| Type: | Package | 
| Title: | Nonparametric Sobol Estimator with Bootstrap Bandwidth | 
| Version: | 0.1.0 | 
| Author: | Maikol Solís <maikol.solis@ucr.ac.cr> | 
| Maintainer: | Maikol Solís <maikol.solis@ucr.ac.cr> | 
| Description: | Algorithm to estimate the Sobol indices using a non-parametric fit of the regression curve. The bandwidth is estimated using bootstrap to reduce the finite-sample bias. The package is based on the paper Solís, M. (2018) <doi:10.48550/arXiv.1803.03333>. | 
| License: | MIT + file LICENSE | 
| URL: | https://github.com/maikol-solis/sobolnp/ | 
| BugReports: | https://github.com/maikol-solis/sobolnp/issues | 
| Imports: | np, minqa, pbmcapply | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| RoxygenNote: | 6.1.1 | 
| NeedsCompilation: | no | 
| Packaged: | 2019-04-24 12:47:02 UTC; maikol | 
| Repository: | CRAN | 
| Date/Publication: | 2019-04-29 08:40:02 UTC | 
Plot method for objects sobolnp
Description
Plot the Sobol indices based in a non-parametric regression with cross-validation and bootstrap bandwidth
Usage
plot(snp, ...)
## S3 method for class 'sobolnp'
plot(snp, ...)
Arguments
| snp | an object of class  | 
| ... | further arguments passed to the  | 
Value
A formatted table with the results of the sobolnp
function.
Examples
ishigami.fun <- function(X) {
A <- 7
B <- 0.1
sin(X[, 1]) + A * sin(X[, 2])^2 + B * X[, 3]^4 * sin(X[, 1])
}
X <- matrix(runif(3*100, -pi, pi), ncol = 3)
Y <- ishigami.fun(X)
estimation <- sobolnp(Y = Y, X = X, nboot = 5)
plot(estimation)
Print method for objects sobolnp
Description
Print method for objects sobolnp
Usage
print(snp, ...)
## S3 method for class 'sobolnp'
print(snp, ...)
Arguments
| snp | an object of class  | 
| ... | further arguments passed to the  | 
Value
A formatted table with the results of the sobolnp
function.
Examples
ishigami.fun <- function(X) {
A <- 7
B <- 0.1
sin(X[, 1]) + A * sin(X[, 2])^2 + B * X[, 3]^4 * sin(X[, 1])
}
X <- matrix(runif(3*100, -pi, pi), ncol = 3)
Y <- ishigami.fun(X)
estimation <- sobolnp(Y = Y, X = X, nboot = 5)
print(estimation)
Nonparametric Sobol Estimator with Bootstrap Bandwidth
Description
Algorithm to estimate the Sobol indices using a non-parametric fit of the regression curve. The bandwidth is estimated using bootstrap to reduce the finite-sample bias.
Usage
sobolnp(Y, X, bandwidth = NULL, bandwidth.compute = TRUE,
  bootstrap = TRUE, nboot = 100, ckerorder = 2, mc.cores = 1)
Arguments
| Y | Response continuous variable | 
| X | Matrix of independent variables | 
| bandwidth | If  | 
| bandwidth.compute | Logical value. Indicates if the bandwidth should be estimated or not. Defaults to  | 
| bootstrap | Logical value. Indicates if the estimation should be with bootstrap or not. Defaults to  | 
| nboot | Number of bootstrap samples taken for the method. Ignored if 'bootstrap = FALSE'. Defaults to  | 
| ckerorder | Numeric value specifying kernel order (should be one of
 | 
| mc.cores | Number of cores used. Defaults to  | 
Value
A list of class sobolnp with the following elements:
- S
- First order Sobol indices estimated with nonparametric regression and a cross-validation bandwidth 
- bws
- Bandwidth estimated with cross-validation 
- Sboot
- First order Sobol indices estimated with nonparametric regression and a bootstrap bandwidth 
- bwsboot
- Bandwidth estimated with bootstrap 
References
Solís, Maikol. "Nonparametric estimation of the first order Sobol indices with bootstrap bandwidth." arXiv preprint arXiv:1803.03333 (2018).
Examples
ishigami.fun <- function(X) {
A <- 7
B <- 0.1
sin(X[, 1]) + A * sin(X[, 2])^2 + B * X[, 3]^4 * sin(X[, 1])
}
X <- matrix(runif(3*100, -pi, pi), ncol = 3)
Y <- ishigami.fun(X)
estimation <- sobolnp(Y = Y, X = X, nboot = 5)