With the psfmi package you can pool logistic regression
models by using
the following pooling methods: RR (Rubin’s Rules), D1, D2, D3 and MPR
(Median R Rule).
You can also use forward or backward selection from the pooled model.
This vignette show you examples of how to apply these procedures.
  library(psfmi)
  pool_lr <- psfmi_lr(data=lbpmilr, nimp=5, impvar="Impnr", 
                      formula = Chronic ~ Gender + Smoking + 
                      Function + JobControl + JobDemands + SocialSupport, 
                      method="D1")
  
  pool_lr$RR_model
#> $`Step 1 - no variables removed -`
#>            term    estimate  std.error    statistic        df     p.value
#> 1   (Intercept) -0.02145084 2.49485297 -0.008598036 104.09644 0.993156301
#> 2        Gender -0.35445151 0.41807427 -0.847819477 141.28927 0.397972465
#> 3       Smoking  0.07565036 0.34084592  0.221948835 147.74179 0.824660215
#> 4      Function -0.14188458 0.04337897 -3.270815252 132.02927 0.001368147
#> 5    JobControl  0.00690354 0.02053384  0.336203110  88.93815 0.737509628
#> 6    JobDemands  0.00227508 0.03872846  0.058744401 103.72259 0.953268722
#> 7 SocialSupport  0.04434046 0.05750883  0.771019941 126.70867 0.442130487
#>          OR   lower.EXP   upper.EXP
#> 1 0.9787776 0.006951596 137.8108760
#> 2 0.7015581 0.306989710   1.6032584
#> 3 1.0785854 0.549958398   2.1153353
#> 4 0.8677214 0.796369271   0.9454664
#> 5 1.0069274 0.966670925   1.0488604
#> 6 1.0022777 0.928182101   1.0822882
#> 7 1.0453382 0.932895897   1.1713332Back to Examples
Pooling Logistic regression models over 5 imputed datasets with backward selection using a p-value of 0.05 and as method D1 and forcing the predictor “Smoking” in the models during backward selection.
  library(psfmi)
  pool_lr <- psfmi_lr(data=lbpmilr, nimp=5, impvar="Impnr", 
                      formula = Chronic ~ Gender + Smoking + 
                      Function + JobControl + JobDemands + SocialSupport, 
                      keep.predictors = "Smoking", method="D1", p.crit=0.05, 
                      direction="BW")
#> Removed at Step 1 is - JobDemands
#> Removed at Step 2 is - JobControl
#> Removed at Step 3 is - SocialSupport
#> Removed at Step 4 is - Gender
#> 
#> Selection correctly terminated, 
#> No more variables removed from the model
  
  pool_lr$RR_model_final
#> $`Step 5`
#>          term    estimate  std.error  statistic       df    p.value        OR
#> 1 (Intercept)  1.20696975 0.48230894  2.5024827 138.9717 0.01349142 3.3433381
#> 2     Smoking  0.06427314 0.33804675  0.1901309 151.8086 0.84946055 1.0663836
#> 3    Function -0.14058914 0.04225212 -3.3273866 121.6357 0.00115993 0.8688462
#>   lower.EXP upper.EXP
#> 1 1.2883439 8.6761852
#> 2 0.5468337 2.0795610
#> 3 0.7991282 0.9446467
  pool_lr$multiparm_final
#> $`Step 5`
#>           p-values D1 F-statistic
#> Smoking  0.8492075865  0.03614977
#> Function 0.0009162863 11.07150131
  pool_lr$predictors_out
#>         Gender Smoking Function JobControl JobDemands SocialSupport
#> Step 1       0       0        0          0          1             0
#> Step 2       0       0        0          1          0             0
#> Step 3       0       0        0          0          0             1
#> Step 4       1       0        0          0          0             0
#> Removed      1       0        0          1          1             1Back to Examples
Pooling Logistic regression models over 5 imputed datasets with backward selection using a p-value of 0.05 and as method D1 and forcing the predictor “Smoking” in the models during backward selection.
  library(psfmi)
  pool_lr <- psfmi_lr(data=lbpmilr, nimp=5, impvar="Impnr", 
                      formula = Chronic ~ Gender + Smoking + 
                      Function + JobControl + JobDemands + SocialSupport, 
                      keep.predictors = "Smoking", method="MPR", p.crit=0.05, 
                      direction="BW")
#> Removed at Step 1 is - JobDemands
#> Removed at Step 2 is - JobControl
#> Removed at Step 3 is - SocialSupport
#> Removed at Step 4 is - Gender
#> 
#> Selection correctly terminated, 
#> No more variables removed from the model
  
  pool_lr$RR_model_final
#> $`Step 5`
#>          term    estimate  std.error  statistic       df    p.value        OR
#> 1 (Intercept)  1.20696975 0.48230894  2.5024827 138.9717 0.01349142 3.3433381
#> 2     Smoking  0.06427314 0.33804675  0.1901309 151.8086 0.84946055 1.0663836
#> 3    Function -0.14058914 0.04225212 -3.3273866 121.6357 0.00115993 0.8688462
#>   lower.EXP upper.EXP
#> 1 1.2883439 8.6761852
#> 2 0.5468337 2.0795610
#> 3 0.7991282 0.9446467
  pool_lr$multiparm_final
#> $`Step 5`
#>           p-value MPR
#> Smoking  0.8734388519
#> Function 0.0003502948
  pool_lr$predictors_out  
#>         Gender Smoking Function JobControl JobDemands SocialSupport
#> Step 1       0       0        0          0          1             0
#> Step 2       0       0        0          1          0             0
#> Step 3       0       0        0          0          0             1
#> Step 4       1       0        0          0          0             0
#> Removed      1       0        0          1          1             1Back to Examples
Pooling Logistic regression models over 5 imputed datasets with BS using a p-value of 0.05 and as method D2. Several interaction terms, including a categorical predictor, are part of the selection procedure.
  library(psfmi)
  pool_lr <- psfmi_lr(data=lbpmilr, nimp=5, impvar="Impnr", 
                      formula = Chronic ~ Gender + Smoking + 
                        Function + JobControl + factor(Carrying) + 
                        factor(Satisfaction) +
                        factor(Carrying):Smoking + Gender:Smoking, 
                      method="D2", p.crit=0.05, 
                      direction="BW")
#> Removed at Step 1 is - JobControl
#> Removed at Step 2 is - factor(Satisfaction)
#> Removed at Step 3 is - Gender*Smoking
#> Removed at Step 4 is - Gender
#> Removed at Step 5 is - Smoking*factor(Carrying)
#> Removed at Step 6 is - Smoking
#> Removed at Step 7 is - Function
#> 
#> Selection correctly terminated, 
#> No more variables removed from the model
  
  pool_lr$RR_model_final
#> $`Step 8`
#>                term  estimate std.error statistic       df      p.value
#> 1       (Intercept) -1.582393 0.3773100 -4.193880 151.2668 4.652717e-05
#> 2 factor(Carrying)2  1.391554 0.4709708  2.954650 144.1330 3.657304e-03
#> 3 factor(Carrying)3  2.248897 0.4750324  4.734198 151.4269 5.010441e-06
#>          OR  lower.EXP  upper.EXP
#> 1 0.2054828 0.09750312  0.4330445
#> 2 4.0210931 1.58510710 10.2006922
#> 3 9.4772792 3.70747175 24.2264342
  pool_lr$multiparm_final
#> $`Step 8`
#>                   p-values D2 F-statistic
#> factor(Carrying) 1.251841e-05    11.29016
  pool_lr$predictors_out 
#>         Gender Smoking Function JobControl factor(Carrying)
#> Step 1       0       0        0          1                0
#> Step 2       0       0        0          0                0
#> Step 3       0       0        0          0                0
#> Step 4       1       0        0          0                0
#> Step 5       0       0        0          0                0
#> Step 6       0       1        0          0                0
#> Step 7       0       0        1          0                0
#> Removed      1       1        1          1                0
#>         factor(Satisfaction) Smoking*factor(Carrying) Gender*Smoking
#> Step 1                     0                        0              0
#> Step 2                     1                        0              0
#> Step 3                     0                        0              1
#> Step 4                     0                        0              0
#> Step 5                     0                        1              0
#> Step 6                     0                        0              0
#> Step 7                     0                        0              0
#> Removed                    1                        1              1Back to Examples
Same as above but now forcing several predictors, including interaction terms, in the model during BS.
  library(psfmi)
  pool_lr <- psfmi_lr(data=lbpmilr, nimp=5, impvar="Impnr", 
                      formula = Chronic ~ Gender + Smoking + 
                      Function + JobControl + factor(Carrying) + factor(Satisfaction) +
                        factor(Carrying):Smoking + Gender:Smoking, 
                      keep.predictors = c("Smoking*Carrying", "JobControl"), method="D1", 
                      p.crit=0.05, direction="BW")
#> Removed at Step 1 is - Gender*Smoking
#> Removed at Step 2 is - Gender
#> Removed at Step 3 is - factor(Satisfaction)
#> Removed at Step 4 is - Function
  
  pool_lr$RR_model_final
#> $`Step 5`
#>                        term     estimate std.error  statistic        df
#> 1               (Intercept) -0.810522255 1.3650185 -0.5937812  55.33263
#> 2                   Smoking -1.796541680 1.1699026 -1.5356336  65.48650
#> 3                JobControl -0.004625312 0.0216596 -0.2135455  58.16427
#> 4         factor(Carrying)2  0.723452199 0.6214600  1.1641171 107.17663
#> 5         factor(Carrying)3  1.534813529 0.5908820  2.5974958 107.09227
#> 6 Smoking:factor(Carrying)2  2.093737680 1.3149790  1.5922214  66.01171
#> 7 Smoking:factor(Carrying)3  2.370029492 1.3934064  1.7008889  51.83267
#>      p.value         OR  lower.EXP  upper.EXP
#> 1 0.55507827  0.4446258 0.02884811   6.852861
#> 2 0.12944599  0.1658715 0.01604000   1.715297
#> 3 0.83164826  0.9953854 0.95315370   1.039488
#> 4 0.24696141  2.0615378 0.60139911   7.066751
#> 5 0.01071096  4.6404601 1.43831227  14.971624
#> 6 0.11611271  8.1151905 0.58760877 112.075110
#> 7 0.09495675 10.6977078 0.65294658 175.268475
  pool_lr$multiparm_final
#> $`Step 5`
#>                          p-values D1 F-statistic
#> Smoking                  0.313723002   1.1877289
#> JobControl               0.831291534   0.0456017
#> factor(Carrying)         0.000903194   4.7060389
#> Smoking*factor(Carrying) 0.188926654   1.6841757
  pool_lr$predictors_out 
#>         Gender Smoking Function JobControl factor(Carrying)
#> Step 1       0       0        0          0                0
#> Step 2       1       0        0          0                0
#> Step 3       0       0        0          0                0
#> Step 4       0       0        1          0                0
#> Removed      1       0        1          0                0
#>         factor(Satisfaction) Smoking*factor(Carrying) Gender*Smoking
#> Step 1                     0                        0              1
#> Step 2                     0                        0              0
#> Step 3                     1                        0              0
#> Step 4                     0                        0              0
#> Removed                    1                        0              1Back to Examples
Pooling Logistic regression models over 5 imputed datasets with BS using a p-value of 0.05 and as method D1. A spline predictor and interaction term are part of the selection procedure.
  library(psfmi)
  pool_lr <- psfmi_lr(data=lbpmilr, nimp=5, impvar="Impnr", 
                      formula = Chronic ~ Gender + Smoking + 
                      JobControl + factor(Carrying) + factor(Satisfaction) +
                      factor(Carrying):Smoking + rcs(Function, 3), 
                      method="D1", 
                      p.crit=0.05, direction="BW")
#> Removed at Step 1 is - JobControl
#> Removed at Step 2 is - Gender
#> Removed at Step 3 is - rcs(Function,3)
#> Removed at Step 4 is - factor(Satisfaction)
#> Removed at Step 5 is - Smoking*factor(Carrying)
#> Removed at Step 6 is - Smoking
#> 
#> Selection correctly terminated, 
#> No more variables removed from the model
  
  pool_lr$RR_model_final
#> $`Step 7`
#>                term  estimate std.error statistic       df      p.value
#> 1       (Intercept) -1.582393 0.3773100 -4.193880 151.2668 4.652717e-05
#> 2 factor(Carrying)2  1.391554 0.4709708  2.954650 144.1330 3.657304e-03
#> 3 factor(Carrying)3  2.248897 0.4750324  4.734198 151.4269 5.010441e-06
#>          OR  lower.EXP  upper.EXP
#> 1 0.2054828 0.09750312  0.4330445
#> 2 4.0210931 1.58510710 10.2006922
#> 3 9.4772792 3.70747175 24.2264342
  pool_lr$multiparm_final
#> $`Step 7`
#>                   p-values D1 F-statistic
#> factor(Carrying) 2.257078e-05     10.8085
  pool_lr$predictors_out 
#>         Gender Smoking JobControl factor(Carrying) factor(Satisfaction)
#> Step 1       0       0          1                0                    0
#> Step 2       1       0          0                0                    0
#> Step 3       0       0          0                0                    0
#> Step 4       0       0          0                0                    1
#> Step 5       0       0          0                0                    0
#> Step 6       0       1          0                0                    0
#> Removed      1       1          1                0                    1
#>         rcs(Function,3) Smoking*factor(Carrying)
#> Step 1                0                        0
#> Step 2                0                        0
#> Step 3                1                        0
#> Step 4                0                        0
#> Step 5                0                        1
#> Step 6                0                        0
#> Removed               1                        1Back to Examples