Changes in v1.4.3
- Add as.dictionaryto create a dictionary object from
topic terms.
- Suppress messages from internal functions.
- Move quanteda from Depends to Imports.
Changes in v1.4.2
- Fix tests for quanteda v4.2.0.
Changes in v1.4.1
- Fix regression in 1.4.0 on Linux-like OS.
Changes in v1.4.0
- Use configure to link the TBB library on MacOS.
- Add adjust_alphaas an experimental argument to
optimizealphaautomatically.
- Add update_modelto update terms of existing models to
classify documents with unseen words more accurately.
Changes in v1.3.2
- Improve the way to convert std::vectortoarma::mat.
Changes in v1.3.1
- Fix C++ code for Armadillo v14.
Changes in v1.3.0
- Add perplexity()to compute perplexity scores of fitted
LDA models.
- Improve documentation.
Changes in v1.2.1
- Fix tests on systems when the TBB library is unavailable.
Changes in v1.2.0
- The RcppParallel package is no longer required as the TBB library in
the operating system (Linux and MacOS) or Rtools (Windows) is used.
- Linux and MacOS must have the TBB library to enable parallel
computing before installing this package from the source.
Changes in v1.1.1
- Allow alphaandbetato be a vector for
asymmetric Dirichlet priors.
Changes in v1.1.0
- Remove uniformto simplify the computation of seed word
weights.
- Add levelsargument to better handle hierarchical
dictionaries.
Changes in v1.0.1
- Fix the error when textmodel_seqlda()is called.
- Save values in the Array object in double to avoid rounding error
(#60).
Changes in v1.0.0
- Add auto_itertotextmodel_seededlda()andtextmodel_lda()to stop Gibbs sampling automatically beforemax_iteris reached.
- Add batch_sizetotextmodel_seededlda()andtextmodel_lda()to enable the distributed LDA algorithm
for parallel computing.
Changes in v0.9.0
- Add the gamma parameter to textmodel_seededlda()andtextmodel_lda()for sequential classification.
- Add textmodel_seqlda()as as short cut fortextmodel_lda(gamma = 0.5).
- Improve the calculation of weights for seed words.
- Add the regularizeargument todivergence()for the regularized topic divergence
measure.
Changes in v0.8.4
- Fix for deprecation in Matrix 1.5-4.
Changes in v0.8.3
- Add data_corpus_moviereviewsto the package to reduce
dependency.
Changes in v0.8.2
- Add min_probandselecttotopics()for greater flexibility
- Change the divergence measure from Kullback-Leibler to
Jensen-Shannon.
- Add weighted,min_size,selecttodivergence()for regularized topic
divergence scores.
Changes in v0.8.1
- Change textmodel_seededlda()to set positive integer
values toresidual.
- Fix a bug in textmodel_seededlda()that ignores n-grams
whenconcatenatoris not “_“.
- Change topics()to return document names.
- Add divergence()to optimize the number of topics or
the seed words (#26).
Changes in v0.8.0
- Add the modelargument totextmodel_lda()to replacepredict().
Changes in v0.7.0
- Change the textmodel_seededldaobject to save
dictionary and related settings (#18)
Changes in v0.6.0
- Add predict()to identify topics of unseen documents
(#9)
- Allow selecting seed words based on their frequencies using
dfm_trim()intextmodel_seededlda()via...(#8)
Changes in v0.5.1
- Change topics()to return factor with NA for empty
documents
- Fix a bug in initializing LDA that leads to incorrect phi (#4 and
#6)
Changes in v0.5
- Implement original LDA estimator using the LDAGibbs++ library