| Type: | Package | 
| Title: | Plotting Trade-Off AUC-Dimensionality | 
| Version: | 0.1.0 | 
| Depends: | SuperLearner, R (≥ 3.5) | 
| Description: | Perform and Runtime statistical comparisons between models. This package aims at choosing the best model for a particular dataset, regarding its discriminant power and runtime. | 
| License: | MIT + file LICENSE | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| Suggests: | spelling, testthat (≥ 3.0.0) | 
| Config/testthat/edition: | 3 | 
| RoxygenNote: | 7.3.2 | 
| Imports: | dplyr, speedglm, magrittr, purrr, rsample, stringr, tibble, tidyr, ROCR, caret, ez, fastDummies, fuzzySim, ggplot2 | 
| URL: | https://github.com/luisgarcez11/tradeoffaucdim | 
| BugReports: | https://github.com/luisgarcez11/tradeoffaucdim/issues | 
| Language: | en-US | 
| NeedsCompilation: | no | 
| Packaged: | 2025-04-29 18:30:19 UTC; luis_ | 
| Author: | Garcez Luis [aut, cre] | 
| Maintainer: | Garcez Luis <luisgarcez1@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2025-05-02 09:40:02 UTC | 
Pipe operator
Description
See magrittr::%>% for details.
Usage
lhs %>% rhs
Arguments
| lhs | A value or the  | 
| rhs | A function call using the  | 
Value
The result of calling 'rhs(lhs)'.
Apply Model
Description
Apply model and create column with fit
Usage
apply_model(
  obj,
  models = c("SL.glm", "SL.rpart"),
  test_partition_prop = 0.2,
  perf_measure = "auc"
)
Arguments
| obj | object returned from  | 
| models | models to be analyzed | 
| test_partition_prop | test proportion | 
| perf_measure | performance measure | 
Value
list with fit models and parameters
Examples
apply_model(obj2)
Banana Quality
Description
Banana quality dataset
Usage
bananaquality
Format
An object of class data.frame with 8000 rows and 8 columns.
Banana Quality Subset
Description
Banana quality dataset subset
Usage
bananaquality_sample
Format
An object of class data.frame with 50 rows and 8 columns.
Bootstrap data
Description
Create a list with bootstrap samples
Usage
bootstrap_data(
  data,
  outcome = "Quality",
  indep_vars = c("Size", "Weight", "Sweetness", "Softness", "HarvestTime", "Ripeness",
    "Acidity"),
  n_samples = 50,
  n_maximum_dim = 5
)
Arguments
| data | a dataframe to be analyzed | 
| outcome | a string representing the outcome variable | 
| indep_vars | a vector of strings to be considered | 
| n_samples | number of bootstrap samples | 
| n_maximum_dim | maximum number of variables to be considered | 
Value
list
Examples
bootstrap_data(bananaquality_sample)
Compare test
Description
Performs statistical tests to compare performance and runtime.
Usage
compare_test(obj, x_label_offset = 1, y_label_offset = 10)
Arguments
| obj | object returned by  | 
| x_label_offset | x coordinate to plot p-value | 
| y_label_offset | y coordinate to plot p-value | 
Value
list with statistical tests performed
Examples
compare_test(obj5)
Define independent variables
Description
Define independent variables to be tested
Usage
define_indepvars(obj, p_in = 0.5, p_out = 0.6)
Arguments
| obj | object returned by  | 
| p_in | entry p-value used to determine variable order | 
| p_out | removal p-value used to determine variable order | 
Value
list
Examples
define_indepvars(obj1)
Example Object returned from bootstrap_data
Description
obj1
Usage
obj1
Format
An object of class list of length 5.
Example Object returned from define_indepvars_outcome
Description
obj2
Usage
obj2
Format
An object of class list of length 7.
Example Object returned from apply_model
Description
obj3
Usage
obj3
Format
An object of class list of length 10.
Example Object returned from summary_statistics
Description
obj4
Usage
obj4
Format
An object of class list of length 11.
Example Object returned from plot_curve
Description
obj5
Usage
obj5
Format
An object of class list of length 15.
Example Object returned from compare_test
Description
obj6
Usage
obj6
Format
An object of class list of length 16.
Plot curve
Description
Return plot features.
Usage
plot_curve(obj)
Arguments
| obj | object returned by  | 
Value
list with graphical features
Examples
plot_curve(obj4)
Summary Stats
Description
Return summary statistics
Usage
summary_stats(obj)
Arguments
| obj | object returned from   | 
Value
list with summary statistics and bootstrap confidence intervals
Examples
summary_stats(obj3)
Wrap all pipeline
Description
Wrap all pipeline
Usage
wrapper_aucdim(
  data,
  outcome,
  indep_vars,
  n_samples = 100,
  n_maximum_dim = 5,
  p_in = 0.5,
  p_out = 0.6,
  models = c("SL.glm"),
  test_partition_prop = 0.2,
  perf_measure = "auc",
  x_label_offset = 1,
  y_label_offset = 10
)
Arguments
| data | a dataframe to be analyzed | 
| outcome | a string representing the outcome variable | 
| indep_vars | a vector of strings to be considered | 
| n_samples | number of bootstrap samples | 
| n_maximum_dim | maximum number of variables | 
| p_in | entry p-value for choosing variable order | 
| p_out | exclusion p-value for choosing variable order | 
| models | a string representing the models to compare | 
| test_partition_prop | test partition proportion | 
| perf_measure | performance measure to be considered | 
| x_label_offset | x coordinate for plotting | 
| y_label_offset | y coordinate for plotting | 
Value
a list with the final object