tabnet 0.7.0
Bugfixes
- Remove long-run example raising a Note.
- fix tabet_pretrainfailing withvalue_error("Can't convert data of class: 'NULL'")in R
4.5
- fix tabet_pretrainwrongly used instead oftabnet_fitin Missing data predictor vignette
- improve message related to case_weights not being used as
predictors.
- improve function documentation consistency before translation.
- fix “…” is not an exported object from ‘namespace:dials’” error when
using tune() on tabnet parameters. (#160 @cphaarmeyer)
tabnet 0.6.0
New features
- parsnip models now allow transparently passing case weights through
workflows::add_case_weights()parameters (#151)
- parsnip models now support tabnet_modelandfrom_epochparameters (#143)
Bugfixes
- Adapt tune::finalize_workflow()test to {parsnip} v1.2
breaking change. (#155)
- autoplot()now position the “has_checkpoint” points
correctly when a- tabnet_fit()is continuing a previous
training using- tabnet_model =. (#150)
- Explicitely warn that tabnet_modeloption will not be
used intabnet_pretrain()tasks. (#150)
tabnet 0.5.0
New features
- {tabnet} now allows hierarchical multi-label classification through
{data.tree} hierarchical Nodedataset. (#126)
- tabnet_pretrain()now allows different GLU blocks in
GLU layers in encoder and in decoder through the- config()parameters- num_idependant_decoderand- num_shared_decoder(#129)
- Add reduce_on_plateauas option forlr_schedulerattabnet_config()(@SvenVw, #120)
- use zeallot internally with %<-% for code readability (#133)
- add FR translation (#131)
tabnet 0.4.0
New features
- Add explicit legend in autoplot.tabnet_fit()(#67)
- Improve unsupervised vignette content. (#67)
- tabnet_pretrain()now allows missing values in
predictors. (#68)
- tabnet_explain()now works for- tabnet_pretrainmodels. (#68)
- Allow missing-values values in predictor for unsupervised training.
(#68)
- Improve performance of random_obfuscator()torch_nn
module. (#68)
- Add support for early stopping (#69)
- tabnet_fit()and- predict()now allow
missing values in predictors. (#76)
- tabnet_config()now supports a- num_workers=parameters to control parallel dataloading
(#83)
- Add a vignette on missing data (#83)
- tabnet_config()now has a flag- skip_importanceto skip calculating feature importance
(@egillax, #91)
- Export and document tabnet_nn
- Added min_grid.tabnetmethod fortune(@cphaarmeyer,
#107)
- Added tabnet_explain()method for parsnip models (@cphaarmeyer,
#108)
- tabnet_fit()and- predict()now allow
multi-outcome, all numeric or all factors but not
mixed. (#118)
Bugfixes
- tabnet_explain()is now correctly handling missing
values in predictors. (#77)
- dataloadercan now use- num_workers>0(#83)
- new default values for batch_sizeandvirtual_batch_sizeimproves performance on mid-range
devices.
- add default engine="torch"to tabnet parsnip model
(#114)
- fix autoplot()warnings turned into errors with
{ggplot2} v3.4 (#113)
tabnet 0.3.0
- Added an updatemethod for tabnet models to allow the
correct usage offinalize_workflow(#60).
tabnet 0.2.0
New features
- Allow model fine-tuning through passing a pre-trained model to
tabnet_fit()(@cregouby, #26)
- Explicit error in case of missing values (@cregouby, #24)
- Better handling of larger datasets when running
tabnet_explain().
- Add tabnet_pretrain()for unsupervised pretraining
(@cregouby,
#29)
- Add autoplot()of model loss among epochs (@cregouby, #36)
- Added a configargument tofit() / pretrain()so one can pass a pre-made config list.
(#42)
- In tabnet_config(), newmask_typeoption
withentmaxadditional to defaultsparsemax(@cmcmaster1,
#48)
- In tabnet_config(),lossnow also takes
function (@cregouby,
#55)
Bugfixes
- Fixed bug in GPU training. (#22)
- Fixed memory leaks when using custom autograd function.
- Batch predictions to avoid OOM error.
Internal improvements
tabnet 0.1.0
- Added a NEWS.mdfile to track changes to the
package.