Implements L0-constrained Multi-Task Learning and domain generalization algorithms. The algorithms are coded in Julia allowing for fast implementations of the coordinate descent and local combinatorial search algorithms. For more details, see a preprint of the paper: Loewinger et al., (2022) <doi:10.48550/arXiv.2212.08697>.
| Version: | 0.1.0 | 
| Depends: | R (≥ 3.5.0) | 
| Imports: | glmnet, JuliaCall, JuliaConnectoR, caret, dplyr | 
| Suggests: | knitr, rmarkdown | 
| Published: | 2023-02-06 | 
| DOI: | 10.32614/CRAN.package.sMTL | 
| Author: | Gabriel Loewinger | 
| Maintainer: | Gabriel Loewinger <gloewinger at gmail.com> | 
| BugReports: | https://github.com/gloewing/sMTL/issues | 
| License: | MIT + file LICENSE | 
| URL: | https://github.com/gloewing/sMTL, https://rpubs.com/gloewinger/996629 | 
| NeedsCompilation: | no | 
| CRAN checks: | sMTL results | 
| Reference manual: | sMTL.html , sMTL.pdf | 
| Package source: | sMTL_0.1.0.tar.gz | 
| Windows binaries: | r-devel: sMTL_0.1.0.zip, r-release: sMTL_0.1.0.zip, r-oldrel: sMTL_0.1.0.zip | 
| macOS binaries: | r-release (arm64): sMTL_0.1.0.tgz, r-oldrel (arm64): sMTL_0.1.0.tgz, r-release (x86_64): sMTL_0.1.0.tgz, r-oldrel (x86_64): sMTL_0.1.0.tgz | 
Please use the canonical form https://CRAN.R-project.org/package=sMTL to link to this page.