for generating predictive and orthogonal latent variables. Journal of Chemometrics, 30(5), 242-251.
See Also
PLS classification
Description
Performs Partial Least Squares classification
Usage
PLSc(X, Y, A, scaling = 'auto-scaling', post.transformation = TRUE,
eps = 0.01, Y.prob = FALSE, transformation = 'ilr')
Arguments
| X | Data matrix where columns represent the  | 
| Y | Data matrix where columns represent the two classes and
rows the  | 
| A | Number of score components | 
| scaling | Type of scaling, one of
 | 
| post.transformation | Boolean value.  | 
| eps | Default 0.01.  | 
| Y.prob | Boolean value. Default  | 
| transformation | Transformation used to map  | 
Value
List with the following objects:
- W
- Matrix of weights 
- X_loading
- Matrix of - Xloading
- Y_loading
- Matrix of - Yloading
- X
- Matrix of - Xdata (predictor variables)
- Y
- Matrix of - Ydata (dependent variable)
- T_score
- Matrix of scores 
- Y_fitted
- Fitted - Ymatrix
- B
- Matrix regression coefficients 
- M
- Number of orthogonal components if - post.transformation=TRUEis applied.
Author(s)
Angela Andreella
References
Stocchero, M., De Nardi, M., & Scarpa, B. (2021). PLS for classification. Chemometrics and Intelligent Laboratory Systems, 216, 104374.
Examples
datas <- simulatePilotData(nvar = 30, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2)
out <- PLSc(X = datas$X, Y = datas$Y, A = 3)
R2 test
Description
Performs permutation-based test based on R2
Usage
R2Test(X, Y, nperm = 100, A, randomization = FALSE,
Y.prob = FALSE, eps = 0.01, scaling = 'auto-scaling',
post.transformation = TRUE, cross.validation = FALSE, seed = 123, ...)
Arguments
| X | data matrix where columns represent the  | 
| Y | data matrix where columns represent the two classes and
rows the  | 
| nperm | number of permutations. Default to 200. | 
| A | number of score components | 
| randomization | Boolean value. Default to  | 
| Y.prob | Boolean value. Default  | 
| eps | Default 0.01.  | 
| scaling | Type of scaling, one of
 | 
| post.transformation | Boolean value.  | 
| cross.validation | Boolean value. Default  | 
| seed | Seed value | 
| ... | additional arguments related to  | 
Value
List with the following objects:
- pv
- raw p-value. It equals - NAif- randomization = FALSE
- pv_adj
- adjusted p-value. It equals - NAif- randomization = FALSE
- test
- estimated test statistic 
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
See Also
Other test statistics implemented: mccTest, scoreTest,
sensitivityTest, specificityTest,AUCTest, dQ2Test,
FMTest, F1Test.
Examples
datas <- simulatePilotData(nvar = 30, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2)
out <- R2Test(X = datas$X, Y = datas$Y, A = 1)
out
Aqueous Humour data
Description
59 post-mortem aqueous humor samples collected from closed and opened sheep eyes
Usage
aqueous_humour
Format
A data frame with 59 rows and 45 variables:
- ID
- ID observation 
- group
- class membership (C, O) 
- R1
- metabolic values 
- R2
- metabolic values 
- R3
- metabolic values 
- R4
- metabolic values 
- R5
- metabolic values 
- R6
- metabolic values 
- R7
- metabolic values 
- R8
- metabolic values 
- R9
- metabolic values 
- R10
- metabolic values 
- R11
- metabolic values 
- R12
- metabolic values 
- R13
- metabolic values 
- R14
- metabolic values 
- R15
- metabolic values 
- R16
- metabolic values 
- R17
- metabolic values 
- R18
- metabolic values 
- R19
- metabolic values 
- R20
- metabolic values 
- R21
- metabolic values 
- R22
- metabolic values 
- R23
- metabolic values 
- R24
- metabolic values 
- R25
- metabolic values 
- R26
- metabolic values 
- R27
- metabolic values 
- R28
- metabolic values 
- R29
- metabolic values 
- R30
- metabolic values 
- R31
- metabolic values 
- R32
- metabolic values 
- R33
- metabolic values 
- R34
- metabolic values 
- R35
- metabolic values 
- R36
- metabolic values 
- R37
- metabolic values 
- R38
- metabolic values 
- R39
- metabolic values 
- R40
- metabolic values 
- R41
- metabolic values 
- R42
- metabolic values 
- R43
- metabolic values 
Author(s)
Angela Andreella angela.andreella@unive.it
References
https://link.springer.com/article/10.1007/s11306-019-1533-2
Power estimation
Description
Estimates power for a given sample size, type I error level and number of score components.
Usage
computePower(X, Y, A, n, seed = 123,
Nsim = 100, nperm = 200, alpha = 0.05,
scaling = 'auto-scaling', test = 'R2',
Y.prob = FALSE, eps = 0.01, post.transformation = TRUE,
fast = FALSE, transformation = 'clr', ncores = NULL)
Arguments
| X | Data matrix where columns represent the  | 
| Y | Data matrix where columns represent the two classes and
rows the  | 
| A | Number of score components | 
| n | Sample size | 
| seed | Seed value | 
| Nsim | Number of simulations | 
| nperm | Number of permutations | 
| alpha | Type I error level | 
| scaling | Type of scaling, one of
 | 
| test | Type of test statistic, one of  | 
| Y.prob | Boolean value. Default  | 
| eps | Default 0.01.  | 
| post.transformation | Boolean value.  | 
| fast | Use the function  | 
| transformation | Transformation used to map  | 
| ncores | Number of cores, default NULL. | 
Value
Returns a matrix of estimated power for each number of components and tests selected.
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
Examples
## Not run: 
datas <- simulatePilotData(nvar = 10, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2)
out <- computePower(X = datas$X, Y = datas$Y, A = 3, n = 20, test = 'R2')
## End(Not run)
Sample size estimation
Description
Compute optimal sample size
Usage
computeSampleSize(n, X, Y, A, alpha, beta,
nperm, Nsim, seed, test = 'R2',...)
Arguments
| n | Vector of sample sizes to consider | 
| X | Data matrix where columns represent the  | 
| Y | Data matrix where columns represent the two classes and
rows the  | 
| A | Number of score components | 
| alpha | Type I error level. Default to 0.05 | 
| beta | Type II error level. Default to 0.2. | 
| nperm | Number of permutations. Default to 100. | 
| Nsim | Number of simulations. Default to 100. | 
| seed | Seed value | 
| test | Type of test, one of  | 
| ... | Further parameters. | 
Value
Returns a data frame that contains the estimated power for each sample size and number of components considered
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
See Also
Examples
## Not run: 
datas <- simulatePilotData(nvar = 10, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2)
out <- computeSampleSize(X = datas$X, Y = datas$Y, A = 2, A = 3, n = 20, test = 'R2')
## End(Not run)
Compute weight and score matrices from PLSc
Description
Compute weight and score matrices for Partial Least Squares classification
Usage
computeWT(X, Y, A)
Arguments
| X | Data matrix where columns represent the  | 
| Y | Data matrix where columns represent the two classes and
rows the  | 
| A | Number of score components | 
Value
List with the following objects:
- W
- Matrix of weights 
- T_score
- Matrix of - Yscores
- R
- Matrix of - Yresiduals
Author(s)
Angela Andreella
dQ2 test
Description
Performs permutation-based test based on dQ2
Usage
dQ2Test(X, Y, nperm = 200, A, randomization = FALSE,
Y.prob = FALSE, eps = 0.01, scaling = 'auto-scaling',
post.transformation = TRUE, class = 1, cross.validation = FALSE, ...)
Arguments
| X | data matrix where columns represent the  | 
| Y | data matrix where columns represent the two classes and
rows the  | 
| nperm | number of permutations. Default to 200. | 
| A | number of score components | 
| randomization | Boolean value. Default to  | 
| Y.prob | Boolean value. Default  | 
| eps | Default 0.01.  | 
| scaling | Type of scaling, one of
 | 
| post.transformation | Boolean value.  | 
| class | Numeric value. Specifiy the reference class. Default  | 
| cross.validation | Boolean value. Default  | 
| ... | additional arguments related to  | 
Value
List with the following objects:
- pv
- raw p-value. It equals - NAif- randomization = FALSE
- pv_adj
- adjusted p-value. It equals - NAif- randomization = FALSE
- test
- estimated test statistic 
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
See Also
Other test statistics implemented: mccTest, scoreTest,
sensitivityTest, specificityTest,AUCTest, R2Test,
FMTest, F1Test.
Examples
datas <- simulatePilotData(nvar = 30, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 1)
out <- dQ2Test(X = datas$X, Y = datas$Y, A = 1)
out
MCC test
Description
Performs permutation-based test based on Matthews Correlation Coefficient
Usage
mccTest(X, Y, nperm = 200, A, randomization = FALSE,
Y.prob = FALSE, eps = 0.01, scaling = 'auto-scaling',
post.transformation = TRUE, cross.validation = FALSE, seed = 123, ...)
Arguments
| X | data matrix where columns represent the  | 
| Y | data matrix where columns represent the two classes and
rows the  | 
| nperm | number of permutations. Default to 200. | 
| A | number of score components | 
| randomization | Boolean value. Default to  | 
| Y.prob | Boolean value. Default  | 
| eps | Default 0.01.  | 
| scaling | Type of scaling, one of
 | 
| post.transformation | Boolean value.  | 
| cross.validation | Boolean value. Default  | 
| seed | Seed value | 
| ... | additional arguments related to  | 
Value
List with the following objects:
- pv
- raw p-value. It equals - NAif- randomization = FALSE
- pv_adj
- adjusted p-value. It equals - NAif- randomization = FALSE
- test
- estimated test statistic 
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
See Also
Other test statistics implemented: AUCTest, scoreTest,
dQ2Test, sensitivityTest,AUCTest, R2Test,
specificityTest, FMTest.
Examples
datas <- simulatePilotData(nvar = 30, clus.size = c(15,15),m = 6,nvar_rel = 5,A = 1)
out <- mccTest(X = datas$X, Y = datas$Y, A = 1)
out
post transformed PLS
Description
Performs post transformed Partial Least Squares
Usage
ptPLSc(X, Y, W)
Arguments
| X | Data matrix where columns represent the  | 
| Y | Vector of class probabilities | 
| W | Weight matrix where columns represent the  | 
Value
List with the following objects:
- W
- Matrix of weights 
- G
- Post transformation matrix 
- M
- Number of orthogonal components 
Author(s)
Angela Andreella
References
Stocchero, M., & Paris, D. (2016). Post-transformation of PLS2 (ptPLS2) by orthogonal matrix: a new approach for generating predictive and orthogonal latent variables. Journal of Chemometrics, 30(5), 242-251.
See Also
Repeated k-Fold Cross-Validation with Custom Test Metrics
Description
This function performs repeated k-fold cross-validation and computes a selected performance metric across all repetitions and folds. It allows for different types of performance tests, such as MCC, sensitivity, specificity, R2, F1, and more.
Usage
repeatedCV_test(
  data,
  labels,
  k_folds = 5,
  repeats = 3,
  A = 1,
  test_type = "mccTest",
  seed = 1234
)
Arguments
| data | A data frame or matrix of features (predictor variables). | 
| labels | A vector of class labels corresponding to the rows of  | 
| k_folds | An integer specifying the number of cross-validation folds (default = 5). | 
| repeats | An integer specifying the number of times the cross-validation is repeated (default = 3). | 
| A | number of score components | 
| test_type | A character string specifying the type of test to use. Options include: 
 Default is 'mccTest'. | 
| seed | An integer for setting the random seed to ensure reproducibility (default = 1234). | 
Value
A numeric value representing the average performance metric across the outer folds.
Examples
datas <- simulatePilotData(nvar = 30, clus.size = c(15,15),m = 6,nvar_rel = 5,A = 1)
data <- datas$X
labels <- datas$Y
mean_mcc <- repeatedCV_test(data, labels, A = 1, test_type = 'mccTest')
cat('Mean MCC:', mean_mcc, '\n')
mean_score <- repeatedCV_test(data, labels, A = 1, test_type = 'scoreTest')
cat('Mean Sensitivity:', mean_score, '\n')
Score test
Description
Performs permutation-based test based on predictive score vector
Usage
scoreTest(X, Y, nperm = 200, A, randomization = FALSE,
Y.prob = FALSE, eps = 0.01, scaling = 'auto-scaling',
post.transformation = TRUE, cross.validation = FALSE, seed = 123, ...)
Arguments
| X | data matrix where columns represent the  | 
| Y | data matrix where columns represent the two classes and
rows the  | 
| nperm | number of permutations. Default to 200. | 
| A | number of score components | 
| randomization | Boolean value. Default to  | 
| Y.prob | Boolean value. Default  | 
| eps | Default 0.01.  | 
| scaling | Type of scaling, one of
 | 
| post.transformation | Boolean value.  | 
| cross.validation | Boolean value. Default  | 
| seed | Seed value | 
| ... | additional arguments related to  | 
Value
List with the following objects:
- pv
- raw p-value. It equals - NAif- randomization = FALSE
- pv_adj
- adjusted p-value. It equals - NAif- randomization = FALSE
- test
- estimated test statistic 
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
See Also
Other test statistics implemented: mccTest, R2Test,
sensitivityTest, specificityTest,AUCTest, dQ2Test,
FMTest, F1Test.
Examples
datas <- simulatePilotData(nvar = 30, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2)
out <- scoreTest(X = datas$X, Y = datas$Y, A = 1)
out
sensitivity test
Description
Performs permutation-based test based on sensitivity
Usage
sensitivityTest(X, Y, nperm = 200, A, randomization = FALSE,
Y.prob = FALSE, eps = 0.01, scaling = 'auto-scaling',
post.transformation = TRUE, cross.validation = FALSE, ...)
Arguments
| X | data matrix where columns represent the  | 
| Y | data matrix where columns represent the two classes and
rows the  | 
| nperm | number of permutations. Default to 200. | 
| A | number of score components | 
| randomization | Boolean value. Default to  | 
| Y.prob | Boolean value. Default  | 
| eps | Default 0.01.  | 
| scaling | Type of scaling, one of
 | 
| post.transformation | Boolean value.  | 
| cross.validation | Boolean value. Default  | 
| ... | additional arguments related to  | 
Value
List with the following objects:
- pv
- raw p-value. It equals - NAif- randomization = FALSE
- pv_adj
- adjusted p-value. It equals - NAif- randomization = FALSE
- test
- estimated test statistic 
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
See Also
Other test statistics implemented: mccTest, scoreTest,
dQ2Test, specificityTest,AUCTest, R2Test,
FMTest, F1Test.
Examples
datas <- simulatePilotData(nvar = 30, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 1)
out <- sensitivityTest(X = datas$X, Y = datas$Y, A = 1)
out
Simulate pilot data
Description
Simulate data matrix under the alternative hypothesis with n observations by kernel density estimation
Usage
sim_XY(out, n, seed = 123, post.transformation = TRUE, A, fast = FALSE)
Arguments
| out | Output from  | 
| n | Number of observations to simulate | 
| seed | Seed value | 
| post.transformation | Boolean value. Default to  | 
| A | Number of score components used in  | 
| fast | Use the function  | 
Value
Returns a list:
- Y_H1
- dependent variable, matrix with 2 columns and - nrows (observations)
- X_H1
- predictor variables, matrix with - nrows (observations) and number of columns equal to- out$X(i.e., original dataset)
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
See Also
Examples
datas <- simulatePilotData(nvar = 10, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2)
out <- PLSc(X = datas$X, Y = datas$Y, A = 3)
out_sim <- sim_XY(out = out, n = 10, A = 3)
Simulate pilot data
Description
Simulate cluster pilot data
Usage
simulatePilotData(seed = 123, nvar, clus.size, nvar_rel,m, A = 2, S1 = NULL, S2 = NULL)
Arguments
| seed | Seed value | 
| nvar | Number of variables | 
| clus.size | Vector of two elements, specifying the size of classes (only two classes are considered) | 
| nvar_rel | Number of variables relevant to predict the dependent variable | 
| m | Effect size of separation between classes | 
| A | Oracle number of score components | 
| S1 | Covariance matrix for the first class. Default  | 
| S2 | Covariance matrix for the second class. Default | 
Author(s)
Angela Andreella @return List with the following objects:
- X
- matrix of predictor variables with - nvarcolumns and the sum of- clus.sizevalues as number of rows.
- Y
- vector of dependent variable with the sum of - clus.sizevalues as length
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
Examples
datas <- simulatePilotData(nvar = 10, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2)
specificity test
Description
Performs permutation-based test based on specificity
Usage
specificityTest(X, Y, nperm = 200, A, randomization = FALSE,
Y.prob = FALSE, eps = 0.01, scaling = 'auto-scaling',
post.transformation = TRUE,cross.validation = FALSE,...)
Arguments
| X | data matrix where columns represent the  | 
| Y | data matrix where columns represent the two classes and
rows the  | 
| nperm | number of permutations. Default to 200. | 
| A | number of score components | 
| randomization | Boolean value. Default to  | 
| Y.prob | Boolean value. Default  | 
| eps | Default 0.01.  | 
| scaling | Type of scaling, one of
 | 
| post.transformation | Boolean value.  | 
| cross.validation | Boolean value. Default  | 
| ... | additional arguments related to  | 
Value
List with the following objects:
- pv
- raw p-value. It equals - NAif- randomization = FALSE
- pv_adj
- adjusted p-value. It equals - NAif- randomization = FALSE
- test
- estimated test statistic 
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
See Also
Other test statistics implemented: mccTest, scoreTest,
dQ2Test, sensitivityTest,AUCTest, R2Test,
FMTest, F1Test.
Examples
datas <- simulatePilotData(nvar = 30, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 1)
out <- specificityTest(X = datas$X, Y = datas$Y, A = 1)
out
Wheezing data
Description
32 urine samples from children at risk of early-onset asthma and those with transient wheezing.
Usage
wheezing
Format
A data frame with 32 rows and 176 variables
Author(s)
Angela Andreella angela.andreella@unive.it