rmweather: Tools to Conduct Meteorological Normalisation and Counterfactual
Modelling for Air Quality Data
An integrated set of tools to allow data users to conduct 
    meteorological normalisation and counterfactual modelling for air quality 
    data. The meteorological normalisation technique uses predictive random 
    forest models to remove variation of pollutant concentrations so trends and 
    interventions can be explored in a robust way. For examples, see 
    Grange et al. (2018) <doi:10.5194/acp-18-6223-2018> and 
    Grange and Carslaw (2019) <doi:10.1016/j.scitotenv.2018.10.344>. The random
    forest models can also be used for counterfactual or business as usual (BAU) 
    modelling by using the models to predict, from the model's perspective, the 
    future. For an example, see Grange et al. (2021) <doi:10.5194/acp-2020-1171>.
| Version: | 0.2.63 | 
| Depends: | R (≥ 3.2.0) | 
| Imports: | dplyr (≥ 1.0.1), ggplot2, lubridate, magrittr, pdp, purrr (≥
1.0.0), ranger, stringr, strucchange, tibble, viridis, tidyr, cli | 
| Suggests: | testthat, openair | 
| Published: | 2025-08-22 | 
| DOI: | 10.32614/CRAN.package.rmweather | 
| Author: | Stuart K. Grange  [cre, aut] | 
| Maintainer: | Stuart K. Grange  <s.k.grange at gmail.com> | 
| BugReports: | https://github.com/skgrange/rmweather/issues | 
| License: | GPL-3 | file LICENSE | 
| URL: | https://github.com/skgrange/rmweather | 
| NeedsCompilation: | no | 
| Citation: | rmweather citation info | 
| CRAN checks: | rmweather results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=rmweather
to link to this page.