## ----------------------------------------------------------------------------- airq <- airquality[complete.cases(airquality), ] airq$Month <- factor(airq$Month) library("pre") set.seed(42) system.time(airq.ens <- pre(Ozone ~ ., data = airq)) summary(airq.ens) ## ----------------------------------------------------------------------------- set.seed(42) system.time(airq.ens.cart <- pre(Ozone ~ ., data = airq, tree.unbiased = FALSE)) summary(airq.ens.cart) ## ----------------------------------------------------------------------------- set.seed(42) system.time(airq.ens.rf <- pre(Ozone ~ ., data = airq, randomForest = TRUE)) summary(airq.ens.rf) ## ----echo=FALSE, eval=FALSE--------------------------------------------------- # sort(sapply(airq, \(x) length(unique(x))), decr = TRUE) # par(mfrow = c(1, 3)) # importance(airq.ens, cex.lab = .7, cex.axis = .7, cex.main = .7, # main = "Variable importances (ctree)") # importance(airq.ens.cart, cex.lab = .7, cex.axis = .7, cex.main = .7, # main = "Variable importances (CART)") # imps.rf <- importance(airq.ens.rf, cex.lab = .7, cex.axis = .7, cex.main = .7, # main = "Variable importances (randomForest)") ## ----------------------------------------------------------------------------- set.seed(42) system.time(airq.ens.md <- pre(Ozone ~ ., data = airq, maxdepth = 1L)) summary(airq.ens.md) ## ----------------------------------------------------------------------------- set.seed(42) system.time(airq.ens.nt <- pre(Ozone ~ ., data = airq, ntrees = 100L, learnrate = .05)) summary(airq.ens.nt) ## ----------------------------------------------------------------------------- set.seed(42) system.time(airq.ens.nf <- pre(Ozone ~ ., data = airq, nfolds = 5L)) summary(airq.ens.nf)