| Argument | Description | 
|---|---|
| object | A model fitted by lavaan. | 
| level | Confidence level for the confidence intervals. For example, .95gives 95% confidence intervals. | 
| standardized | Whether to return standardized estimates. Same as in lavaan::parameterEstimates(). You can use"std.all","std.lv", etc. For detailed
standardized results with CIs, usestandardizedSolution_boot()instead. | 
| boot_org_ratio | Whether to calculate how wide the bootstrap confidence interval is compared to the original confidence interval (from delta method). Useful to compare the two methods. | 
| boot_ci_type | Method for forming bootstrap confidence intervals. "perc"gives percentile intervals;"bc"and"bca.simple"give bias-corrected intervals. | 
| save_boot_est | Whether to save the bootstrap estimates in the result. Saved in
attributes boot_est_ustd(free parameters) andboot_def(user-defined parameters) ifTRUE. | 
| boot_pvalue | Whether to compute asymmetric p-values based on bootstrap results. Only available when percentile confidence intervals are used. | 
| boot_pvalue_min_size | Minimum number of valid bootstrap samples needed to compute
asymmetric p-values. If fewer samples are available,
p-values will not be computed and will be shown as NA. | 
| ... | Additional arguments passed to lavaan::parameterEstimates(). | 
# Ensure bootstrap estimates are stored
fit <- sem(mod, data = dat, fixed.x = FALSE)
fit <- store_boot(fit) 
est_boot <- parameterEstimates_boot(fit)
print(est_boot)
#> 
#> Bootstrapping:
#>                                     
#>  Valid Bootstrap Samples: 1000      
#>  Level of Confidence:     95.0%     
#>  CI Type:                 Percentile
#>  P-Value:                 Asymmetric
#> 
#> Parameter Estimates Settings:
#>                                              
#>  Standard errors:                  Standard  
#>  Information:                      Expected  
#>  Information saturated (h1) model: Structured
#> 
#> Regressions:
#>                Estimate    SE     p  CI.Lo CI.Up   bSE    bp bCI.Lo bCI.Up
#>  m ~                                                                      
#>   x (a)           0.089 0.103 0.386 -0.113 0.291 0.108 0.446 -0.121  0.287
#>  y ~                                                                      
#>   m (b)           0.192 0.034 0.000  0.125 0.260 0.037 0.000  0.121  0.265
#>   x (cp)         -0.018 0.112 0.871 -0.238 0.202 0.112 0.868 -0.240  0.214
#> 
#> Variances:
#>                Estimate    SE     p  CI.Lo CI.Up   bSE    bp bCI.Lo bCI.Up
#>   .m              0.898 0.040 0.000  0.819 0.977 0.041 0.000  0.820  0.983
#>   .y              1.065 0.048 0.000  0.972 1.159 0.045 0.000  0.973  1.151
#>    x              0.085 0.004 0.000  0.077 0.092 0.002 0.000  0.080  0.089
#> 
#> Defined Parameters:
#>                Estimate    SE     p  CI.Lo CI.Up   bSE    bp bCI.Lo bCI.Up
#>  ab (ab)          0.017 0.020 0.392 -0.022 0.056 0.021 0.446 -0.025  0.059
#>  total (total)   -0.001 0.114 0.993 -0.224 0.222 0.115 0.994 -0.229  0.225
#> 
#> Footnote:
#> - SE: Original standard errors.
#> - p: Original p-values.
#> - CI.Lo, CI.Up: Original confidence intervals.
#> - bSE: Bootstrap standard errors.
#> - bCI.Lo, bCI.Up: Bootstrap confidence intervals.
#> - bp: Bootstrap p-values.
# Change confidence level to 99%
est_boot <- parameterEstimates_boot(fit, level = 0.99)
# Use bias-corrected (BC) bootstrap confidence intervals
est_boot <- parameterEstimates_boot(fit, boot_ci_type = "bc")
# Turn off asymmetric bootstrap p-values
est_boot <- parameterEstimates_boot(fit, boot_pvalue = FALSE)
# Do not save bootstrap estimates (for memory saving)
est_boot <- parameterEstimates_boot(fit, save_boot_est = FALSE)
# Compute and display bootstrap-to-original CI ratio
est_boot <- parameterEstimates_boot(fit, boot_org_ratio = TRUE)
# Combine options: BC CI, 99% level, no p-values
est_boot <- parameterEstimates_boot(fit,
                                    level = 0.99,
                                    boot_ci_type = "bc",
                                    boot_pvalue = FALSE)# Print with more decimal places (e.g., 5 digits)
print(est_boot, nd = 5)
# Print in lavaan-style text format (similar to summary())
print(est_boot, output = "text")
# Print as a clean data frame table
print(est_boot, output = "table")
# Drop specific columns (e.g., "Z") in lavaan.printer format
print(est_boot, drop_cols = "Z")
# Combine options: 5 decimal digits, text format
print(est_boot, nd = 5, output = "text")