Methods and tools for analysing and validating the outputs and modelled functions of artificial neural networks (ANNs) in terms of predictive, replicative and structural validity. Also provides a method for fitting feed-forward ANNs with a single hidden layer.
| Version: | 1.2.1 | 
| Depends: | R (≥ 3.1.0) | 
| Imports: | moments | 
| Suggests: | nnet, knitr, rmarkdown | 
| Published: | 2017-04-20 | 
| DOI: | 10.32614/CRAN.package.validann | 
| Author: | Greer B. Humphrey [aut, cre] | 
| Maintainer: | Greer B. Humphrey <greer.humphrey at student.adelaide.edu.au> | 
| BugReports: | http://github.com/gbhumphrey1/validann/issues | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| URL: | http://github.com/gbhumphrey1/validann | 
| NeedsCompilation: | no | 
| Citation: | validann citation info | 
| CRAN checks: | validann results | 
| Reference manual: | validann.html , validann.pdf | 
| Package source: | validann_1.2.1.tar.gz | 
| Windows binaries: | r-devel: validann_1.2.1.zip, r-release: validann_1.2.1.zip, r-oldrel: validann_1.2.1.zip | 
| macOS binaries: | r-release (arm64): validann_1.2.1.tgz, r-oldrel (arm64): validann_1.2.1.tgz, r-release (x86_64): validann_1.2.1.tgz, r-oldrel (x86_64): validann_1.2.1.tgz | 
| Old sources: | validann archive | 
| Reverse suggests: | NNbenchmark | 
Please use the canonical form https://CRAN.R-project.org/package=validann to link to this page.