The expl3 package and EITEX3 programming

The KTEX Project*
Released 2026-01-10

Abstract

This document gives an introduction to a new set of programming conventions
that have been designed to meet the requirements of implementing large scale TEX
macro programming projects such as KTEX. These programming conventions are
the base layer of ETEX3.

The main features of the system described are:

« classification of the macros (or, in XTEX terminology, commands) into BTEX
functions and KTEX parameters, and also into modules containing related
commands;

e a systematic naming scheme based on these classifications;

e a simple mechanism for controlling the expansion of a function’s arguments.
This system is being used as the basis for TEX programming within The ETEX
Project. Note that the language is not intended for either document mark-up or
style specification. Instead, it is intended that such features will be built on top of
the conventions described here.

This document is an introduction to the ideas behind the expl3 programming inter-

face. For the complete documentation of the programming layer provided by The
I¥TEX Project, see the accompanying interface3 document.

1 Introduction

The first step to develop a IMTEX kernel beyond ETEX 2¢ is to address how the underlying
system is programmed. Rather than the current mix of IBTEX and TEX macros, the
XTREX3 system provides its own consistent interface to all of the functions needed to
control TEX. A key part of this work is to ensure that everything is documented, so that
TEX programmers and users can work efficiently without needing to be familiar with
the internal nature of the kernel or with plain TEX.

The expl3 bundle provides this new programming interface for IXTEX. To make
programming systematic, IXTEX3 uses some very different conventions to KTEX2¢ or
plain TEX. As a result, programmers starting with IATEX3 need to become familiar with
the syntax of the new language.

The next section shows where this language fits into a complete TEX-based document
processing system. We then describe the major features of the syntactic structure of
command names, including the argument specification syntax used in function names.

The practical ideas behind this argument syntax will be explained, together with the
expansion control mechanism and the interface used to define variant forms of functions.

*E-mail: latex-team@latex-project.org

mailto:latex-team@latex-project.org

As we shall demonstrate, the use of a structured naming scheme and of variant forms
for functions greatly improves the readability of the code and hence also its reliability.
Moreover, experience has shown that the longer command names which result from the
new syntax do not make the process of writing code significantly harder.

2 Languages and interfaces

It is possible to identify several distinct languages related to the various interfaces that
are needed in a TEX-based document processing system. This section looks at those we
consider most important for the IXTEX3 system.

Document mark-up This comprises those commands (often called tags) that are to
embedded in the document (the .tex file).

It is generally accepted that such mark-up should be essentially declarative. It may
be traditional TEX-based mark-up such as BTEX 2¢, as described in [3] and [2], or
a mark-up language defined via HTML or XML.

One problem with more traditional TEX coding conventions (as described in [1])
is that the names and syntax of TEX’s primitive formatting commands are inge-
niously designed to be “natural” when used directly by the author as document
mark-up or in macros. Ironically, the ubiquity (and widely recognized superiority)
of logical mark-up has meant that such explicit formatting commands are almost
never needed in documents or in author-defined macros. Thus they are used al-
most exclusively by TEX programmers to define higher-level commands, and their
idiosyncratic syntax is not at all popular with this community. Moreover, many of
them have names that could be very useful as document mark-up tags were they
not pre-empted as primitives (e.g. \box or \special).

Designer interface This relates a (human) typographic designer’s specification for a
document to a program that “formats the document”. It should ideally use a
declarative language that facilitates expression of the relationship and spacing rules
specified for the layout of the various document elements.

This language is not embedded in document text and it will be very different in form
to the document mark-up language. For IATEX, this level was almost completely
missing from KTEX2.09; IMTEX 2 made some improvements in this area but it is
still the case that implementing a design specification in KTEX requires far more
“low-level” coding than is acceptable.

Programmer interface This language is the implementation language within which
the basic typesetting functionality is implemented, building upon the primitives of
TEX (or a successor program). It may also be used to implement the previous two
languages “within” TEX, as in the current IMTEX system.

The last layer is covered by the conventions described in this document, which de-
scribes a system aimed at providing a suitable basis for coding ITEX3. Its main distin-
guishing features are summarized here:

e A consistent naming scheme for all commands, including TEX primitives.

e The classification of commands as ITEX functions or IATEX parameters, and also
their division into modules according to their functionality.

e A simple mechanism for controlling argument expansion.

« Provision of a set of core KTEX functions that is sufficient for handling programming
constructs such as queues, sets, stacks, property lists.

e A TgX programming environment in which, for example, all white space is ignored.

3 The naming scheme

I¥TREX3 does not use @ as a “letter” for defining internal macros. Instead, the symbols
_and : are used in internal macro names to provide structure. In contrast to the plain
TEX format and the BTEX 2¢ kernel, these extra letters are used only between parts of a
macro name (no strange vowel replacement).

While TEX is actually a macro processor, by convention for the expl3 programming
language we distinguish between functions and variables. Functions can have arguments
and they are either expanded or executed. Variables can be assigned values and they
are used in arguments to functions; they are not used directly but are manipulated
by functions (including getting and setting functions). Functions and variables with a
related functionality (for example accessing counters, or manipulating token lists, etc.)
are collected together into a module.

3.1 Examples

Before giving the details of the naming scheme, here are a few typical examples to indicate
the flavor of the scheme; first some variable names.

\1_tmpa_box is a local variable (hence the 1_ prefix) corresponding to a box
register.

\g_tmpa_int is a global variable (hence the g_ prefix) corresponding to an
integer register (i.e., a TEX count register).

\c_empty_t1 is the constant (c_) token list variable that is always empty.

Now here is an example of a typical function name.

\seq_push:Nn is the function which puts the token list specified by its second ar-
gument onto the stack specified by its first argument. The different natures of the two
arguments are indicated by the :Nn suffix. The first argument must be a single token
which “names” the stack parameter: such single-token arguments are denoted N. The
second argument is a normal TEX “undelimited argument”, which may either be a single
token or a balanced, brace-delimited token list (which we shall here call a braced token
list): the n denotes such a “normal” argument form. The name of the function indicates
it belongs to the seq module.

3.2 Formal naming syntax

We shall now look in more detail at the syntax of these names. A function name in
¥TEX3 has a name consisting of three parts:

\(module)_(description):(arg-spec)
while a variable has (up to) four distinct parts to its name:

\(scope)_{module)_(description)_{type)

The syntax of all names contains
(module) and (description)

and these two both give information about the command.

A module is a collection of closely related functions and variables. Typical module
names include int for integer parameters and related functions, seq for sequences and box
for boxes.

Packages providing new programming functionality will add new modules as needed;
the programmer can choose any unused name, consisting of letters only, for a module.
In general, the module name and module prefix should be related: for example, the
kernel module containing box functions is called 13box. Module names and programmers’
contact details are listed in [3prefixes.csv.

The description gives more detailed information about the function or parameter,
and provides a unique name for it. It should consist of letters and, possibly, _ characters.
In general, the description should use _ to divide up “words” or other easy to follow parts
of the name. For example, the I4TEX3 kernel provides \if_cs_exist:N which, as might
be expected, tests if a command name exists.

Where functions for variable manipulation can perform assignments either locally
or globally, the latter case is indicated by the inclusion of a g in the second part of
the function name. Thus \t1l_set:Nn is a local function but \t1_gset:Nn acts globally.
Functions of this type are always documented together, and the scope of action may
therefore be inferred from the presence or absence of a g. See the next subsection for
more detail on variable scope.

3.2.1 Separating private and public material

One of the issues with the TEX language is that it doesn’t support name spaces and
encapsulation other than by convention. As a result nearly every internal command in
the ITEX 2¢ kernel has eventually be used by extension packages as an entry point for
modifications or extensions. The consequences of this is that nowadays it is next to
impossible to change anything in the WTEX 2¢ kernel (even if it is clearly just an internal
command) without breaking something.

In expl3 we hope to improve this situation drastically by clearly separating pub-
lic interfaces (that extension packages can use and rely on) and private functions and
variables (that should not appear outside of their module). There is (nearly) no way
to enforce this without severe computing overhead, so we implement it only through a
naming convention, and some support mechanisms. However, we think that this naming
convention is easy to understand and to follow, so that we are confident that this will
adopted and provides the desired results.

Functions created by a module may either be “public” (documented with a defined
interface) or “private” (to be used only within that module, and thus not formally doc-
umented). It is important that only documented interfaces are used; at the same time,
it is necessary to show within the name of a function or variable whether it is public or
private.

To allow clear separation of these two cases, the following convention is used. To
denote a private function or a private variable (of the module), two _ characters are used
in front of the module name, e.g.

\module_foo:nnn

is a public function which should be documented while

__module_foo:nnn

is private to the module, and should not be used outside of that module.
For variables, to avoid three _ in a row, the separator for the variable scope and any
leading _ for a private interface in the module part are combined. Thus

\1_module_foo_t1l
is a public variable and
\1__module_foo_t1l

is private.

3.2.2 Using @@ and DocStrip to mark private code

The formal syntax for internal functions allows clear separation of public and private
code, but includes redundant information (every internal function or variable includes
__(module)). To aid programmers, the DocStrip program introduces the syntax

%<@@=(module)>

which then allows @@ (and _@@ in case of variables) to be used as a place holder for
__{module) in code. Thus for example

%<@0@=foo>
% \begin{macrocode}
\cs_new:Npn \Q@@_function:n #1

\tl_new:N \1_0@_my_tl
% \end{macrocode}

is converted by DocStrip to

\cs_new:Npn __foo_function:n #1

\tl_new:N \1__foo_my_tl

on extraction. As you can see both _0@ and @@ are mapped to __(module), because we
think that this helps to distinguish variables from functions in the source when the @@
convention is used.

3.2.3 Variables: declaration

In well-formed expl3 code, variables should always be declared before assignment is at-
tempted. This is true even for variable types where the underlying TEX implementation
will allow direct assignment. This applies both to setting directly (\t1l_set:Nn, etc.)
and to setting equal (\t1_set_eq:NN, etc.).

To help programmers to adhere to this approach, the debugging option check-declarations
may be given

\debug_on:n { check-declarations }

and will issue an error whenever an assignment is made to a non-declared variable. There
is a performance implication, so this option should only be used for testing.

3.2.4 Variables: scope and type

The (scope) part of the name describes how the variable can be accessed. Variables are
classified as local, global or constant. This scope type appears as a code at the beginning
of the name; the codes used are:

¢ constants (global variables whose value should not be changed);
g variables whose value should only be set globally;
1 variables whose value should only be set locally.

Separate functions are provided to assign data to local and global variables; for
example, \tl_set:Nn and \tl_gset:Nn respectively set the value of a local or global
“token list” variable. Note that it is a poor TEX practice to intermix local and global
assignments to a variable; otherwise you risk exhausting the save stack.

The (type) is in the list of available data-types;® these include the primitive TEX
data-types, such as the various registers, but to these are added data-types built within
the ITEX programming system.

The data types in ITEX3 are:

bitset a string of bits (0 and 1 tokens) that are accessed by position or by name;

bool either true or false (the BTEX3 implementation does not use \iftrue or \iffalse);
box box register;

cctab category code table;

clist comma separated list;

coffin a “box with handles” — a higher-level data type for carrying out box alignment
operations;

dim “rigid” lengths;

fp floating-point values;

fparray fixed-size vector of floating-point values;
int integer-valued count register;

intarray fixed-size vector of integer values;

ior an input stream (for reading from a file);
iow an output stream (for writing to a file);
muskip math mode “rubber” lengths;

prop property list;

regex regular expression;

seq sequence: a data-type used to implement lists (with access at both ends) and stacks;

1See The TgXbook, p.301, for further information.
20f course, if a totally new data type is needed then this will not be the case. However, it is hoped
that only the kernel team will need to create new data types.

skip “rubber” lengths;

str TEX strings: a special case of t1 in which all characters have category “other”
(catcode 12), other than spaces which are category “space” (catcode 10);

token equal to a single arbitrary token;
tl “token list variables”: placeholders for token lists.

When the (type) and (module) are identical (as often happens in the more basic modules)
the (module) part is often omitted for aesthetic reasons.

The name “token list” may cause confusion, and so some background is useful. TEX
works with tokens and lists of tokens, rather than characters. It provides two ways to
store these token lists: within macros and as token registers (toks). The implementation
in ITREX3 means that toks are not required, and that all operations for storing tokens
can use the t1 variable type.

There are two more special types of constants:

q constants of quark type;
s constants of scan mark type.

The (type) part of quark and scan mark constants is omitted, and the (module) part of
general quarks and scan marks is often omitted too.

Experienced TEX programmers will notice that some of the variable types listed are
native TEX registers whilst others are not. In general, the underlying TEX implementation
for a data structure may vary but the documented interface will be stable. For example,
the prop data type was originally implemented as a toks, but is currently built on top
of the t1 data structure.

3.2.5 Variables: guidance

Both comma lists and sequences have similar characteristics. They both use special
delimiters to mark out one entry from the next, and are both accessible at both ends. In
general, it is easier to create comma lists ‘by hand’ as they can be typed in directly. User
input often takes the form of a comma separated list and so there are many cases where
this is the obvious data type to use. On the other hand, sequences use special internal
tokens to separate entries. This means that they can be used to contain material that
comma lists cannot (such as items that may themselves contain commas!). In general,
comma lists should be preferred for creating fixed lists inside programs and for handling
user input where commas will not occur. On the other hand, sequences should be used
to store arbitrary lists of data.

expl3 implements stacks using the sequence data structure. Thus creating stacks
involves first creating a sequence, and then using the sequence functions which work in
a stack manner (\seq_push:Nn, etc.).

Due to the nature of the underlying TEX implementation, it is possible to assign
values to token list variables and comma lists without first declaring them. However, this
is not supported behavior. The IXTEX3 coding convention is that all variables must be
declared before use.

The expl3 package can be loaded with the check-declarations option to verify that
all variables are declared before use. This has a performance implication and is therefore
intended for testing during development and not for use in production documents.

3.2.6 Functions: argument specifications

Function names end with an (arg-spec) after a colon. This gives an indication of the
types of argument that a function takes, and provides a convenient method of nam-
ing similar functions that differ only in their argument forms (see the next section for
examples).

The (arg-spec) consists of a (possibly empty) list of letters, each denoting one
argument of the function. The letter, including its case, conveys information about the
type of argument required.

All functions have a base form with arguments using one of the following argument
specifiers:

n Unexpanded token or braced token list.
This is a standard TEX undelimited macro argument.

N Single token (unlike n, the argument must not be surrounded by braces).
A typical example of a command taking an N argument is \cs_set, in which the
command being defined must be unbraced.

p Primitive TEX parameter specification.
This can be something simple like #1#2#3, but may use arbitrary delimited argu-
ment syntax such as: #1,#2\q_stop#3. This is used when defining functions.

T,F These are special cases of n arguments, used for the true and false code in conditional
commands.

There are two other specifiers with more general meanings:

D Stands for Do not use. This special case is used for TEX primitives. These
functions have no standardized syntax, they are engine dependent and their name
can change without warning, thus their use is strongly discouraged in package code:
programmers should instead use the interfaces documented in interface3.pdf?.

w This means that the argument syntax is “weird” in that it does not follow any
standard rule. It is used for functions with arguments that take non standard
forms: examples are TEX-level delimited arguments and the boolean tests needed
after certain primitive \if... commands.

In case of n arguments that consist of a single token the surrounding braces can be
omitted in nearly all situations—functions that force the use of braces even for single
token arguments are explicitly mentioned. However, programmers are encouraged to
always use braces around n arguments, as this makes the relationship between function
and argument clearer.

Further argument specifiers are available as part of the expansion control system.
These are discussed in the next section.

3If a primitive offers a functionality not yet in the kernel, programmers and users are encouraged to
write to the team describing their use-case and intended behavior, so that a possible interface can be
discussed. Temporarily, while an interface is not provided, programmers may use the procedure described
in the 13styleguide.pdf.

4 Expansion control

Let’s take a look at some typical operations one might want to perform. Suppose we
maintain a stack of open files and we use the stack \g_ior_file_name_seq to keep track
of them (ior is the prefix used for the file reading module). The basic operation here is
to push a name onto this stack which could be done by the operation

\seq_gpush:Nn \g_ior_file_name_seq {#1}

where #1 is the filename. In other words, this operation would push the file name as is
onto the stack.

However, we might face a situation where the filename is stored in a variable of
some sort, say \1_ior_curr_file_tl. In this case we want to retrieve the value of the
variable. If we simply use

\seq_gpush:Nn \g_ior_file_name_seq \1_ior_curr_file_tl

we do not get the value of the variable pushed onto the stack, only the variable name
itself. Instead a suitable number of \exp_after:wN would be necessary (together with
extra braces) to change the order of expansion,” i.e.

\exp_after:wN
\seq_gpush:Nn
\exp_after:wN
\g_ior_file_name_seq
\exp_after:wN
{ \1_ior_curr_file_tl }

The above example is probably the simplest case but already shows how the code
changes to something difficult to understand. Furthermore there is an assumption in
this: that the storage bin reveals its contents after exactly one expansion. Relying on
this means that you cannot do proper checking plus you have to know exactly how a
storage bin acts in order to get the correct number of expansions. Therefore KTEX3
provides the programmer with a general scheme that keeps the code compact and easy
to understand.

To denote that some argument to a function needs special treatment one just uses
different letters in the arg-spec part of the function to mark the desired behavior. In the
above example one would write

\seq_gpush:NV \g_ior_file_name_seq \l_ior_curr_file_tl

to achieve the desired effect. Here the V (the second argument) is for “retrieve the value
of the variable” before passing it to the base function.

The following letters can be used to denote special treatment of arguments before
passing it to the base function:

c Character string used as a command name.
The argument (a token or braced token list) is fully expanded; the result must
be a sequence of characters which is then used to construct a command name
(via \csname ... \endcsname). This command name is a single token that is passed
to the function as the argument. Hence

\exp_after:wN is the ATIEX3 name for the TEX \expandafter primitive.

\seq_gpush:cV { g_file_name_seq } \1_tmpa_tl
is equivalent to
\seq_gpush:NV \g_file_name_seq \1_tmpa_tl.

Full expansion means that (a) the entire argument must be expandable and (b)
any variables are converted to their content. So the preceding examples are also
equivalent to

\tl_new:N \g_file_seq_name_tl
\tl_gset:Nn \g_file_seq_name_tl { g_file_name_seq }
\seq_gpush:cV { \tl_use:N \g_file_seq_name_tl } \1_tmpa_t1l.

(Token list variables are expandable and we could omit the accessor function \t1_-
use:N. Other variable types require the appropriate \(var)_use:N functions to be
used in this context.)

V Value of a variable.
This means that the contents of the register in question is used as the argument,
be it an integer, a length-type register, a token list variable or similar. The value
is passed to the function as a braced token list. Can be applied to variables which
have a \(var)_use:N function (other than boxes), and which therefore deliver a
single “value”.

v Value of a register, constructed from a character string used as a command name.
This is a combination of ¢ and V which first constructs a control sequence from the
argument and then passes the value of the resulting register to the function. Can
be applied to variables which have a \(var)_use:N function (other than boxes),
and which therefore deliver a single “value”.

e Fully-expanded token or braced token list.
This means that the argument is expanded as in the replacement text of a \message,
and the expansion is passed to the function as a braced token list.

0o One-level-expanded token or braced token list.
This means that the argument is expanded one level, as by \expandafter, and the
expansion is passed to the function as a braced token list. Note that if the original
argument is a braced token list then only the first token in that list is expanded.
In general, using V should be preferred to using o for simple variable retrieval.

f Expanding the first token recursively in a braced token list.
Almost the same as the e type except here the token list is expanded fully until the
first unexpandable token is found and the rest is left unchanged. Note that if this
function finds a space at the beginning of the argument it gobbles it and does not
expand the next token.

x Fully-expanded token or braced token list.
This expansion is very similar to e-type but is not nestable, can only be used to
create non-expandable functions, and requires that # tokens are doubled in the
argument. In almost all cases, e-type should be preferred: retained largely for
historical reasons, and should where possible be replaced by the e-type equivalent.

10

4.1 Simpler means better

Anyone who programs in TEX is frustratingly familiar with the problem of arranging that
arguments to functions are suitably expanded before the function is called. To illustrate
how expansion control can bring instant relief to this problem we shall consider two
examples copied from latex.ltx.

\global\expandafter\let
\csname\cf@encoding \string#l\expandafter\endcsname
\csname 7\string#l\endcsname

This first piece of code is in essence simply a global \let whose two arguments firstly
have to be constructed before \let is executed. The #1 is a control sequence name such
as \textcurrency. The token to be defined is obtained by concatenating the characters
of the current font encoding stored in \cf@encoding, which has to be fully expanded,
and the name of the symbol. The second token is the same except it uses the default
encoding 7. The result is a mess of interwoven \expandafter and \csname beloved of
all TEX programmers, and the code is essentially unreadable.

Using the conventions and functionality outlined here, the task would be achieved
with code such as this:

\cs_gset_eq:cc
{ \cf@encoding \token_to_str:N #1 } { 7 \token_to_str:N #1 }

The command \cs_gset_eq:cc is a global \let that generates command names out of
both of its arguments before making the definition. This produces code that is far more
readable and more likely to be correct first time. (\token_to_str:N is the IXTEX3 name
for \string.)

Here is the second example.

\expandafter
\in@
\csname sym#3Y%
\expandafter
\endcsname
\expandafter
%
\group@list}y

This piece of code is part of the definition of another function. It first produces two
things: a token list, by expanding \group@list once; and a token whose name comes
from ‘sym#3’. Then the function \in@ is called and this tests if its first argument occurs
in the token list of its second argument.

Again we can improve enormously on the code. First we shall rename the func-
tion \in@, which tests if its first argument appears within its second argument, according
to our conventions. Such a function takes two normal “n” arguments and operates on
token lists: it might reasonably be named \tl_test_in:nn. Thus the variant function
we need would be defined with the appropriate argument types and its name would be
\tl_test_in:cV. Now this code fragment would be simply:

\tl_test_in:cV { sym #3 } \group@list

11

This code could be improved further by using a sequence \1_group_seq rather than the
bare token list \group@list. Note that, in addition to the lack of \expandafter, the
space after the } is silently ignored since all white space is ignored in this programming
environment.

4.2 New functions from old

For many common functions the I¥TEX3 kernel provides variants with a range of argument
forms, and similarly it is expected that extension packages providing new functions will
make them available in all the commonly needed forms.

However, there will be occasions where it is necessary to construct a new such vari-
ant form; therefore the expansion module provides a straightforward mechanism for the
creation of functions with any required argument type, starting from a function that
takes “normal” TEX undelimited arguments.

To illustrate this let us suppose you have a “base function” \demo_cmd : Nnn that takes
three normal arguments, and that you need to construct the variant \demo_cmd: cne, for
which the first argument is used to construct the name of a command, whilst the third
argument must be fully expanded before being passed to \demo_cmd:Nnn. To produce
the variant form from the base form, simply use this:

\cs_generate_variant:Nn \demo_cmd:Nnn { cne }

This defines the variant form so that you can then write, for example:
\demo_cmd:cne { abc } { pq } { \rst \xyz }

rather than ... well, something like this!

\def \tempa {{pq}}’
\edef \tempb {\rst \xyzl}/
\expandafter
\demo@cmd : nnn
\csname abc},
\expandafter
\expandafter
\expandafter
\endcsname
\expandafter
\tempa
\expandafter
¥
\tempb
o
Another example: you may wish to declare a function \demo_cmd_b:enene, a variant
of an existing function \demo_cmd_b:nnnnn, that fully expands arguments 1, 3 and 5
and produces commands to pass as arguments 2 and 4 using \csname. The definition
you need is simply

\cs_generate_variant:Nn \demo_cmd_b:nnnnn { enene }

This extension mechanism is written so that if the same new form of some existing
command is implemented by two extension packages then the two definitions are identical
and thus no conflict occurs.

12

5 The distribution

The expl3 modules are designed to be loaded on top of BTEX 2¢.

The core expl3 language is broadly stable, and thus the syntax conventions
and functions provided are now ready for wider use. There may still be
changes to some functions, but these will be minor when compared to the
scope of expl3. A robust mechanism is in place for such deprecations.

The distribution of expl3 is split up into three packages on CTAN: I3kernel, I3packages
and [3experimental. The core programming layer provided by |3kernel has been loaded as
part of the ITEX since 2020-02-02. For historical reasons, in older kernel releases

\RequirePackage{expl3}

loads the code distributed as I3kernel. This monolithic package contains all of the modules
regarded by the team as stable, and any changes in this code are very limited. This ma-
terial is therefore suitable for use in third-party packages without concern about changes
in support. All of this code is documented in interface3.pdf.

The material in 13packages is also stable; this bundle provides user-level commands,
some of which have been integrated in the IMTEX kernel.

Finally, 13experimental contains modules ready for public use but not yet integrated
into I13kernel. These modules have to be loaded explicitly. The team anticipate that all
of these modules will move to stable status over time, but they may be more flexible
in terms of interface and functionality detail. Feedback on these modules is extremely
valuable.

6 Moving from ETEX 2¢ to expl3

To help programmers to use expl3 code in existing ITEX 2¢ package, some short notes on
making the change are probably desirable. Suggestions for inclusion here are welcome!
Some of the following is concerned with code, and some with coding style.

e expl3 is mainly focused on programming. This means that some areas still re-
quire the use of INTEX2c internal macros. For example, you may well need
\IfPackagelLoadedTF, as there is currently no native expl3 package loading module.

e User level macros should be generated using the mechanism available in the ltcmd
module, which is part of the the IXTEX kernel since 2020-10-01.

o At an internal level, most functions should be generated \long (using \cs_new:Npn)
rather than “short” (using \cs_new_nopar:Npn).

o Where possible, declare all variables and functions (using \cs_new:Npn, \t1_new:N,
etc.) before use.

e Prefer “higher-level” functions over “lower-level”, where possible. So for example
use \cs_if_exist:NTF and not \if_cs_exist:N.

o Use space to make code readable. In general, we recommend a layout such as:

13

check-declarations

log-functions

backend

\cs_new:Npn \foo_bar:Nn #1#2

{
\cs_if_exist:NTF #1
{ __foo_bar:n {#2} }
{ __foo_bar:nn {#2} { literal } }
}

where spaces are used around { and } except for isolated #1, #2, etc.

o Put different code items on separate lines: readability is much more useful than
compactness.

e Use long, descriptive names for functions and variables, and for auxiliary functions
use the parent function name plus aux, auxi, auxii and so on.

e If in doubt, ask the team: someone will soon get back to you!

7 Load-time options for expl3

To support code authors, the expl3 package for I¥TEX 2¢ includes a small number of
load-time options. These all work in a key—value sense, recognizing the true and false
values. Giving the option name alone is equivalent to using the option with the true
value.

All variables used in expl3 code should be declared. This is enforced by TEX for vari-
able types based on TEX registers, but not for those which are constructed using macros
as the underlying storage system. The check-declarations option enables checking
for all variable assignments, issuing an error if any variables are assigned without being
initialized. See also \debug_on:n {check-declarations} in interface3 for finer control.

The log-functions option is used to enable recording of every new function name in
the .log file. This is useful for debugging purposes, as it means that there is a complete
list of all functions created by each module loaded (with the exceptions of a very small
number required by the bootstrap code). See also \debug_on:n {log-functions} in
interface3 for finer control.

Selects the backend to be used for color, graphics and related operations that are
backend-dependent. Options available are

dvips Use the dvips driver.

dvipdfmx Use the dvipdfmx driver.

dvisvgm Use the dvisvgm driver.

luatex Use the direct PDF output mode of LualgX

pdftex Use the direct PDF output mode of pdfTEX

xetex Use the XqTEX version of the dvipdfmx driver.

suppress-backend-headers

For historical reasons, there is also pdfmode as an equivalent of luatex or pdftex, and
xdvipdfmx as an equivalent to xetex, but these are deprecated

The suppress-backend-headers option suppresses loading of backend-specific
header files; currently this only affects dvips. This option is available to support DVI-
based routes that do not support the header line used by dvips.

14

\ExplLoaderFileDate

The debugging options may also be given using \keys_set:nn { sys } { ... };
the backend option can be given in this way only if a backend has not already been loaded.
This method of setting options is useful where expl3 is pre-loaded by the KTEX 2¢ format.

8 Using expl3 with formats other than BTEX 2¢

As well as the IMTEX 2¢ package expl3, there is also a “generic” loader for the code,
expl3-generic.tex. This may be loaded using the plain TEX syntax

\input expl3-generic %

This enables the programming layer to work with the other formats. As no options are
available loading in this way, the “native” drivers are automatically used. If this “generic”
loader is used with IXTEX 2¢ the code automatically switches to the appropriate package
route.

After loading the programming layer using the generic interface, the commands
\ExplSyntaxOn and \ExplSyntax0ff and the code-level functions and variables detailed
in interface3 are available. Note that other IXTEX 2¢ packages using expl3 are not loadable:
package loading is dependent on the KTEX 2¢ package-management mechanism.

9 Getting the version of expl3

Once the programming layer is loaded by one of the loaders, you can access its version
in the ISO date format (year)-(month)-(day), through \ExplLoaderFileDate.
The current version of expl3 is 2026-01-10.

10 Engine/primitive requirements

To use expl3 and the higher level packages provided by the team, the minimal set of
primitive requirements is currently described in README.md.
Practically, these requirements are met by the engines

e pdfTEX v1.40.20 or later.
o XHTEX v0.999991 or later.
e LualgX v1.10 or later.

o e-(u)pIEX v3.8.2 or later.
o Prote (2021) or later.

Additional modules beyond the core of expl3 may require additional primitives. In
particular, third-party authors may significantly extend the primitive coverage require-
ments.

15

README.md

11 The BTEX Project

Development of IXTEX3 is carried out by The IXTEX Project: https://www.latex-project.

org/latex3/.

References

Goossens, Mittelbach and Samarin.
ing, Massachusetts, 1994.

Massachusetts, second edition, 1994.

pp. 195-198, 1997.

Index

Donald E Knuth The TgXbook. Addison-Wesley, Reading, Massachusetts, 1984.
The BTEX Companion. Addison-Wesley, Read-

Leslie Lamport. B TgX: A Document Preparation System. Addison-Wesley, Reading,

Frank Mittelbach and Chris Rowley. “The IWTEX Project”. TUGboat, Vol. 18, No. 3,

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
(var) commands:

\(var)_use:N 10
B
backend (option) 14
box commands:
\l_tmpa_box 3
C
check-declarations (option) 14
cs commands:

\cs_gset_eq:NN 11

\cs_if_exist:NTF 13

\cs_new:Npn 13

\cs_new_nopar:Npn 13

D
debug commands:
\debug_on:n 14
E
exp commands:

\exp_after:wN 9
\ExplLoaderFileDate 15
\ExplSyntaxOff 15
\ExplSyntaxOn 15

16

1
if commands:
\if _cs_exist:N 4, 18
int commands:
\g_tmpa_int 3
L
log-functions (option) 14
(0]
options:
backend 14
check-declarations 14
log-functions 14
suppress-backend-headers 14
S
seq commands:
\seq_gpush:Nn 9, 10
\seq_push:Nn 3,7
suppress-backend-headers (option) 14
T
TEX and ETEX 2 commands:
\box 2
\csname 9,11, 12
\endcsname 9
\expandafter 9-12

https://www.latex-project.org/latex3/
https://www.latex-project.org/latex3/

\iffalse 6
\IfPackageLoadedTF 18
\iftrue 6
\in@ ... 11
\let 11
\long 18
\messageii.. 10
\special 2
\string, 11

tl commands:

\c_empty_tl 3
\tl_gset:Nn 4, 6, 10
\tl new:N 10, 13
\tl_set:Nn 4—6
\tl_set_eq:NN 5
\tl use:N 10
\l_tmpa_tlo.io.... 10
token commands:
\token_to_str:N 11

17

	1 Introduction
	2 Languages and interfaces
	3 The naming scheme
	3.1 Examples
	3.2 Formal naming syntax
	3.2.1 Separating private and public material
	3.2.2 Using @@ and DocStrip to mark private code
	3.2.3 Variables: declaration
	3.2.4 Variables: scope and type
	3.2.5 Variables: guidance
	3.2.6 Functions: argument specifications

	4 Expansion control
	4.1 Simpler means better
	4.2 New functions from old

	5 The distribution
	6 Moving from LaTeX2ε to expl3
	7 Load-time options for expl3
	8 Using expl3 with formats other than LaTeX2ε
	9 Getting the version of expl3
	10 Engine/primitive requirements
	11 The LaTeX Project
	References
	Index
	Symbols
	B
	C
	D
	E
	I
	L
	O
	S
	T

