Package ‘waysign’

January 13, 2026
Title Multi-Purpose and High-Performance Routing
Version 0.1.1

Description Provides routing based on the 'path-tree’ 'Rust' crate. The routing
is general purpose in the sense that any type of R object can be associated
with a path, not just a handler function.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

Config/rextendr/version 0.4.2.9000

SystemRequirements Cargo (Rust's package manager), rustc >= 1.65.0, xz
Depends R (>=4.2)

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

Imports rlang (>=1.1.0)

URL https://github.com/thomasp85/waysign

BugReports https://github.com/thomasp85/waysign/issues
NeedsCompilation yes

Author Thomas Lin Pedersen [aut, cre] (ORCID:
<https://orcid.org/0000-0002-5147-4711>),
Posit, PBC [cph, fnd] (ROR: <https://ror.org/03wc8by49>)

Maintainer Thomas Lin Pedersen <thomas.pedersen@posit.co>
Repository CRAN
Date/Publication 2026-01-13 09:40:02 UTC

Contents

path_params
SIZNPOSE . v v v v o e e e e e e e e e e e e e e e e e

Index

https://github.com/thomasp85/waysign
https://github.com/thomasp85/waysign/issues
https://orcid.org/0000-0002-5147-4711
https://ror.org/03wc8by49

2 signpost

path_params Deconstruct a path pattern

Description

This function parses a path pattern and returns both the name of the parameters and a version of the
path formatted for glue string interpolation.

Usage

path_params(path)

Arguments

path The path pattern to parse

Value

A list with the elements keys containing the names of all the path parameters and glue containing
a glue ready version of the path

Examples

path_params("/users/:user/assets/*")

signpost A simple, multi-purpose router

Description

The signpost class implements a high-performance, multipurpose router build on top of the path-
tree library. A router associates filepath-like patterns with a piece of data for latter retrieval. Often
that data is a function and the path to be matched against the pattern comes from a URL, but it can
be anything, adapting to the need of the user. Objects of the class uses reference semantics so they
do not get copied and alterations will affect all instances of the object.

Usage

signpost()

https://github.com/viz-rs/path-tree
https://github.com/viz-rs/path-tree

signpost 3

Details

The path pattern supported by Waysign mirrors that of path-tree and while the full documentation
can be found there, it will be briefly explained here.

A path pattern consist of zero, one, or more elements separated by / (always started by /). Each
element can either be a literal or one of the following variable types:

* :name matches a single path piece

* :name? matches an optional path piece

* :name+ or + matches one or more path pieces

* :name* or * matches zero or more path pieces

A variable don’t have to consume a full path element. E.g. you could have a path pattern like this:
/date/:day-:month-:year which would match to paths such as /date/24-12-2025

Value

A waysign router. See the Methods section for a description of its behavior

Methods

add_path(path, object):
Add a new path to the router. See Details for allowed path syntax
Arguments:
e path: A string giving the path to add
* object: An R object to be associated with the path

Returns:
The object, invisibly

find_object(path):
Search for a path in the router
Arguments:
* path: The path to search for
Returns:
If no matching path is found then NULL, otherwise a list with the elements path giving the path

pattern that was matched, object giving the object associated with the path, and params being
a named list of the path parameters from the match

remove_path(path):

Remove a path from the router. Due to the underlying implementation this causes a complete
rebuild of the router

Arguments:

* path: A string giving the path to remove

Returns:
The object, invisibly

4 signpost

has_path(path):
Check if a given path is present in the router

Arguments:
* path: The path pattern to check for

Returns:
A boolean indicating the existence of path

paths():
Provides a named list of all the objects, named by their path pattern

Examples

Adapted from path-tree docs
router <- signpost()

router$add_path("/", 1)

router$add_path("/login", 2)

router$add_path("/signup”, 3)
router$add_path("/settings"”, 4)
router$add_path("/settings/:page”, 5)
router$add_path("/:user"”, 6)
router$add_path("/:user/:repo”, 7)
router$add_path("/public/:any*", 8)
router$add_path("”/:org/:repo/releases/download/:tag/:filename.:ext"”, 9)
router$add_path("/:org/:repo/tags/:day-:month-:year"”, 10)
router$add_path("/:org/:repo/actions/:name\\::verb"”, 11)
router$add_path("/:org/:repo/:page”, 12)
router$add_path("/:org/:repo/*", 13)
router$add_path("/api/+", 14)

router$find_object("/")

router$find_object("/login")
router$find_object("/settings/admin”)
router$find_object("/viz-rs")
router$find_object("/viz-rs/path-tree")
router$find_object("/rust-lang/rust-analyzer/tags/2022-09-12")
router$find_object(”/rust-lang/rust-analyzer/actions/ci:bench")
router$find_object("/rust-lang/rust-analyzer/stargazers")
router$find_object("/rust-lang/rust-analyzer/stargazers/404")
router$find_object(”/public/js/main. js")
router$find_object("/api/v1")

Index

path_params, 2

signpost, 2

	path_params
	signpost
	Index

