Scaling models and classifiers for sparse matrix objects representing 
    textual data in the form of a document-feature matrix.  Includes original 
    implementations of 'Laver', 'Benoit', and Garry's (2003) <doi:10.1017/S0003055403000698>,
    'Wordscores' model, the Perry and 'Benoit' (2017) <doi:10.48550/arXiv.1710.08963> class affinity scaling model, 
    and the 'Slapin' and 'Proksch' (2008) <doi:10.1111/j.1540-5907.2008.00338.x> 'wordfish'
    model, as well as methods for correspondence analysis, latent semantic analysis,
    and fast Naive Bayes and linear 'SVMs' specially designed for sparse textual data.
| Version: | 0.9.10 | 
| Depends: | R (≥ 3.1.0), methods | 
| Imports: | glmnet, Matrix (≥ 1.2), quanteda (≥ 4.0.0), RSpectra, Rcpp (≥ 0.12.12), stringi | 
| LinkingTo: | Rcpp, RcppArmadillo (≥ 0.7.600.1.0), quanteda | 
| Suggests: | ca, covr, fastNaiveBayes, knitr, lsa, microbenchmark, naivebayes, quanteda.textplots, spelling, testthat, rmarkdown | 
| Published: | 2025-02-10 | 
| DOI: | 10.32614/CRAN.package.quanteda.textmodels | 
| Author: | Kenneth Benoit  [cre, aut, cph],
  Kohei Watanabe  [aut],
  Haiyan Wang  [aut],
  Patrick O. Perry  [aut],
  Benjamin Lauderdale  [aut],
  Johannes Gruber  [aut],
  William Lowe  [aut],
  Vikas Sindhwani [cph] (authored svmlin C++ source code),
  European Research Council [fnd] (ERC-2011-StG 283794-QUANTESS) | 
| Maintainer: | Kenneth Benoit  <kbenoit at quanteda.org> | 
| License: | GPL-3 | 
| URL: | https://github.com/quanteda/quanteda.textmodels | 
| NeedsCompilation: | yes | 
| Language: | en-GB | 
| Materials: | README, NEWS | 
| CRAN checks: | quanteda.textmodels results |