A Markdown Interpreter for TEX

Vit Stary Novotny, Andrej Gencur Version 3.13.0-0-gdd212d58
witiko@mail.muni.cz 2026-01-02

Contents

1 Introduction 1 3 Implementation 170
1.1 Requirements 2 3.1 Lua Implementation . . . 170
1.2 Feedback 6 3.2 Plain TgX Implementation 410
1.3 Acknowledgements 7 3.3 ITEX Implementation . . 454

2 Interfaces 7 3.4 ConTgXt Implementation 494
2.1 Lua Interface 7
2.2 Plain TgX Interface. . . . 55 References 506
2.3 IIEX Interface 156
2.4 ConTgXt Interface 165 Index 507

List of Figures

1 A block diagram of the Markdown package 8
2 A sequence diagram of typesetting a document using the TEX interface . . 51
3 A sequence diagram of typesetting a document using the Lua CLI 52
4 An example directed graph oo L 79
5 An example mindmap Lo Lo 80
6 An example UML sequence diagram 81
7 The banner of the Markdown package, 82
8 A pushdown automaton that recognizes TEX comments 288

1 Introduction

The Markdown package' converts CommonMark? markup to TEX commands. The
functionality is provided both as a Lua module and as plain TEX, I¥TEX, and ConTEXt
macro packages that can be used to directly typeset TEX documents containing
markdown markup. Unlike other converters, the Markdown package does not require
any external programs, and makes it easy to redefine how each and every markdown
element is rendered. Creative abuse of the markdown syntax is encouraged. (&
This document is a technical documentation for the Markdown package. It consists
of three sections. This section introduces the package and outlines its prerequisites.

!See https://ctan.org/pkg/markdown.
2See https://commonmark.org/.

https://github.com/witiko/markdown
mailto:witiko@mail.muni.cz
https://ctan.org/pkg/markdown
https://commonmark.org/

Section 2 describes the interfaces exposed by the package. Section 3 describes the
implementation of the package. The technical documentation contains only a limited
number of tutorials and code examples. You can find more of these in the user
manual.?

1 local metadata = {
2

version = "(((VERSION)))",
3 comment = "A module for the conversion from markdown "
4 .. "to plain TeX",
5 author = "John MacFarlane, Hans Hagen, Vit Stary Novotnjy, "

.. "Andrej Gencur",

7 copyright = {"2009-2016 John MacFarlane, Hans Hagen",

8 "2016-2026 Vit Stary Novotny, Andrej Genlur"},
9 license = "LPPL 1.3c"

12 if not modules then modules = { } end
13 modules|['markdown'] = metadata
1.1 Requirements

This section gives an overview of all resources required by the package.

1.1.1 Lua Requirements

The Lua part of the package requires that the following Lua modules are available
from within the LuaTEX engine (though not necessarily in the LuaMetaTEX engine).

LPeg > 0.10 A pattern-matching library for the writing of recursive descent parsers
via the Parsing Expression Grammars (PEGs). It is used by the Lunamark
library to parse the markdown input. LPeg > 0.10 is included in LuaTgX >
0.72.0 (TgX Live > 2013).

14 local lpeg = require("lpeg")

MD5 A library that provides MD5 crypto functions. It is used by the Lunamark
library to compute the digest of the input for caching purposes. MD5 is included
in all releases of LuaTEX (TEX Live > 2008).

15 local md5 = require("md5")

Kpathsea A package that implements the loading of third-party Lua libraries and
looking up files in the TEX directory structure.

3See http://mirrors.ctan.org/macros/generic/markdown/markdown.html.

http://mirrors.ctan.org/macros/generic/markdown/markdown.html

Only load the package outside the ConTEXt format, where we can use the resolvers
API [1, Section 11.5].

16 if resolvers == nil then

17 (function()
If Kpathsea has not been loaded before or if LuaTEX has not yet been initialized,
configure Kpathsea on top of loading it. Since ConTEXt MKIV provides a kpse global
that acts as a stub for Kpathsea and the lua-uni-case library expects that kpse is a
reference to the full Kpathsea library, we load Kpathsea to the kpse global.

18 local should_initialize = package.loaded.kpse == nil
19 or tex.initialize ~= nil

20 kpse = require("kpse")

21 if should_initialize then

22 kpse.set_program_name ("luatex")

23 end

24 end) ()

25 end

All the abovelisted modules are statically linked into the current version of the LuaTgX
engine [2, Section 4.3]. Beside these, we also include the following third-party Lua
libraries:

api7 /lua-tinyyaml A library that provides a regex-based recursive descent YAML
(subset) parser that is used to read YAML metadata when the jekyllData
option is enabled.

26 hard lua-tinyyaml

1.1.2 Plain TgX Requirements

The plain TEX part of the package requires that the plain TEX format (or its superset)
is loaded, all the Lua prerequisites (see Section 1.1.1), and the following packages:

expl3 A package that enables the expl3 language [3] from the IXTEX3 kernel in
TEX Live < 2019. It is used to implement reflection capabilities that allow us
to enumerate and inspect high-level concepts such as options, renderers, and
renderer prototypes.

27 hard 13kernel

[\

28 \unprotect

29 \expandafter\ifx\csname ExplSyntaxOn\endcsname\relax
30 \input expl3-generic
31 \fi

It3luabridge A package that allows us to execute Lua code with LuaTEX as well as
with other TeX engines that provide the shell escape capability, which allows
them to execute code with the system’s shell.

Note that this support for TEX engines other than LuaTpX comes with some
limitations with respect to file and directory names. Specifically, the filenames
of your .tex files may not contain spaces?. If —output-directory is provided,
it may not contain spaces either.

32 hard 1t3luabridge

The plain TEX part of the package also requires the following Lua module:

Lua File System A library that provides access to the filesystem via OS-specific
syscalls. It is used by the plain TEX code to create the cache directory specified
by the cacheDir option before interfacing with the Lunamark library. Lua File
System is included in all releases of LuaTgX (TgXLive > 2008).

The plain TEX code makes use of the isdir method that was added to the
Lua File System library by the LuaTEX engine developers [2, Section 4.2.4].

The Lua File System module is statically linked into the LuaTgX engine [2,
Section 4.3].

Unless you convert markdown documents to TEX manually using the Lua command-
line interface (see Section 2.1.7), the plain TEX part of the package will require that
either the LuaTgX \directlua primitive or the shell access file stream 18 is available
in your TEX engine. If only the shell access file stream is available in your TEX
engine (as is the case with pdfTEX and X#TEX), then unless your TEX engine is
globally configured to enable shell access, you will need to provide the ~shell-escape
parameter to your engine when typesetting a document.

1.1.3 IATEX Requirements

The IXTEX part of the package requires that the IATEX 2¢ format is loaded, a TEX
engine that extends e-TgX, and all the plain TEX prerequisites (see Section 1.1.2).
33 \NeedsTeXFormat{LaTeX2e}
34 \RequirePackage{expl3}
The following packages are soft prerequisites. They are only used to provide default
token renderer prototypes (see sections 2.2.6 and 3.3.4) or ITEX themes (see Section
2.3.4) and will not be loaded if the option plain has been enabled (see Section
2.2.2.3):

url A package that provides the \url macro for the typesetting of links.

“See https://github.com/Witiko/markdown/issues/573.

https://github.com/Witiko/markdown/issues/573

35 soft url

graphicx A package that provides the \includegraphics macro for the typesetting
of images. Furthermore, it also provides a key—value interface that is used in
the default renderer prototypes for image attribute contexts.

36 soft graphics

enumitem and paralist Packages that provide macros for the default renderer pro-
totypes for tight and fancy lists.

The package paralist will be used unless the option experimental has been
enabled, in which case, the package enumitem will be used. Furthermore,
enabling any test phase [4] will also cause enumitem to be used. In a future
major version, enumitem will replace paralist altogether.

37 soft enumitem
38 soft paralist

fancyvrb A package that provides the \VerbatimInput macros for the verbatim
inclusion of files containing code.

39 soft fancyvrb

csvsimple A package that provides the \csvautotabular macro for typesetting
csvV files in the default renderer prototypes for iA Writer content blocks.

10 soft csvsimple

41 soft pgf # required by “csvsimple”, which loads “pgfkeys.sty~

412 soft tools # required by “csvsimple”, which loads “shellesc.sty"

13 soft etoolbox # required by “csvsimple®, which loads “etoolbox.sty’

amsmath and amssymb Packages that provide symbols used for drawing ticked
and unticked boxes.

14 soft amsmath
15 soft amsfonts

graphicx A package that provides extended support for graphics. It is used in the
witiko/diagrams, and witiko/graphicx/http plain TEX themes, see Section
2.2.3.

16 soft graphics

47 soft epstopdf # required by “graphics® and “graphicx”, which load “epsopdf-

base.sty”

18 soft epstopdf-pkg # required by “graphics® and “graphicx”, which load “epsopdf-

base.sty’

soul and xcolor Packages that are used in the default renderer prototypes for strike-
throughs and marked text in pdfTEX.

49 soft soul
50 soft xcolor

lua-ul and luacolor Packages that are used in the default renderer prototypes for
strike-throughs and marked text in LuaTgX.

51 soft lua-ul
52 soft luacolor

ltxemds A package that is used to detect whether the minted and listings packages
are loaded in the default renderer prototype for fenced code blocks.

53 soft ltxcmds

luaxml A package that is used to convert HTML to IATEX in the default renderer
prototypes for content blocks, raw blocks, and inline raw spans.

54 soft luaxml
verse A package that is used in the default renderer prototypes for line blocks.

55 soft verse

1.1.4 ConTgXt Prerequisites

The ConTEXt part of the package requires that either the Mark II or the Mark IV
format is loaded, all the plain TEX prerequisites (see Section 1.1.2), and the following
ConTEXt modules:

m-database A module that provides the default token renderer prototype for
iA Writer content blocks with the csv filename extension (see Section 2.2.6).

1.2 Feedback

Please use the Markdown project page on GitHub® to report bugs and submit feature
requests. If you do not want to report a bug or request a feature but are simply
in need of assistance, you might want to consider posting your question to the
TEX-KTEX Stack Exchange.® community question answering web site under the
markdown tag.

5See https://github.com/witiko/markdown/issues.
5See https://tex.stackexchange. com.

https://github.com/witiko/markdown/issues
https://tex.stackexchange.com

1.3 Acknowledgements

The Lunamark Lua module provides speedy markdown parsing for the package. 1
would like to thank John Macfarlane, the creator of Lunamark, for releasing Lunamark
under a permissive license, which enabled its use in the Markdown package.

Extensive user documentation for the Markdown package was kindly written by
Lian Tze Lim and published by Overleaf.

Funding by the Faculty of Informatics at the Masaryk University in Brno [5] is
gratefully acknowledged.

Support for content slicing (Lua options shiftHeadings and slice) and pipe
tables (Lua options pipeTables and tableCaptions) was graciously sponsored by
David Vins and Omedym.

The TEX implementation of the package draws inspiration from several sources
including the source code of IATEX 2¢, the minted package by Geoffrey M. Poore,
which likewise tackles the issue of interfacing with an external interpreter from TEX,
the filecontents package by Scott Pakin and others.

2 Interfaces

This part of the documentation describes the interfaces exposed by the package along
with usage notes and examples. It is aimed at the user of the package.

Since neither TEX nor Lua provide interfaces as a language construct, the separation
to interfaces and implementations is a gentlemen’s agreement. It serves as a means of
structuring this documentation and as a promise to the user that if they only access
the package through the interface, the future minor versions of the package should
remain backwards compatible.

Figure 1 shows the high-level structure of the Markdown package: The translation
from markdown to TEX token renderers is exposed by the Lua layer. The plain TEX
layer exposes the conversion capabilities of Lua as TEX macros. The IATEX and
ConTEXt layers provide syntactic sugar on top of plain TEX macros. The user can
interface with any and all layers.

2.1 Lua Interface

The Lua interface provides the conversion from UTF-8 encoded markdown to plain
TEX. This interface is used by the plain TEX implementation (see Section 3.2) and
will be of interest to the developers of other packages and Lua modules.

The Lua interface is implemented by the markdown Lua module.

56 local M = {metadata = metadatal}

2.1.1 Conversion from Markdown to Plain TgX

The Lua interface exposes the new(options) function. This function returns a
conversion function from markdown to plain TEX according to the table options

User code

| I

ConTEXt layer ITEX layer

I |

Plain TEX layer

I

Lua layer

Figure 1: A block diagram of the Markdown package

that contains options recognized by the Lua interface (see Section 2.1.3). The
options parameter is optional; when unspecified, the behaviour will be the same as
if options were an empty table.

The following example Lua code converts the markdown string Hello *worldx!
to a TEX output using the default options and prints the TEX output:

local md = require("markdown")
local convert = md.new()
print (convert ("Hello *worldx*!"))

2.1.2 User-Defined Syntax Extensions

For the purpose of user-defined syntax extensions, the Lua interface also
exposes the reader object, which performs the lexical and syntactic analy-
sis of markdown text and which exposes the reader->insert_pattern and
reader->add_special_character methods for extending the PEG grammar of
markdown.

The read-only walkable_syntax hash table stores those rules of the PEG grammar
of markdown that can be represented as an ordered choice of terminal symbols. These
rules can be modified by user-defined syntax extensions.

57 local walkable_syntax = {

58 Block = {

59 "Blockquote",

60 "Verbatim",

61 "ThematicBreak",

62 "BulletList",

63 "OrderedList",

64 "DisplayHtml",

65 "Heading",

66 3},

67 BlockOrParagraph = {

68 "Block",

69 "Paragraph",
"Plain",

},

Inline = {
"Str",
"Space",
"Endline",
"EndlineBreak",
"LinkAndEmph",
"Code",
"AutoLinkUrl",
"AutoLinkEmail",
"AutoLinkRelativeReference",

82 "InlineHtml",

83 "HtmlEntity",

84 "EscapedChar",

85 "Smart",

86 "Symbol",

87 1,

88 }

N = O

T o W

0w I O

IS EECS PN ECN BEPN PN BEEN RS BIES BN

= O ©

The reader->insert_pattern method inserts a PEG pattern into the grammar of
markdown. The method receives two mandatory arguments: a selector string in the
form "(left-hand side terminal symboly (before, after, or instead of) (right-hand
side terminal symbol)" and a PEG pattern to insert, and an optional third argument
with a name of the PEG pattern for debugging purposes (see the debugExtensions
option). The name does not need to be unique and shall not be interpreted by the
Markdown package; you can treat it as a comment.

For example. if we'd like to insert pattern into the grammar be-
tween the Inline -> LinkAndEmph and Inline -> Code rules, we would call
reader->insert_pattern with "Inline after LinkAndEmph" (or "Inline before Code")
and pattern as the arguments.

The reader->add_special_character method adds a new character with special
meaning to the grammar of markdown. The method receives the character as its
only argument.

2.1.3 Options

The Lua interface recognizes the following options. When unspecified, the value of a
key is taken from the defaultOptions and experimentalOptions tables.

89 local defaultOptions = {}

90 local experimentalOptions = {}

91 setmetatable(experimentalOptions, { __index = function (_, key)
92 return defaultOptions[key] end 1})

To enable the enumeration of Lua options, we will maintain the \g_@@_lua_options_seq
sequence.

93 \ExplSyntaxOn
94 \seq_new:N \g_0@_lua_options_seq

To enable the reflection of default/experimental Lua options and their types, we will
maintain the \g_0@_default_lua_options_prop, \g_00_experimental_lua_options_seq
and \g_0@_lua_option_types_prop property lists and sequences, respectively.

95 \prop_new:N \g_0@_lua_option_types_prop

96 \prop_new:N \g_@@_default_lua_options_prop

97 \seq_new:N \g_0@_experimental_lua_options_seq

98 \seq_new:N \g_0@_option_layers_seq

99 \tl_const:Nn \c_@@_option_layer_lua_tl { lua }

100 \seq_gput_right:NV

101 \g_0@_option_layers_seq

102 \c_Q@@_option_layer_lua_tl

103 \cs_new:Nn

104 \@@_add_lua_option:nnn

105 A{

106 \@@_add_option:Vnnn

107 \c_0Q@_option_layer_lua_tl

108 {#1}
109 {#2 }
110 { #3 }
mr ¥

112 \cs_new:Nn
113 \@@_add_option:nnnn

114 {

115 \seq_gput_right:cn

116 { g_00_ #1 _options_seq }

117 {#2 3

118 \prop_gput:cnn

119 { g_00_ #1 _option_types_prop }
120 {#2 %

121 {#31%}

122 \prop_gput:cnn

123 { g_0@_default_ #1 _options_prop }
124 {#2}

10

125 {#4 3}

126 \@@_typecheck_option:n
127 {#2}
128 }

129 \cs_generate_variant:Nn

130 \@@_add_option:nnnn

131 { Vnnn }

132 \cs_new:Nn

133 \@@_add_experimental_lua_option:n

134 {

135 \Q@_add_experimental_option:Vn
136 \c_0Q@_option_layer_lua_tl

137 {#1}

138}

139 \cs_new:Nn

140 \@@_add_experimental_option:nn

141 {

142 \seq_gput_right:cn

143 { g_00_ #1 _options_seq }

144 {#2}

145 \seq_gput_right:cn

146 { g_00_experimental_ #1 _options_seq }
147 {#2 }

148 \prop_gput:cnn

149 { g_00_ #1 _option_types_prop }
150 {#2 3%

151 { boolean }

152}

153 \cs_generate_variant:Nn

154 \@@_add_experimental_option:nn

155 { Vn }

156 \tl_const:Nn \c_@@_option_value_true_tl { true }
157 \tl_const:Nn \c_@@_option_value_false_tl { false }
158 \cs_new:Nn \@@_typecheck_option:n

159 o

160 \@@_get_option_type:nN

161 { #1 %

162 \1_tmpa_tl

163 \str_case_e:Vn

164 \1_tmpa_tl

165 {

166 { \c_0@_option_type_boolean_tl }
167 {

168 \Q@@_get_option_value:nN
169 {#1}

170 \1_tmpa_t1

171 \bool_if:nF

11

— = e
S B B BN BN |
J O Ut = W N

\str_if_eq_p:eV
{ \1_tmpa_t1l }
\c_@Q@_option_value_true_tl ||
\str_if_eq_p:eV
{ \1_tmpa_tl }
\c_0@_option_value_false_tl
}
{
\msg_error:nnne
{ markdown }
{ failed-typecheck-for-boolean-option }
{#1 7
{ \1_tmpa_t1 }

}
}
\msg_new:nnn
{ markdown }
{ failed-typecheck-for-boolean-option }
{
Option~#1~has~value~#2,~
but~a~boolean~(true~or~false)~was~expected.

}

" \cs_generate_variant:Nn

\str_case_e:nn

{ Vn }
\cs_generate_variant:Nn

\msg_error:nnnn

{ nnne }
\prg_generate_conditional_variant:Nnn

\str_if_eq:nn

{ev?}

{p}
\seq_new:N

\g_0Q@_option_types_seq
\tl_const:Nn

\c_0@_option_type_clist_tl

{ clist }
\seq_gput_right:NV

\g_0Q@_option_types_seq

\c_0Q@_option_type_clist_tl
\tl_const:Nn

\c_0@_option_type_counter_tl

{ counter }
\seq_gput_right:NV

12

219 \g_0Q@_option_types_seq

220 \c_0@_option_type_counter_tl
221 \tl_const:Nn

222 \c_0@_option_type_boolean_tl
223 { boolean }

224 \seq_gput_right:NV

225 \g_0@_option_types_seq

226 \c_@@_option_type_boolean_tl
227 \tl_const:Nn

228 \c_QQ@_option_type_number_tl
229 { number }

230 \seq_gput_right:NV

231 \g_0@_option_types_seq

32 \c_@@_option_type_number_tl
33 \tl_const:Nn

34 \c_0@_option_type_path_tl
35 { path }

36 \seq_gput_right:NV

37 \g_0@_option_types_seq

38 \c_0@_option_type_path_tl
39 \tl_const:Nn

240 \c_0Q@_option_type_slice_tl
241 { slice }

242 \seq_gput_right:NV

243 \g_0Q@_option_types_seq

244 \c_0Q@_option_type_slice_tl
245 \tl_const:Nn

246 \c_0Q@_option_type_string_tl
247 { string }

248 \seq_gput_right:NV

249 \g_0Q@_option_types_seq

250 \c_QQ@_option_type_string_ tl
251 \cs_new:Nn

252 \@@_get_option_type:nN

253 {

254 \bool_set_false:N

255 \1_tmpa_bool

256 \seq_map_inline:Nn

257 \g_0Q@_option_layers_seq
258 {

259 \prop_get:cnNT

260 { g_00_ ##1 _option_types_prop }
261 { #1132

262 \1_tmpa_tl

263 {

264 \bool_set_true:N
265 \1_tmpa_bool

13

[\
oo

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

}

\seq_map_break:

}
}
\bool_if:NF
\1_tmpa_bool
{
\msg_error:nnn
{ markdown }
{ undefined-option }
{#1}
}

\seq_if_in:NVF
\g_0@_option_types_seq
\1_tmpa_tl
{

\msg_error :nnnV
{ markdown }

{ unknown-option-type }

{#1 7
\1_tmpa_tl
¥
\tl_set_eq:NN
#2
\1_tmpa_tl

\msg_new:nnn

{
{
{

}

markdown }
unknown-option-type }

Option~#1~has~unknown~type~#2.

\msg_new:nnn

{
{
{

}

\cs_

markdown }
undefined-option }

Option~#1~is~undefined.

generate_variant:Nn

\msg_error:nnnn

{ nnnv }
\cs_new:Nn

\@@_get_default_option_value:nN

{

\bool_set_false:N
\1_tmpa_bool

\seq_map_inline:Nn
\g_0Q@_option_layers_seq

14

313 {

314 \seq_if_in:cnT

315 { g__markdown_experimental_ ##1 _options_seq }
316 {#1 32

317 {

318 \@@_get_option_value:nN
319 { experimental }

320 #2

321 \bool_set_true:N

322 \1_tmpa_bool

323 \seq_map_break:

324 }

325 \prop_get:cnNT

326 { g_00_default_ ##1 _options_prop }
327 {#1 17

328 #2

329 {

330 \bool_set_true:N

331 \1_tmpa_bool

332 \seq_map_break:

333 }

334 }

335 \bool_if:NF

336 \1_tmpa_bool

337 {

338 \msg_error:nnn

339 { markdown }

340 { undefined-option }

341 {#1 %

342 }

343}

344 \cs_new:Nn
345 \Q@Q_get_option_value:nN

346 A{

347 \@@_option_tl_to_csname:nN
348 { #1737

349 \1_tmpa_tl

350 \cs_if_free:cTF

351 { \1_tmpa_tl }

352 {

353 \@@_get_default_option_value:nN
354 {#13%

355 #2

356 }

357 {

358 \@@_get_option_type:nN
359 { #1 %

15

360 \1_tmpa_tl

361 \str_if_eq:NNTF

362 \c_0@_option_type_counter_tl
363 \1_tmpa_tl

364 {

365 \@@_option_tl_to_csname:nN
366 {#1}

367 \1_tmpa_tl

368 \tl_set:Nx

369 #2

370 { \the \cs:w \1_tmpa_tl \cs_end: }
371 }

372 {

373 \@@_option_tl_to_csname:nN
374 {#1 3}

375 \1_tmpa_tl

376 \tl_set:Nv

377 #2

378 { \1_tmpa_t1 }

379 }

380 }

381 }

382 \cs_new:Nn \@@_option_tl_to_csname:nN
383 o

384 \tl_set:Nn

385 \1_tmpa_tl

386 { \str_uppercase:n { #1 } }

387 \tl_set:Nx

388 #2

389 {

390 markdownOption

391 \tl_head:f { \1_tmpa_tl }

392 \tl_tail:n { #1 }

393 }

394}

To make it easier to support different coding styles in the interface, engines, we
define the \@@_with_various_cases:nn function that allows us to generate different
variants of a string using different cases.

395 \cs_new:Nn \@@_with_various_cases:nn

396 {

397 \seq_clear:N

398 \1_tmpa_seq

399 \seq_map_inline:Nn
400 \g_0@_cases_seq
101 {

402 \tl_set:Nn

16

403 \1_tmpa_tl

104 {#13}

105 \use:c { ##1 }
106 \1_tmpa_tl
407 \seq_put_right:NV
408 \1_tmpa_seq
409 \1_tmpa_tl
110 }

111 \seq_map_inline:Nn
112 \1_tmpa_seq

413 {# 3}

414}

By default, camelCase and snake_ case are supported. Additional cases can be added
by adding functions to the \g_0@_cases_seq sequence.

115 \seq_new:N \g_00_cases_seq
116 \cs_new:Nn \@@_camel_case:N

17 {

418 \regex_replace_all:nnN

419 { _ ([a-z]) }

120 { \c¢ { str_uppercase:n } \cB\{ \1 \cE\} }
421 #1

422 \tl_set:Nx

423 #1

424 {#1 3}

125 }

126 \seq_gput_right:Nn \g_Q0_cases_seq { @Q@_camel_case:N }
127 \cs_new:Nn \@@_snake_case:N

128 A{

429 \regex_replace_all:nnN

130 { ([a-z]) ([A-Z]) }

131 { \1 _ \c { str_lowercase:n } \cB\{ \2 \cE\} }
432 #1

433 \tl_set:Nx

434 #1

435 {#1 3}

136}

437 \seq_gput_right:Nn \g_0Q@_cases_seq { @@_snake_case:N }
2.1.4 General Behavior
eagerCache=true, false default: true

true Converted markdown documents will be cached in cacheDir. This can
be useful for post-processing the converted documents and for recovering
historical versions of the documents from the cache. Furthermore, it
can also significantly improve the processing speed for documents that

17

require multiple compilation runs, since each markdown document is
only converted once. However, it also produces a large number of
auxiliary files on the disk and obscures the output of the Lua command-
line interface when it is used for plumbing.

This behavior will always be used if the finalizeCache option is
enabled.

false Converted markdown documents will not be cached. This decreases
the number of auxiliary files that we produce and makes it easier to
use the Lua command-line interface for plumbing. However, it makes
it impossible to post-process the converted documents and recover
historical versions of the documents from the cache. Furthermore, it
can significantly reduce the processing speed for documents that require
multiple compilation runs, since each markdown document is converted
multiple times needlessly.

This behavior will only be used when the finalizeCache option is
disabled.

438 \@@_add_lua_option:nnn
439 { eagerCache }

440 { boolean }

141 { true }

442 defaultOptions.eagerCache = true

experimental=true, false default: false

true Experimental features that are planned to be the new default in the
next major release of the Markdown package will be enabled.

At the moment, this has the following effects:

1. The version experimental of the theme witiko/markdown/defaults
will be loaded.

2. Warnings for hard-deprecated features will become errors.

3. The experimental option html0OverLinks will be enabled.

In the future, the effects may extend to other areas as well.
false Experimental features will be disabled.

443 \@@_add_lua_option:nnn
444 { experimental }

145 { boolean }

146 { false }

447 defaultOptions.experimental = false

18

singletonCache=true, false default: true

true Conversion functions produced by the function new(options) will be
cached in an LRU cache of size 1 keyed by options. This is more time-
and space-efficient than always producing a new conversion function but
may expose bugs related to the idempotence of conversion functions.

This has been the default behavior since version 3.0.0 of the Markdown
package.

false Every call to the function new(options) will produce a new conversion
function that will not be cached. This is slower than caching conversion
functions and may expose bugs related to memory leaks in the creation
of conversion functions, see also #226 (comment)”.

This was the default behavior until version 3.0.0 of the Markdown
package.

448 \@@_add_lua_option:nnn
149 { singletonCache }
450 { boolean }

451 { true }

452 defaultOptions.singletonCache = true

153 local singletonCache = {

454 convert = nil,

455 options = nil,

456 }

unicodeNormalization=true, false default: true

true Markdown documents will be normalized using one of the four Unicode
normalization forms® before conversion. The Unicode normalization
norm used is determined by option unicodeNormalizationForm.

false Markdown documents will not be Unicode-normalized before conver-

sion.

457 \@@_add_lua_option:nnn

458 { unicodeNormalization }
459 { boolean }

160 { true }

161 defaultOptions.unicodeNormalization = true

"See https://github.com/witiko/markdown/pull/226#issuecomment-1599641634.
8See https://unicode.org/fag/normalization.html.

19

https://github.com/witiko/markdown/pull/226#issuecomment-1599641634
https://unicode.org/faq/normalization.html

unicodeNormalizationForm=nfc, nfd, nfkc, nfkd

default: nfc

nfc

nfd

nfkc

nfkd

When option unicodeNormalization has been enabled, markdown
documents will be normalized using Unicode Normalization Form C
(NFC) before conversion.

When option unicodeNormalization has been enabled, markdown
documents will be normalized using Unicode Normalization Form D
(NFD) before conversion.

When option unicodeNormalization has been enabled, markdown
documents will be normalized using Unicode Normalization Form KC
(NFKC) before conversion.

When option unicodeNormalization has been enabled, markdown
documents will be normalized using Unicode Normalization Form KD
(NFKD) before conversion.

162 \@@_add_lua_option:nnn

163
4164
465

466 defaultOptions.unicodeNormalizationForm =

{ unicodeNormalizationForm }
{ string }
{ nfc }

"nfC"

2.1.5 File and Directory Names

cacheDir=(path)

default: .

A path to the directory containing auxiliary cache files. If the last segment of the
path does not exist, it will be created by the Lua command-line and plain TEX
implementations. The Lua implementation expects that the entire path already

exists.

When iteratively writing and typesetting a markdown document, the cache files are
going to accumulate over time. You are advised to clean the cache directory every
now and then, or to set it to a temporary filesystem (such as /tmp on UN*X systems),
which gets periodically emptied.

467 \str_new:N

468

\g_0@_unquoted_jobname_str

169 \str_gset:NV

470
171

\g_0@_unquoted_jobname_str
\c_sys_jobname_str

472 \bool_new:N

473

\g_0Q_jobname_quoted_bool

20

474 \regex_replace_all:nnNTF
175 LN (1Y) Cax) (") \Z }

176 { \2 }

177 \g_0@_unquoted_jobname_str
418 {

479 \bool_gset_true:N

480 \g_0@_jobname_quoted_bool
181

182 A

183 \bool_gset_false:N

484 \g_0@_jobname_quoted_bool
485)

186 \@@_add_lua_option:nnn
187 { cacheDir }
188 { path }

489 {

490 \markdownOptionQutputDir

491 / _markdown_

192 \str_use:N

493 \g_0@_unquoted_jobname_str
494}

495 defaultOptions.cacheDir = "."

contentBlocksLanguageMap={filename)
default: markdown-languages. json

The filename of the JSON file that maps filename extensions to programming language
names in the iA Writer content blocks when the contentBlocks option is enabled.
See Section 2.2.5.9 for more information.

196 \@@_add_lua_option:nnn

197 { contentBlocksLanguageMap }
198 { path }

199 { markdown-languages.json }

500 defaultOptions.contentBlocksLanguageMap = "markdown-languages.json"

debugExtensionsFileName={filename) default: debug-extensions. json

The filename of the JSON file that will be produced when the debugExtensions
option is enabled. This file will contain the extensible subset of the PEG grammar of
markdown (see the walkable_syntax hash table) after built-in syntax extensions
(see Section 3.1.7) and user-defined syntax extensions (see Section 2.1.2) have been
applied.

21

501 \@@_add_lua_option:nnn
502 { debugExtensionsFileName }

503 { path }

504 {

505 \markdownOptionQutputDir
506 /

507 \str_use:N
508 \g_0@_unquoted_jobname_str
509 .debug-extensions. json

510 }

511 defaultOptions.debugExtensionsFileName = "debug-extensions.json"

frozenCacheFileName=(path)

default: frozenCache.tex

A path to an output file (frozen cache) that will be created when the finalizeCache
option is enabled and will contain a mapping between an enumeration of markdown
documents and their auxiliary cache files.

The frozen cache makes it possible to later typeset a plain TpX document that
contains markdown documents without invoking Lua using the frozenCache plain
TEX option. As a result, the plain TEX document becomes more portable, but further
changes in the order and the content of markdown documents will not be reflected.

512 \@@_add_lua_option:nnn

513 { frozenCacheFileName }

514 { path }

515 { \markdownOptionCacheDir / frozenCache.tex }

516 defaultOptions.frozenCacheFileName = "frozenCache.tex"

2.1.6 Parser

autoldentifiers=true, false

true

false

Options
default: false

Enable the Pandoc auto identifiers syntax extension®:

The following heading received the identifier “sesame-str

123 Sesame Street

Disable the Pandoc auto identifiers syntax extension.

See also the option gfmAutoIdentifiers.

517 \@@_add_lua_option:nnn

9See https://pandoc.org/MANUAL.html#extension-auto_identifiers.

22

https://pandoc.org/MANUAL.html#extension-auto_identifiers

518 { autoIdentifiers }
519 { boolean }
520 { false }

521 defaultOptions.autolIdentifiers = false

blankBeforeBlockquote=true, false default: false
true Require a blank line between a paragraph and the following blockquote.
false Do not require a blank line between a paragraph and the following

blockquote.

3 { blankBeforeBlockquote }
4 { boolean }
5 { false }

526 defaultOptions.blankBeforeBlockquote = false

blankBeforeCodeFence=true, false default: false
true Require a blank line between a paragraph and the following fenced

code block.
false Do not require a blank line between a paragraph and the following

fenced code block.

527 \@@_add_lua_option:nnn

528 { blankBeforeCodeFence }
529 { boolean }

30 { false }

e

w

531 defaultOptions.blankBeforeCodeFence = false

blankBeforeDivFence=true, false default: false
true Require a blank line before the closing fence of a fenced div.
false Do not require a blank line before the closing fence of a fenced div.

33 { blankBeforeDivFence }
534 { boolean }
535 { false }

536 defaultOptions.blankBeforeDivFence = false

23

blankBeforeHeading=true, false default: false

true Require a blank line between a paragraph and the following header.
false Do not require a blank line between a paragraph and the following
header.

38 { blankBeforeHeading }
39 { boolean }
) { false }

541 defaultOptions.blankBeforeHeading = false

blankBeforeHtmlBlock=true, false default: false

true Require a blank line between a paragraph and the following Common-
Mark HTML block!".

false Do not require a blank line between a paragraph and the following
CommonMark HTML block.

542 \@@_add_lua_option:nnn

543 { blankBeforeHtmlBlock }
544 { boolean }

545 { false }

546 defaultOptions.blankBeforeHtmlBlock = false

blankBeforeList=true, false default: false
true Require a blank line between a paragraph and the following list.
false Do not require a blank line between a paragraph and the following list.

547 \@@_add_lua_option:nnn
548 { blankBeforeList }
549 { boolean }

550 { false }

551 defaultOptions.blankBeforelList = false

10See https://spec.commonmark.org/0.31.2/#html-blocks.

24

https://spec.commonmark.org/0.31.2/#html-blocks

bracketedSpans=true, false default: false

true Enable the Pandoc bracketed span syntax extension'':

[This is *some text*]{.class key=val}

false Disable the Pandoc bracketed span syntax extension.

552 \@@_add_lua_option:nnn
553 { bracketedSpans }
55 { boolean }

555 { false }

556 defaultOptions.bracketedSpans = false

breakableBlockquotes=true, false default: true
true A blank line separates block quotes.
false Blank lines in the middle of a block quote are ignored.

\@@_add_lua_option:nnn

8 { breakableBlockquotes }
) { boolean }

0 { true }

561 defaultOptions.breakableBlockquotes = true

citationNbsps=true, false default: false
true Replace regular spaces with non-breaking spaces inside the prenotes
and postnotes of citations produced via the pandoc citation syntax
extension.
false Do not replace regular spaces with non-breaking spaces inside the

prenotes and postnotes of citations produced via the pandoc citation
syntax extension.

562 \@@_add_lua_option:nnn
563 { citationNbsps }
564 { boolean }

565 { true }

566 defaultOptions.citationNbsps = true

"1See https://pandoc.org/MANUAL . html#extension-bracketed_spans.

25

https://pandoc.org/MANUAL.html#extension-bracketed_spans

citations=true, false default: false

true Enable the Pandoc citation syntax extension!?:

Here is a simple parenthetical citation [@doe99] and here
is a string of several [see @doe99, pp. 33-35; also
@smith04, chap. 1].

A parenthetical citation can have a [prenote ©doe99] and
a [@smithO4 postnote]. The name of the author can be
suppressed by inserting a dash before the name of an
author as follows [-@smithO4].

Here is a simple text citation @doe99 and here is

a string of several @doe99 [pp. 33-35; also @smithO4,
chap. 1]. Here is one with the name of the author
suppressed -@doe99.

false Disable the Pandoc citation syntax extension.

567 \@@_add_lua_option:nnn
568 { citations }

569 { boolean }

570 { false %}

571 defaultOptions.citations = false

codeSpans=true, false default: true

true Enable the code span syntax:

Use the “printf()~ function.
““There is a literal backtick (°) here.™"

false Disable the code span syntax. This allows you to easily use the
quotation mark ligatures in texts that do not contain code spans:

""This is a quote.''

2 \@@_add_lua_option:nnn
3 { codeSpans }

574 { boolean }
5 { true }

576 defaultOptions.codeSpans = true

'2See https://pandoc.org/MANUAL . html#extension-citations.

26

https://pandoc.org/MANUAL.html#extension-citations

contentBlocks=true, false default: false

true

: Enable the iA Writer content blocks syntax extension [6]:

T md

http://example.com/minard. jpg (Napoleon's
disastrous Russian campaign of 1812)

/Flowchart.png "Engineering Flowchart"

/Savings Account.csv 'Recent Transactions'
/Example.swift

/Lorem Ipsum.txt

false Disable the iA Writer content blocks syntax extension.

8 { contentBlocks }
9 { boolean }
580 { false %}

581 defaultOptions.contentBlocks = false

contentLevel=block, inline default: block

block Treat content as a sequence of blocks.

- this is a list
- it contains two items

inline Treat all content as inline content.

- this is a text
- not a list

582 \@@_add_lua_option:nnn
583 { contentLevel }

584 { string }

585 { block }

586 defaultOptions.contentLevel = "block"

27

debugExtensions=true, false

true

false

default: false

Produce a JSON file that will contain the extensible subset of the PEG
grammar of markdown (see the walkable_syntax hash table) after
built-in syntax extensions (see Section 3.1.7) and user-defined syntax
extensions (see Section 2.1.2) have been applied. This helps you to
see how the different extensions interact. The name of the produced
JSON file is controlled by the debugExtensionsFileName option.

Do not produce a JSON file with the PEG grammar of markdown.

587 \@@_add_lua_option:nnn
588 { debugExtensions }
589 { boolean }

500 { false }

591 defaultOptions.debugExtensions = false

definitionLists=true, false

true

false

default: false

Enable the pandoc definition list syntax extension:

Term 1
Definition 1

Term 2 with *inline markupx*
Definition 2

{ some code, part of Definition 2 }

Third paragraph of definition 2.

Disable the pandoc definition list syntax extension.

592 \@@_add_lua_option:nnn
593 { definitionLists }
594 { boolean }

595 { false }

596 defaultOptions.definitionLists = false

28

ensureJekyllData=true, false default: false

false When the jekyllData and expectJekyllData options are enabled,
then a markdown document may begin directly with YAML metadata
and may contain nothing but YAML metadata. Otherwise, the mark-
down document is processed as markdown text.

true When the jekyllData and expectJekyllData options are enabled,
then a markdown document must begin directly with YAML metadata
and must contain nothing but YAML metadata. Otherwise, an error is
produced.

597 \@@_add_lua_option:nnn
598 { ensureJekyllData }
599 { boolean }

600 { false }

601 defaultOptions.ensureJekyllData = false

expectJekyllData=true, false default: false

false When the jekyllData option is enabled, then a markdown document
may begin with YAML metadata if and only if the metadata begin
with the end-of-directives marker (---) and they end with either the
end-of-directives or the end-of-document marker (.. .):

\documentclass{article}
\usepackage [jekyllData] {markdown}
\begin{document}

\begin{markdown}

- this

- is

- YAML

- followed

_by

- Markdown
\end{markdown}
\begin{markdown}
- this

- is

- Markdown
\end{markdown}
\end{document}

29

true When the jekyllData option is enabled, then a markdown document
may begin directly with YAML metadata and may contain nothing but
YAML metadata

\documentclass{article’}

\usepackage[jekyllData, expectJekyllData]{markdown}
\begin{document}

\begin{markdown}

- this

- is

- YAML

- followed

_by

- Markdown
\end{markdown}
\begin{markdown}
- this

- is

- YAML
\end{markdown}
\end{document}

602 \@@_add_lua_option:nnn
603 { expectJekyllData }
604 { boolean }

605 { false }

606 defaultOptions.expectJekyllData = false

extensions={filenames)

The filenames of user-defined syntax extensions that will be applied to the markdown
reader. If the kpathsea library is available, files will be searched for not only in the
current working directory but also in the TEX directory structure.

A user-defined syntax extension is a Lua file in the following format:

local strike_through = {
api_version = 2,
grammar_version = 4,
finalize_grammar = function(reader)
local nonspacechar = lpeg.P(1) - lpeg.S("\t ")
local doubleslashes = lpeg.P("//")
local function between(p, starter, ender)

30

ender = lpeg.B(nonspacechar) * ender
return (starter * #nonspacechar
* lpeg.Ct(p * (p - ender)”0) * ender)
end

local read_strike_through = between(
lpeg.V("Inline"), doubleslashes, doubleslashes
) / function(s) return {"\\st{", s, "}"} end

reader.insert_pattern("Inline after LinkAndEmph", read_strike_through,
"StrikeThrough")
reader.add_special_character("/")
end

}

return strike_through

The api_version and grammar_version fields specify the version of the user-defined
syntax extension API and the markdown grammar for which the extension was written.
See the current API and grammar versions below:

607 metadata.user_extension_api_version = 2
608 metadata.grammar_version = 4

Any changes to the syntax extension API or grammar will cause the corresponding
current version to be incremented. After Markdown 3.0.0, any changes to the API
and the grammar will be either backwards-compatible or constitute a breaking change
that will cause the major version of the Markdown package to increment (to 4.0.0).

The finalize_grammar field is a function that finalizes the grammar of markdown
using the interface of a Lua reader object, such as the reader->insert_pattern
and reader->add_special_character methods, see Section 2.1.2.

609 \cs_generate_variant:Nn

610 \@@_add_lua_option:nnn

611 { nnv }

612 \@@_add_lua_option:nnV

613 { extensions }

614 { clist }

615 \c_empty_clist

616 defaultOptions.extensions = {}

fancylLists=true, false default: false

true Enable the Pandoc fancy list syntax extension':

13See https://pandoc.org/MANUAL . html#org-fancy-lists.

31

https://pandoc.org/MANUAL.html#org-fancy-lists

false

a) first item
b) second item
c) third item

Disable the Pandoc fancy list syntax extension.

617 \@@_add_lua_option:nnn

618
619
620

{ fancyLists }
{ boolean }
{ false }

621 defaultOptions.fancylLists = false

fencedCode=true, false

true

false

Enable the commonmark fenced code block extension:

default: true

~ o jS
if (a > 3) {

moveShip(5 * gravity, DOWN);

html
<pre>
<code>
// Some comments
line 1 of code
line 2 of code
line 3 of code
</code>
</pre>

Disable the commonmark fenced code block extension.

622 \@Q@_add_lua_option:nnn

623
624

625

{ fencedCode }
{ boolean }

626 defaultOptions.fencedCode = true

32

fencedCodeAttributes=true, false default: false

true Enable the Pandoc fenced code attribute syntax extension'?:

~~~~ {#mycode .haskell .numberLines startFrom=100}

gsort [] =[]

gsort (x:xs) = gsort (filter (< x) xs) ++ [x] ++
gsort (filter (>= x) xs)

false Disable the Pandoc fenced code attribute syntax extension.

627 \@O@_add_lua_option:nnn

628 { fencedCodeAttributes }
629 { boolean }

630 { false }

631 defaultOptions.fencedCodeAttributes = false

fencedDivs=true, false default: false

true Enable the Pandoc fenced div syntax extension!®:

::::: {#special .sidebar}
Here is a paragraph.

And another.

false Disable the Pandoc fenced div syntax extension.

632 \@@_add_lua_option:nnn
633 { fencedDivs }

634  { boolean }

635 { false }

636 defaultOptions.fencedDivs = false

4See https://pandoc.org/MANUAL . html#extension-fenced_code_attributes.
15See https://pandoc.org/MANUAL . html#extension-fenced_divs.

33


https://pandoc.org/MANUAL.html#extension-fenced_code_attributes
https://pandoc.org/MANUAL.html#extension-fenced_divs

finalizeCache=true, false default: false

Whether an output file specified with the frozenCacheFileName option (frozen
cache) that contains a mapping between an enumeration of markdown documents
and their auxiliary cache files will be created.

The frozen cache makes it possible to later typeset a plain TEX document that
contains markdown documents without invoking Lua using the frozenCache plain
TEX option. As a result, the plain TEX document becomes more portable, but further
changes in the order and the content of markdown documents will not be reflected.

637 \@@_add_lua_option:nnn
638 { finalizeCache }
639 { boolean }

640 { false }

641 defaultOptions.finalizeCache = false

frozenCacheCounter={number) default: 0

The number of the current markdown document that will be stored in an output file
(frozen cache) when the finalizeCache is enabled. When the document number
is 0, then a new frozen cache will be created. Otherwise, the frozen cache will be
appended.

Each frozen cache entry will define a TEX macro \markdownFrozenCache{number)
that will typeset markdown document number {number).

642 \@@_add_lua_option:nnn
643  { frozenCacheCounter }
644  { counter }

645 {0 }

646 defaultOptions.frozenCacheCounter = 0

gfmAutoIdentifiers=true, false default: false

true Enable the Pandoc GitHub-flavored auto identifiers syntax extension'S:

The following heading received the identifier “123-sesamerstreet’:

# 123 Sesame Street

false Disable the Pandoc GitHub-flavored auto identifiers syntax extension.

'6See https://pandoc.org/MANUAL . html#extension-gfm_auto_identifiers.

34


https://pandoc.org/MANUAL.html#extension-gfm_auto_identifiers

See also the option autoIdentifiers.
647 \@@_add_lua_option:nnn

648 { gfmAutoIdentifiers }

649  { boolean }

650 { false }

651 defaultOptions.gfmAutoldentifiers = false

hashEnumerators=true, false default: false
true Enable the use of hash symbols (#) as ordered item list markers:
#. Bird
#. McHale
#. Parish
false Disable the use of hash symbols (#) as ordered item list markers.

652 \@@_add_lua_option:nnn
653  { hashEnumerators }
654 { boolean }

655 { false }

656 defaultOptions.hashEnumerators = false

headerAttributes=true, false default: false

true Enable the assignment of HTML attributes to headings:

# My first heading {#foo}
## My second heading ## {#bar .baz}

Yet another heading {key=value}

false Disable the assignment of HTML attributes to headings.

657 \@@_add_lua_option:nnn
658  { headerAttributes }
659  { boolean }

660 { false }

661 defaultOptions.headerAttributes = false

35



html=true, false default: true

true Enable the recognition of inline HTML tags, block HTML elements, HTML
comments, HTML instructions, and entities in the input. Inline HTML
tags, block HTML elements and HTML comments will be rendered, HTML
instructions will be ignored, and HTML entities will be replaced with
the corresponding Unicode codepoints.

false Disable the recognition of HTML markup. Any HTML markup in the
input will be rendered as plain text.

662 \@@_add_lua_option:nnn
663  { html }

664  { boolean }

665 { true }

666 defaultOptions.html = true

htmlOverLinks=true, false default: false

true When the option HTML is enabled and a text can be understood either
as a hyperlink or HTML, interpret it as HTML.

This is especially relevant when the option relativeReferences is
enabled, since it makes e.g. </foo> a valid hyperlink.

false When the option HTML is enabled and a text can be understood either
as a hyperlink or HTML, interpret it as a hyperlink.

This is an experimental option. Whenever the option experimental is enabled
and this option is unspecified, it will be enabled. Like other experimental options,
this option will be enabled by default and soft-deprecated in the next major release
of the Markdown package.

667 \@@_add_experimental_lua_option:n
668 { htmlOverLinks }

669 defaultOptions.htmlOverLinks = false
670 experimentalOptions.htmlOverLinks = true

hybrid=true, false default: false

true Disable the escaping of special plain TEX characters, which makes it
possible to intersperse your markdown markup with TEX code. The
intended usage is in documents prepared manually by a human author.
In such documents, it can often be desirable to mix TEX and markdown
markup freely.

36



false Enable the escaping of special plain TEX characters outside verbatim
environments, so that they are not interpreted by TEX. This is encour-
aged when typesetting automatically generated content or markdown
documents that were not prepared with this package in mind.

The hybrid option makes it difficult to untangle TEX input from markdown text,
which makes documents written with the hybrid option less interoperable and more
difficult to read for authors. Therefore, the option has been soft-deprecated in version
3.7.1 of the Markdown package: It will never be removed but using it prints a warning
and is discouraged.

Consider one of the following better alternatives for mixing TEX and markdown:

o With the contentBlocks option, authors can move large blocks of TeX code
to separate files and include them in their markdown documents as external
resources:

Here is a mathematical formula:

/math-formula.tex

e With the rawAttribute option, authors can denote raw text spans and code
blocks that will be interpreted as TEX code:

"$H_2 0% {=tex} is a liquid.

Here is a mathematical formula:

T {=tex}
\ [distance[i] =
\begin{dcases}
a & b \\
c &d
\end{dcases}
\1]

o With options texMathDollars, texMathSingleBackslash, and texMathDoubleBackslash,
authors can freely type TEX commands between dollar signs or backslash-
escaped brackets:

$H_2 0% is a liquid.

Here is a mathematical formula:
\ [distance[i] =

37



\begin{dcases}
a & b \\
c&d
\end{dcases}
\]

671 \@@_add_lua_option:nnn
672 { hybrid }

673  { boolean }

674 { false }

675 defaultOptions.hybrid = false

inlineCodeAttributes=true, false default: false

true Enable the Pandoc inline code span attribute extension!”:

“<$>"{.haskell}

false Enable the Pandoc inline code span attribute extension.

676 \@@_add_lua_option:nnn

677 { inlineCodeAttributes }
678 { boolean }

679 { false }

680 defaultOptions.inlineCodeAttributes = false

inlineNotes=true, false default: false

true Enable the Pandoc inline note syntax extension'®:

Here is an inline note.  [Inlines notes are easier to
write, since you don't have to pick an identifier and
move down to type the note.]

false Disable the Pandoc inline note syntax extension.

681 \@@_add_lua_option:nnn
682 { inlineNotes }

683 { boolean }

684 { false }

685 defaultOptions.inlineNotes = false

7See https://pandoc.org/MANUAL . html#extension-inline_code_attributes.
'8See https://pandoc.org/MANUAL . html#extension-inline_notes.

38


https://pandoc.org/MANUAL.html#extension-inline_code_attributes
https://pandoc.org/MANUAL.html#extension-inline_notes

jekyllData=true, false default: false

true Enable the Pandoc YAML metadata block syntax extension'® for enter-
ing metadata in YAML:

title: 'This is the title: it contains a colon'
author:
- Author One
- Author Two
keywords: [nothing, nothingness]
abstract: |
This is the abstract.

It consists of two paragraphs.

false Disable the Pandoc YAML metadata block syntax extension for entering
metadata in YAML.

686 \@@_add_lua_option:nnn
687 { jekyllData }

688 { boolean }

689 { false %}

690 defaultOptions.jekyllData = false

linkAttributes=true, false default: false

true Enable the Pandoc link and image attribute syntax extension®’:

An inline ![image] (foo.jpg){#id .class width=30 height=20px}
and a reference ![image] [ref] with attributes.

[ref]: foo.jpg "optional title" {#id .class key=val key2=yal2}

false Enable the Pandoc link and image attribute syntax extension.

691 \@@_add_lua_option:nnn
692  { linkAttributes }
693  { boolean }

694 { false %}

695 defaultOptions.linkAttributes = false

9See https://pandoc.org/MANUAL . html#extension-yaml_metadata_block.
20See https://pandoc.org/MANUAL.html#extension-1link_attributes.

39


https://pandoc.org/MANUAL.html#extension-yaml_metadata_block
https://pandoc.org/MANUAL.html#extension-link_attributes

lineBlocks=true, false default: false

true Enable the Pandoc line block syntax extension?!:

| this is a line block that
| spans multiple
| even
discontinuous
| lines

false Disable the Pandoc line block syntax extension.

696 \@Q@_add_lua_option:nnn
697  { lineBlocks }

698 { boolean }

699 { false }

700 defaultOptions.lineBlocks = false

mark=true, false default: false

true Enable the Pandoc mark syntax extension??:

This ==is highlighted text.==

false Disable the Pandoc mark syntax extension.

701 \@@_add_lua_option:nnn
702 { mark }

703 { boolean }

704 { false }

705 defaultOptions.mark = false

notes=true, false default: false

true Enable the Pandoc note syntax extension®?:

Here is a note reference,["1] and another.["longnotel

[T1]: Here is the note.

["longnote] : Here's one with multiple blocks.

21See https://pandoc.org/MANUAL . html#extension-line_blocks.
228ee https://pandoc.org/MANUAL . html#extension-mark.
?3See https://pandoc.org/MANUAL . html#extension-footnotes.

40


https://pandoc.org/MANUAL.html#extension-line_blocks
https://pandoc.org/MANUAL.html#extension-mark
https://pandoc.org/MANUAL.html#extension-footnotes

Subsequent paragraphs are indented to show that they
belong to the previous note.

{ some.code }
The whole paragraph can be indented, or just the
first line. In this way, multi-paragraph notes

work like multi-paragraph list items.

This paragraph won't be part of the note, because it
isn't indented.

false Disable the Pandoc note syntax extension.

706 \@@_add_lua_option:nnn
707 { notes }

708 { boolean }

709  { false }

710 defaultOptions.notes = false

pipeTables=true, false default: false

true Enable the PHP Markdown pipe table syntax extension:

Default | Center

I

2

12 |
I

I

| 12 | |
| 123 | 123 123 | 123
| 1 1 1 1
false Disable the pHP Markdown pipe table syntax extension.

711 \@@_add_lua_option:nnn
712 { pipeTables }

713 { boolean }

714  { false }

715 defaultOptions.pipeTables = false

41




preserveTabs=true, false

true

false

default: true

Preserve tabs in code block and fenced code blocks.

Convert any tabs in the input to spaces.

716 \@@_add_lua_option:nnn

v
718

719

{ preserveTabs }
{ boolean }
{ true }

720 defaultOptions.preserveTabs = true

rawAttribute=true, false

true

false

default: false

Enable the Pandoc raw attribute syntax extension®*:

“$H_2 0% {=tex} is a liquid.

To enable raw blocks, the fencedCode option must also be enabled:

Here is a mathematical formula:
T {=tex}
\[distance[i] =
\begin{dcases}
a & b \\
c & d
\end{dcases}
\]

The rawAttribute option is a good alternative to the hybrid option.
Unlike the hybrid option, which affects the entire document, the

rawAttribute option allows you to isolate the parts of your documents
that use TeX:

Disable the Pandoc raw attribute syntax extension.

721 \@@_add_lua_option:nnn

722
723
724

{ rawAttribute }
{ boolean }
{ false }

725 defaultOptions.rawAttribute = false

24Gee https://pandoc.org/MANUAL . html#extension-raw_attribute.

42


https://pandoc.org/MANUAL.html#extension-raw_attribute

relativeReferences=true, false default: false

true Enable relative references?® in autolinks:

I conclude in Section <#conclusion>.

Conclusion {#conclusion}

In this paper, we have discovered that most
grandmas would rather eat dinner with their
grandchildren than get eaten. Begone, wolf!

false Disable relative references in autolinks.

2
72 { relativeReferences }
728 { boolean }

729  { false }

730 defaultOptions.relativeReferences = false

shiftHeadings={shift amount) default: 0

All headings will be shifted by {(shift amounty, which can be both positive and
negative. Headings will not be shifted beyond level 6 or below level 1. Instead, those

headings will be shifted to level 6, when (shift amount) is positive, and to level 1,
when (shift amount) is negative.

I \@@_add_lua_option:nnn
2 { shiftHeadings }
{ number }

3
34 { 0%}

735 defaultOptions.shiftHeadings = O

slice=(the beginning and the end of a slice) default: ~ $

Two space-separated selectors that specify the slice of a document that will be

processed, whereas the remainder of the document will be ignored. The following
selectors are recognized:

o The circumflex (7) selects the beginning of a document.
o The dollar sign ($) selects the end of a document.

25See https://datatracker.ietf.org/doc/html/rfc3986#section-4.2.

43


https://datatracker.ietf.org/doc/html/rfc3986#section-4.2

o “(identifier) selects the beginning of a section (see the headerAttributes
option) or a fenced div (see the fencedDivs option) with the HTML attribute
#(identifier).

o $(identifier) selects the end of a section with the HTML attribute #(identifier).

o (identifier) corresponds to ~(identifier) for the first selector and to $identifier)
for the second selector.

Specifying only a single selector, (identifier), is equivalent to specifying the two
selectors (identifier) {identifier), which is equivalent to ~(identifier) ${identifier),
i.e. the entire section with the HTML attribute #(identifier) will be selected.

736 \@@_add_lua_option:nnn
3

737 { slice }
738 { slice }
9 {7-$}
740 defaultOptions.slice = "~ §"
smartEllipses=true, false default: false
true Convert any ellipses in the input to the \markdownRendererEllipsis
TEX macro.
false Preserve all ellipses in the input.

741 \@@_add_lua_option:nnn
742 { smartEllipses }
743 { boolean }

744 { false }

745 defaultOptions.smartEllipses = false

startNumber=true, false default: true
true Make the number in the first item of an ordered lists significant. The
item numbers will be passed to the \markdownRenderer0lItemWithNumber
TEX macro.
false Ignore the numbers in the ordered list items. Each item will only

produce a \markdownRendererOlItem TEX macro.

746 \@@_add_lua_option:nnn
747 { startNumber }

748 { boolean }

749  { true }

750 defaultOptions.startNumber = true

44



strikeThrough=true, false default: false

true Enable the Pandoc strike-through syntax extension?:

This ~~is deleted text.-~~

false Disable the Pandoc strike-through syntax extension.

I \@@_add_lua_option:nnn
2 { strikeThrough }

3 { boolean }

1 { false }

755 defaultOptions.strikeThrough = false

stripIndent=true, false default: false

true Strip the minimal indentation of non-blank lines from all lines in a

markdown document. Requires that the preserveTabs Lua option is
disabled:

\documentclass{article}
\usepackage [stripIndent]{markdown}
\begin{document}
\begin{markdown}
Hello *world*!
\end{markdown}
\end{document}

false Do not strip any indentation from the lines in a markdown document.

756 \@@_add_lua_option:nnn
757 { stripIndent }

758  { boolean }

759  { false }

760 defaultOptions.stripIndent = false

26See https://pandoc.org/MANUAL . html#extension-strikeout.

45


https://pandoc.org/MANUAL.html#extension-strikeout

subscripts=true, false default: false

true Enable the Pandoc subscript syntax extension?:

H~2~0 is a liquid.

false Disable the Pandoc subscript syntax extension.

761 \@@_add_lua_option:nnn
762 { subscripts }

763 { boolean }

764  { false }

765 defaultOptions.subscripts = false

superscripts=true, false default: false

true Enable the Pandoc superscript syntax extension?®:

27107 is 1024.

false Disable the Pandoc superscript syntax extension.

766 \@@_add_lua_option:nnn
767  { superscripts }

768  { boolean }

769 { false }

770 defaultOptions.superscripts = false

tableAttributes=true, false default: false

true

Enable the assignment of HTML attributes to table captions (see the
tableCaptions option).

T md

| Right | Left | Default | Center |
| —————-: | :m—-—- | -==—=- R 2
| 12 | 12 | 12 | 12 |
| 123 | 123 | 123 | 123 |
| 1 | 1 1| 1|

: Demonstration of pipe table syntax. {#example-table}

?"See https://pandoc.org/MANUAL . html#extension-superscript-subscript.
28Gee https://pandoc.org/MANUAL . html#extension-superscript-subscript.

46



https://pandoc.org/MANUAL.html#extension-superscript-subscript
https://pandoc.org/MANUAL.html#extension-superscript-subscript

false Disable the assignment of HTML attributes to table captions.

71 \@@_add_lua_option:nnn
72 { tableAttributes }
73 { boolean }

74 { false }

775 defaultOptions.tableAttributes = false

tableCaptions=true, false default: false

true

Enable the Pandoc table caption syntax extension?’ for pipe tables (see the
pipeTables option).

ST md

| Right | Left | Default | Center |
| -————-: | imm——- | ——==—- | :===——- 2
| 12 | 12 | 12 | 12 |
| 123 | 123 | 123 | 123 |
| 11 1 1| 1 |

false Disable the Pandoc table caption syntax extension.

776 \@@_add_lua_option:nnn
777 { tableCaptions }
778 { boolean }

779  { false }

780 defaultOptions.tableCaptions = false

taskLists=true, false default: false

true Enable the Pandoc task list syntax extension®’

- [ ] an unticked task list item
- [/] a half-checked task list item
- [X] a ticked task list item

false Disable the Pandoc task list syntax extension.

298ee https://pandoc.org/MANUAL . html#extension-table_captions.
30See https://pandoc.org/MANUAL . html#extension-task_lists.

47


https://pandoc.org/MANUAL.html#extension-table_captions
https://pandoc.org/MANUAL.html#extension-task_lists

781 \@@_add_lua_option:nnn
782 { taskLists }

783 { boolean }

784 { false }

785 defaultOptions.taskLists = false

texComments=true, false

true Strip TEX-style comments.

default: false

\documentclass{article}
\usepackage [texComments] {markdown}
\begin{document}

\begin{markdown}

Hello *worldx!

\end{markdown}

\end{document}

Always enabled when hybrid is enabled.

false Do not strip TEX-style comments.

786 \@@_add_lua_option:nnn
787  { texComments }

788 { boolean }

789  { false }

790 defaultOptions.texComments = false

texMathDollars=true, false

default: false

true Enable the Pandoc dollar math syntax extension®':
inline math: $E=mc~2$
display math: $$E=mc~23$$

false Disable the Pandoc dollar math syntax extension.

791 \@@_add_lua_option:nnn
792 { texMathDollars }
793 { boolean }

794  { false }

795 defaultOptions.texMathDollars = false

31See https://pandoc. org/MANUAL.html#extension-tex_math_dollars.

48


https://pandoc.org/MANUAL.html#extension-tex_math_dollars

texMathDoubleBackslash=true, false default: false

true Enable the Pandoc double backslash math syntax extension’?:

inline math: \\(E=mc~2\\)

display math: \\[E=mc~2\\]

false Disable the Pandoc double backslash math syntax extension.

796 \@@_add_lua_option:nnn

797 { texMathDoubleBackslash }
798 { boolean }

799  { false }

800 defaultOptions.texMathDoubleBackslash = false

texMathSingleBackslash=true, false default: false

true Enable the Pandoc single backslash math syntax extension®:

inline math: \(E=mc~2\)

display math: \[E=mc~2\]

false Disable the Pandoc single backslash math syntax extension.

801 \@@_add_lua_option:nnn

802  { texMathSingleBackslash }
803 { boolean }

804 { false }

805 defaultOptions.texMathSingleBackslash = false

tightLists=true, false default: true

true Unordered and ordered lists whose items do not consist of multiple
paragraphs will be considered tight. Tight lists will produce tight
renderers that may produce different output than lists that are not
tight:

32Gee https://pandoc.org/MANUAL . html#extension-tex_math_double_backslash.
33See https://pandoc.org/MANUAL . html#extension-tex_math_single_backslash.

49


https://pandoc.org/MANUAL.html#extension-tex_math_double_backslash
https://pandoc.org/MANUAL.html#extension-tex_math_single_backslash

- This is
a tight
unordered list.

This is
not a tight

- unordered list.

false Unordered and ordered lists whose items consist of multiple paragraphs
will be treated the same way as lists that consist of multiple paragraphs.

806 \@Q@_add_lua_option:nnn

807 { tightLists }
808 { boolean }
809  { true }

810 defaultOptions.tightLists = true

underscores=true, false default: true

true Both underscores and asterisks can be used to denote emphasis and
strong emphasis:

*single asterisksx*
_single underscores_
**double asterisks**
__double underscores__

false Only asterisks can be used to denote emphasis and strong emphasis.
This makes it easy to write math with the hybrid option without the
need to constantly escape subscripts.

811 \@@_add_lua_option:nnn
812 { underscores }

813 { boolean }

814  { true }

815 \ExplSyntax0ff

816 defaultOptions.underscores = true

50



2.1.7 Command-Line Interface

The high-level operation of the Markdown package involves the communication
between several programming layers: the plain TEX layer hands markdown documents
to the Lua layer. Lua converts the documents to TEX, and hands the converted
documents back to plain TEX layer for typesetting, see Figure 2.

This procedure has the advantage of being fully automated. However, it also has
several important disadvantages: The converted TEX documents are cached on the
file system, taking up increasing amount of space. Unless the TEX engine includes
a Lua interpreter, the package also requires shell access, which opens the door for
a malicious actor to access the system. Last, but not least, the complexity of the
procedure impedes debugging.

A solution to the above problems is to decouple the conversion from the typesetting.
For this reason, a command-line Lua interface for converting a markdown document
to TEX is also provided, see Figure 3.

User TEX Lua

\jobname.tex

\jobname.markdown.in

».
L
\jobname .markdown.out J]
o o ____

\jobname. pdf

Figure 2: A sequence diagram of the Markdown package typesetting a markdown
document using the TgX interface

817 .TH MARKDOWN2TEX 1 "(((LASTMODIFIED)))"
818 .SH NAME

819 markdown2tex \- convert .md files to .tex
820 .SH SYNOPSIS

< /lua-cli-manpage> <*lua-cli>

821 local HELP_STRING = "Usage: " .. [[

< /lua-cli> <*lua-cli,lua-cli-manpage>
822 markdown2tex [OPTIONS] -- [INPUT_FILE] [OUTPUT_FILE]
823

< /lua-cli,lua-cli-manpage> <*lua-cli-manpage>
824 .SH DESCRIPTION

ol



User TEX Lua

{documenty.md

».
L
{document).tex J:}

\jobname. tex

\input {document)

__0
\jobname.pdf

Figure 3: A sequence diagram of the Markdown package typesetting a markdown
document using the Lua command-line interface

825 % \end{macrocode}

826 (/lua-cli-manpage)

827 (xlua-cli, lua-cli-manpage)

828 % \begin{macrocode}

829 OPTIONS are documented in Section 2.2.1 of the Markdown Package User
830 Manual (https://ctan.org/pkg/markdown) .

831

832 When OUTPUT_FILE is unspecified, the result of the conversion will be
833 written to the standard output. When INPUT_FILE is also unspecified, the
834 result of the conversion will be read from the standard input.

835 % \end{macrocode}

836 {/lua-cli, lua-cli-manpage)

837 (xlua-cliy

838 % \begin{macrocode}

839

840 Report bugs to: witiko@mail.muni.cz

841 Markdown package home page: <https://github.com/witiko/markdown>]]

842

843 local VERSION_STRING = [[

844 markdown2tex (Markdown) ]] .. metadata.version .. [[

845

846 Copyright (C) 1] .. table.concat(metadata.copyright,

847 "\nCopyright (C) ") .. [[
848

849 License: ]] .. metadata.license

850

851 local function warn(s)

852 io.stderr:write("Warning:
853 end

s .. "\Il")

92



854
855 local function error(s)

856 io.stderr:write("Error: " s .. "\n")
857 os.exit (1)
858 end

To make it easier to copy-and-paste options from Pandoc [7] such as fancy_lists,
header_attributes, and pipe_tables, we accept snake_case in addition to camel-
Case variants of options. As a bonus, studies [8] also show that snake case is faster
to read than camelCase.

859 local function camel_case(option_name)

860  local cased_option_name = option_name:gsub("_(%1)", function(match)
861 return match:sub(2, 2):upper()

862  end)

863 return cased_option_name

864 end

865

866 local function snake_case(option_name)

867  local cased_option_name = option_name:gsub("%1l%u", function(match)
868 return match:sub(1, 1) .. "_" .. match:sub(2, 2):lower()

869  end)

870 return cased_option_name

871 end

872

873 local cases = {camel_case, snake_case}

874 local various_case_options = {}

875 for option_name, _ in pairs(defaultOptions) do
876  for _, case in ipairs(cases) do

877 various_case_options[case(option_name)] = option_name
878  end

879 end

880

881 local process_options = true
882 local options = {}

883 local input_filename

884 local output_filename

885 for i = 1, #arg do

886 if process_options then

After the optional -- argument has been specified, the remaining arguments are
assumed to be input and output filenames. This argument is optional, but encouraged,
because it helps resolve ambiguities when deciding whether an option or a filename
has been specified.

887 if arg[i] == "--" then
888 process_options = false
889 goto continue

93



Unless the —— argument has been specified before, an argument containing the equals
sign (=) is assumed to be an option specification in a (key)=(value) format. The
available options are listed in Section 2.1.3.

890 elseif argl[i]:match("=") then

891 local key, value = argli]:match("(.-)=(.*%)")
892 if defaultOptions[key] == nil and

893 various_case_options[key] ~= nil then

894 key = various_case_options [key]

895 end

The defaultOptions table is consulted to identify whether (value) should be parsed
as a string, number, table, or boolean.

896 local default_type = type(defaultOptions[key])

897 if default_type == "boolean" then

898 options([key] = (value == "true")

899 elseif default_type == "number" then

900 options[key] = tonumber(value)

901 elseif default_type == "table" then

902 options[key] = {2}

903 for item in value:gmatch("[~ ,1+") do

904 table.insert (options[key], item)

905 end

906 else

907 if default_type ~= "string" then

908 if default_type == "nil" then

909 warn('Option "' .. key .. '" not recognized.')

910 else

911 warn('Option "' .. key .. '" type not recognized, '
912 'please file a report to the package maintainer.')
913 end

914 warn('Parsing the ' 'value "' .. value ..'" of option "'
915 key .. '" as a string.')

916 end

917 options[key]l = value

918 end

919 goto continue

Unless the -- argument has been specified before, an argument --help, or -h causes
a brief documentation for how to invoke the program to be printed to the standard
output.

920 elseif arg[i] == "--help" or arg[i] == "-h" then
921 print (HELP_STRING)
922 os.exit ()

Unless the —-- argument has been specified before, an argument --version, or -v
causes the program to print information about its name, version, origin and legal
status, all on standard output.

o4



923 elseif arg[i] == "--version" or argl[i] == "-v" then

924 print (VERSION_STRING)
925 os.exit()

926 end

927 end

The first argument that matches none of the above patterns is assumed to be the
input filename. The input filename should correspond to the Markdown document
that is going to be converted to a TEX document.

928 if input_filename == nil then

929 input_filename = argl[i]
The first argument that matches none of the above patterns is assumed to be the
output filename. The output filename should correspond to the TEX document that
will result from the conversion.

930  elseif output_filename == nil then

931 output_filename = argl[il

932  else

933 error ('Unexpected argument: "' .. arg[i] .. '".")
934 end

935 ::continue::

936 end

The command-line Lua interface is implemented by the files markdown-cli.lua and
markdown2tex.lua, which can be invoked from the command line as follows:

markdown2tex cacheDir=. -- hello.md hello.tex

to convert the Markdown document hello.md to a TEX document hello.tex. After
the Markdown package for our TX format has been loaded, the converted document
can be typeset as follows:

\input hello

2.2 Plain TgX Interface

The plain TEX interface provides macros for the typesetting of markdown input from
within plain TEX, for setting the Lua interface options (see Section 2.1.3) used during
the conversion from markdown to plain TEX and for changing the way markdown
the tokens are rendered.

937 \def\markdownLastModified{ (((LASTMODIFIED)))}%

938 \def\markdownVersion{ (((VERSION)))}%
The plain TEX interface is implemented by the markdown.tex file that can be loaded
as follows:

\input markdown

95



It is expected that the special plain TEX characters have the expected category codes,
when \inputting the file.

2.2.1 Typesetting Markdown and YAML

The interface exposes the \markdownBegin, \markdownEnd, \yamlBegin, \yamlEnd,
\markinline, \markdownInput, \yamlInput, and \markdownEscape macros.

2.2.1.1 Typesetting Markdown and YAML directly

The \markdownBegin macro marks the beginning of a markdown document frag-
ment and the \markdownEnd macro marks its end.

939 \let\markdownBegin\relax

940 \let\markdownEnd\relax
You may prepend your own code to the \markdownBegin macro and redefine the
\markdownEnd macro to produce special effects before and after the markdown block.

There are several limitations to the macros you need to be aware of:

The first limitation concerns the \markdownEnd macro, which must be visible
directly from the input line buffer (it may not be produced as a result of input
expansion). Otherwise, it will not be recognized as the end of the markdown
string. As a corrolary, the \markdownEnd string may not appear anywhere inside the
markdown input.

Another limitation concerns spaces at the right end of an input line. In mark-
down, these are used to produce a forced line break. However, any such spaces are
removed before the lines enter the input buffer of TEX [9, p. 46]. As a corrolary, the
\markdownBegin macro also ignores them.

The \markdownBegin and \markdownEnd macros will also consume the rest of the
lines at which they appear. In the following example plain TEX code, the characters
c, e, and £ will not appear in the output.

\input markdown

a

b \markdownBegin c
d

e \markdownEnd f

g
\bye

Note that you may also not nest the \markdownBegin and \markdownEnd macros.
The following example plain TEX code showcases the usage of the \markdownBegin
and \markdownEnd macros:

o6



\input markdown
\markdownBegin
_Hello_ **worldx*x*
\markdownEnd

\bye

The \yamlBegin macro marks the beginning of an YAML document fragment and
the \yamlEnd macro marks its end.

941 \let\yamlBegin\relax

942 \def\yamlEnd{\markdownEnd\endgroup}
The \yamlBegin and \yamlEnd macros are subject to the same limitations as the
\markdownBegin and \markdownEnd macros.

The following example plain TEX code showcases the usage of the \markdownBegin
and \markdownEnd macros:

\input markdown
\yamlBegin

title: _Hello_ **world*x
author: John Doe
\yamlEnd

\bye

The above code has the same effect as the below code:

\input markdown

\yamlSetup{jekyllData, expectJekyllData, ensureJekyllData}
\markdownBegin

title: _Hello_ **world*x

author: John Doe

\markdownEnd

\bye

You can use the \markinline macro to input inline markdown content.
943 \let\markinline\relax

The following example plain TEX code showcases the usage of the \markinline
macro:

\input markdown
\markinline{_ Hello_ **world**}
\bye

o7



The above code has the same effect as the below code:

\input markdown
\markdownSetup{contentLevel=inline}
\markdownBegin

_Hello_ **worldx**

\markdownEnd

\bye

The \markinline macro is subject to the same limitations as the \markdownBegin
and \markdownEnd macros.

2.2.1.2 Typesetting Markdown and YAML from external documents

You can use the \markdownInput macro to include markdown documents, similarly
to how you might use the \input TEX primitive to include TEX documents. The
\markdownInput macro accepts a single parameter with the filename of a markdown
document and expands to the result of the conversion of the input markdown
document to plain TEX.

944 \let\markdownInput\relax

The macro \markdownInput is not subject to the limitations of the \markdownBegin
and \markdownEnd macros.

The following example plain TEX code showcases the usage of the \markdownInput
macro:

\input markdown
\markdownInput{hello.md}
\bye

You can use the \yamlInput macro to include YAML documents. similarly to how
you might use the \input TEX primitive to include TEX documents. The \yamlInput
macro accepts a single parameter with the filename of a YAML document and expands
to the result of the conversion of the input YAML document to plain TEX.

945 \def\yamlInput#1{Y

946 \begingroup

947 \yamlSetup{jekyllData, expectJekyllData, ensureJekyllDatal,

948 \markdownInput{#1}%

949 \endgroup

950 }%
The macro \yamlInput is also not subject to the limitations of the \markdownBegin
and \markdownEnd macros.

The following example plain TEX code showcases the usage of the \markdownInput
macro:

o8



\input markdown
\yamlInput{hello.yml}
\bye

The above code has the same effect as the below code:

\input markdown

\yamlSetup{jekyllData, expectJekyllData, ensureJekyllData}
\markdownInput{hello.yml}

\bye

2.2.1.3 Typesetting TeX from inside Markdown and YAML documents

The \markdownEscape macro accepts a single parameter with the filename of a TRX
document and executes the TEX document in the middle of a markdown document
fragment. Unlike the \input built-in of TEX, \markdownEscape guarantees that the
standard catcode regime of your TEX format will be used.

951 \let\markdownEscape\relax

2.2.2 Options

The plain TEX options are represented by TEX commands. Some of them map
directly to the options recognized by the Lua interface (see Section 2.1.3), while some
of them are specific to the plain TEX interface.

To determine whether plain TEX is the top layer or if there are other layers above
plain TEX, we take a look on whether the \c_00@_top_layer_tl token list has already
been defined. If not, we will assume that plain TEX is the top layer.

952 \ExplSyntax0On

953 \tl_const:Nn \c_@@_option_layer_plain_tex_tl { plain_tex }
954 \cs_generate_variant:Nn

955  \tl_const:Nn

956 { NV }

957 \tl_if_exist:NF

958 \c_0@_top_layer_tl

959 o

960 \tl_const:NV

961 \c_0Q@_top_layer_tl

962 \c_0Q@_option_layer_plain_tex_tl
963}

To enable the enumeration of plain TEX options, we will maintain the
\g_0@@_plain_tex_options_seq sequence.
964 \seq_new:N \g_0@_plain_tex_options_seq

99



To enable the reflection of default/experimental plain TEX options and
their types, we will maintain the \g_00@_default_plain_tex_options_prop,
\g_0Q@_experimental_plain_tex_options_seqand \g_0@_plain_tex_option_types_prop
property lists and sequences, respectively.

965 \prop_new:N \g_0@_plain_tex_option_types_prop

966 \prop_new:N \g_0@_default_plain_tex_options_prop

967 \seq_new:N \g_Q@_experimental_plain_tex_options_seq

968 \seq_gput_right:NV

969 \g_0@_option_layers_seq

970 \c_0@_option_layer_plain_tex_tl

971 \cs_new:Nn

972 \@@_add_plain_tex_option:nnn

973 {

974 \@@_add_option:Vnnn

975 \c_0@_option_layer_plain_tex_tl
976 {#1}

977 {#2 }

978 { #3 }

979}

The plain TEX options may be also be specified via the \markdownSetup macro. Here,
the plain TEX options are represented by a comma-delimited list of {(key)=(value)
pairs. For boolean options, the =(value) part is optional, and (key) will be interpreted
as (key)=true if the =(value) part has been omitted. The \markdownSetup macro
receives the options to set up as its only argument.

980 \cs_new:Nn

981  \@@_setup:n

982 {

983 \keys_set:nn

984 { markdown/options }
985 { #1 1%

986 ¥

987 \cs_gset_eq:NN

988  \markdownSetup

989 \Q@@_setup:n
The command \yamlSetup is also available as an alias for the command
\markdownSetup.

990 \cs_gset_eq:NN

991 \yamlSetup

992 \markdownSetup

The \markdownIfOption{{name)y{{iftrue)}{{iffalse)} macro is provided for test-
ing, whether the value of \markdownOption{(name) is true. If the value is true,
then (iftrue) is expanded, otherwise (iffalse) is expanded.

993 \prg_new_conditional:Nnn

994  \@@_if_option:n

60



995 {TF, T, F }

996 {

997 \@@_get_option_type:nN

998 { #1732

999 \1_tmpa_tl

1000 \str_if_eq:NNF

1001 \1_tmpa_tl

1002 \c_0@@_option_type_boolean_tl
1003 {

1004 \msg_error :nnxx

1005 { markdown }

1006 { expected-boolean-option }
1007 {#1 3}

1008 { \1_tmpa_tl }

1009 }

1010 \Q@_get_option_value:nN
1011 {#1}

1012 \1_tmpa_tl

1013 \str_if_eq:NNTF

1014 \1_tmpa_tl

1015 \c_0Q@_option_value_true_tl
1016 { \prg_return_true: }
1017 { \prg_return_false: }
1018}

1019 \msg_new:nnn

1020 { markdown }

1021 { expected-boolean-option }
1022 {

1023 Option~#1~has~type~#2,~
1024 but~a~boolean~was~expected.
1025}

1026 \let

1027 \markdownIfOption
1028 \@@_if_option:nTF

2.2.2.1 Finalizing and Freezing the Cache

The \markdownOptionFinalizeCache option corresponds to the Lua interface
finalizeCache option, which creates an output file frozenCacheFileName (frozen
cache) that contains a mapping between an enumeration of the markdown documents
in the plain TEX document and their auxiliary files cached in the cacheDir directory.

The \markdownOptionFrozenCache option uses the mapping previously created
by the finalizeCache option, and uses it to typeset the plain TEX document
without invoking Lua. As a result, the plain TEX document becomes more portable,
but further changes in the order and the content of markdown documents will not
be reflected. It defaults to false.

61



1029 \@@_add_plain_tex_option:nnn
1030 { frozenCache }

1031 { boolean }

1032 { false }

)
):
0:
(05

The standard usage of the above two options is as follows:

Remove the cacheDir cache directory with stale auxiliary cache files.

Enable the finalizeCache option.

Typeset the plain TEX document to populate and finalize the cache.

Enable the frozenCache option.

Publish the source code of the plain TEX document and the cacheDir directory.

A i o

2.2.2.2 File and Directory Names  The \markdownOptionInputTempFileName
macro sets the filename of the temporary input file that is created during the buffering
of markdown text from a TEX source. It defaults to \ jobname.markdown.in.

The expansion of this macro must not contain quotation marks (") or backslash
symbols (\).
1033 \tl_set:Nn
1034 \1_tmpa_tl
1035 {
1036 \str_use:N
1037 \g_0@_unquoted_jobname_str

1038 .markdown.in
1039}

1040 \bool_if:NT

1041 \g_0@_jobname_quoted_bool
1042 {

1043 \tl_put_left:Nn
1044 \1_tmpa_tl

1045 {"}

1046 \tl_put_right:Nn
1047 \1_tmpa_tl

1048 {"17}

1049 }

\cs_generate_variant:Nn
\@@_add_plain_tex_option:nnn
{ nnv }
\@@_add_plain_tex_option:nnV
{ inputTempFileName }
{ path }
\1_tmpa_tl

T = W N =

gt Ot Ot Ot Ut Ut Ut

The \markdownOptionOutputDir macro sets the path to the directory that will
contain the auxiliary cache files produced by the Lua implementation and also the
auxiliary files produced by the plain TEX implementation. The option defaults to .

62



or, since TEX Live 2024, to the value of the —output-directory option of your TEX
engine.

In MikTEX, this automatic detection is currently only supported with LuaTgX>4. If
you need to use MikTEX and cannot use LuaTgX, you can either a) fix the automatic
detection by setting the environmental variable TEXMF_OUTPUT_DIRECTORY manually
or by setting the \markdownOptionOutputDir option manually.

The path must be set to the same value as the -output-directory option of
your TEX engine for the package to function correctly. We need this macro to make
the Lua implementation aware where it should store the helper files. The same
limitations apply here as in the case of the inputTempFileName macro.

58  { outputDir }
50 { path }
60 { .}

2.2.2.3 No default token renderer prototypes

The Markdown package provides default definitions for token renderer prototypes
using the witiko/markdown/defaults theme (see Section 2.2.3). Although these
default definitions provide a useful starting point for authors, they use extra resources,
especially with higher-level TEX formats such as KTEX and ConTEXt. Furthermore,
the default definitions may change at any time, which may pose a problem for
maintainers of Markdown themes and templates who may require a stable output.

The \markdownOptionPlain macro specifies whether higher-level TEX formats
should only use the plain TEX default definitions or whether they should also use the
format-specific default definitions. Whereas plain TEX default definitions only provide
definitions for simple elements such as emphasis, strong emphasis, and paragraph
separators, format-specific default definitions add support for more complex elements
such as lists, tables, and citations. On the flip side, plain TEX default definitions load
no extra resources and are rather stable, whereas format-specific default definitions
load extra resources and are subject to a more rapid change.

Here is how you would enable the macro in a A TEX document:

\usepackage [plain] {markdown}

Here is how you would enable the macro in a ConTEXt document:

\def\markdownOptionPlain{true}
\usemodule [t] [markdown]

31See https://github.com/MiKTeX/miktex/issues/1630.

63


https://github.com/MiKTeX/miktex/issues/1630

The macro must be set before or during the loading of the package. Setting the
macro after loading the package has no effect.
1061 \@@_add_plain_tex_option:nnn
1062  { plain }
1063 { boolean }
1064  { false }
The \markdownOptionNoDefaults macro specifies whether we should prevent the
loading of default definitions or not. This is useful in contexts, where we want to
have total control over how all elements are rendered.

Here is how you would enable the macro in a KTEX document:

\usepackage [noDefaults]{markdown}

Here is how you would enable the macro in a ConTEXt document:

\def\markdownOptionNoDefaults{true}
\usemodule [t] [markdown]

The macro must be set before or during the loading of the package. Setting the
macro after loading the package has no effect.
1065 \@@_add_plain_tex_option:nnn
1066 { noDefaults }
1067  { boolean }
1068 { false }

2.2.2.4 Miscellaneous Options
The \markdownOptionStripPercentSigns macro controls whether a percent sign
(%) at the beginning of a line will be discarded when buffering Markdown input (see
sections 3.2.5 and 3.2.6) or not. Notably, this enables the use of markdown when
writing TEX package documentation using the Doc IXTEX package [10] or similar.
The recognized values of the macro are true (discard) and false (retain). It defaults
to false.
1069 \seq_gput_right:Nn
1070 \g_@@_plain_tex_options_seq
1071 { stripPercentSigns }
2 \prop_gput:Nnn
3 \g_0@_plain_tex_option_types_prop
4 { stripPercentSigns }
5 { boolean }
6 \prop_gput:Nnx
7 \g_00@_default_plain_tex_options_prop
8 { stripPercentSigns }
9 { false }

64



2.2.2.5 Generating Plain TEX Option Macros and Key-Values

We define the command \@@_define_option_commands_and_keyvals: that de-
fines plain TEX macros and the key—value interface of the \markdownSetup macro
for the above plain TEX options.

The command also defines macros and key—values that map directly to the options
recognized by the Lua interface, such as \markdownOptionHybrid for the hybrid Lua
option (see Section 2.1.3), which are not processed by the plain TEX implementation,
only passed along to Lua.

Furthermore, the command also defines options and key—values for subsequently
loaded layers that correspond to higher-level TEX formats such as IXTEX and ConTgXt.

For the macros that correspond to the non-boolean options recognized by the Lua
interface, the same limitations apply here in the case of the inputTempFileName
macro.

1080 \cs_new:Nn
1081 \@@_define_option_commands_and_keyvals:

1082 {

1083 \seq_map_inline:Nn

1084 \g_0Q@_option_layers_seq

1085 {

1086 \seq_map_inline:cn

1087 { g_0o_ ##1 _options_seq }

1088 {

1089 \Q@_define_option_command:n

1090 { ##u#1 T

To make it easier to copy-and-paste options from Pandoc [7] such as fancy_lists,
header_attributes, and pipe_tables, we accept snake case in addition to camel-
Case variants of options. As a bonus, studies [8] also show that snake_case is faster
to read than camelCase.

1091 \@@_with_various_cases:nn
1092 { ###41 }

1093 {

1094 \@@_define_option_keyval:nnn
1095 { ##1 }

1096 { ###4#1 }

1097 { ###uunnl )

1098 }

1099 }

1100 }

1101 }

1102 \cs_new:Nn

1103 \@@_define_option_command:n

1104 {

For experimental options, redirect the option command to the option command
\markdownOptionExperimental.

65



1105 \bool_set_false:N

1106 \1_tmpa_bool

1107 \seq_map_inline:Nn

1108 \g_00@_option_layers_seq

1109 {

1110 \seq_if_in:cnT

1111 { g_0Q@_experimental_ ##1 _options_seq }
1112 { #1 %

1113 {

1114 \bool_set_true:N

1115 \1_tmpa_bool

1116 \seq_map_break:

1117 }

1118 }

1119 \bool_if:NTF

1120 \1_tmpa_bool

1121 {

1122 \_0Q@_option_tl_to_csname:nN
1123 {#1 3}

1124 \1_tmpa_tl

1125 \cs_if_exist:cF

1126 { \1_tmpa_tl }

1127 {

1128 \cs_gset:cpn

1129 { \1_tmpa_t1 }

1130 { \markdownOptionExperimental }
1131 ¥

1132 }

1133 {

Use the It3luabridge library to determine the default value of the \markdownOptionOutputDir
macro.

1134 \str_if_eq:nnTF

1135 {#1 %

1136 { outputDir }

1137 { \@@_define_option_command_output_dir: }
1138 {

Do not override options defined before loading the package.

1139 \@@_option_tl_to_csname:nN

1140 {#1 3}

1141 \1_tmpa_tl

1142 \cs_if_exist:cF

1143 { \1_tmpa_t1 }

1144 {

1145 \@@_get_default_option_value:nN
1146 {#1 %

1147 \1_tmpa_tl

66



1148 \Q@@_set_option_value:nV

1149 {#1 }
1150 \1_tmpa_t1
1151 }

1152 }

1153 }

1154}

1155 \ExplSyntaxOff

1156 \input 1t3luabridge.tex

Use the It3luabridge library to determine the default value of the \markdownOptionOutputDir
macro by using one of the following:

1. The status.output_directory variable [2, Section 10.2], which is available
since LuaTEX 1.18.0 from TeX Live 2024 and in other TEX distributions like
MikTEX since ca March 2024. We are only able to read this variable in LuaTpX
and not other TEX engines.

2. The TEXMF_QUTPUT_DIRECTORY environmental variable, which is available since
TEX Live 2024. We are only able to read this variable in TEX Live and not
some other TEX distributions like MikTEX.

1157 \ExplSyntaxOn
1158 \cs_new:Nn
1159 \@@_define_option_command_output_dir:

1160  {

1161 \cs_if_free:NT

1162 \markdownOptionOutputDir

1163 {

1164 \bool_if :nTF

1165 {

1166 \cs_if_exist_p:N

1167 \luabridge_tl_set:Nn &&

1168 (

1169 \int_compare_p:nNn

1170 { \g_luabridge_method_int }
1171 =

1172 { \c_luabridge_method_directlua_int } ||
1173 \sys_if_shell_unrestricted_p:
1174 )

1175 }

1176 {

Set most catcodes to category 12 (other) to ensure that special characters in the
output directory name such as backslashes (\) are not interpreted as control sequences.
1177 \group_begin:
1178 \cctab_select:N

67



1179 \c_str_cctab

1180 \luabridge_t1l_set:Nn

1181 \1_tmpa_tl

1182 {

1183 print(

1184 (status.output_directory)
1185 or~os.getenv ("TEXMF_QUTPUT_DIRECTORY")
1186 or~"."

1187 )

1188 }

1189 \tl_gset:NV

1190 \markdownOptionQutputDir
1191 \1_tmpa_tl

1192 \group_end:

1193 }

1194 {

1195 \tl_gset:Nn

1196 \markdownOptionOutputDir
1197 {.3

1198 }

1199 }

1200}

1201 \cs_new:Nn
1202 \@@_set_option_value:nn

1203 {

1204 \@@_define_option:n

1205 {#1}

1206 \Q@_get_option_type:nN

1207 {#1}

1208 \1_tmpa_tl

1209 \str_if_eq:NNTF

1210 \c_0Q@_option_type_counter_tl
1211 \1_tmpa_tl

1212 {

1213 \@@_option_tl_to_csname:nN
1214 { #1732

1215 \1_tmpa_tl

1216 \int_gset:cn

1217 { \1_tmpa_tl }

1218 {#2 %

1219 }

1220 {

1221 \@@_option_tl_to_csname:nN
1222 {#1 7

1223 \1_tmpa_tl

1224 \cs_set:cpn

1225 { \1_tmpa_tl }

68



1226 {#2 %}

1227 }

1228}

1229 \cs_generate_variant:Nn
1230 \@Q@_set_option_value:nn
1231 {nv?}

1232 \cs_new:Nn
1233  \@@_define_option:n

1234 A{

1235 \@@_option_tl_to_csname:nN

1236 {#13}

1237 \1_tmpa_tl

1238 \cs_if_free:cT

1239 { \1_tmpa_t1 }

1240 {

1241 \@@_get_option_type:nN

1242 {#1}

1243 \1_tmpb_tl

1244 \str_if_eq:NNT

1245 \c_@Q@_option_type_counter_tl
1246 \1_tmpb_tl

1247 {

1248 \@@_option_tl_to_csname:nN
1249 {#1 3}

1250 \1_tmpa_t1

1251 \int_new:c

1252 { \1_tmpa_t1 }

1253 }

1254 }

1255  }

1256 \cs_new:Nn

1257 \Q@@_define_option_keyval:nnn
1258 {

1259 \prop_get:cnN

1260 { g_00_ #1 _option_types_prop }
1261 { #2 %

1262 \1_tmpa_tl

1263 \str_if_eq:VVTF

1264 \1_tmpa_tl

1265 \c_0@@_option_type_boolean_tl
1266 {

1267 \keys_define:nn

1268 { markdown/options }

1269 {

For boolean options, we also accept yes as an alias for true and no as an alias for
false.

69



1270 #3 .code:n = {

1271 \tl_set:Nx

1272 \1_tmpa_tl

1273 {

1274 \str_case:nnF

1275 { ##1 }

1276 {

1277 { yes } { true }
1278 { no } { false }
1279 }

1280 { ##1 }

1281 }

1282 \@@_set_option_value:nV
1283 {#2 }

1284 \1_tmpa_tl

1285 },

1286 #3 .default:n = { true },
1287 }

1288 }

1289 {

1290 \keys_define:nn

1291 { markdown/options }

1292 {

1293 #3 .code:n = {

1294 \@@_set_option_value:nn
1295 {#2}

1296 { ##1 }

1297 },

1298 }

1299 }

For options of type clist, we assume that (key) is a regular English noun in plural
(such as extensions) and we also define the (singular keyy=(value) interface, where
(singular key) is (key) after stripping the trailing -s (such as extension). Rather
than setting the option to (wvalue), this interface appends (value) to the current value
as the rightmost item in the list.

1300 \str_if_eq:VVT

1301 \1_tmpa_tl

1302 \c_0Q@_option_type_clist_tl
1303 {

1304 \tl_set:Nn

1305 \1_tmpa_tl
1306 { #3 }

1307 \tl_reverse:N
1308 \1_tmpa_tl
1309 \str_if_eq:enF
1310 {

70



1311 \tl_head:V

1312 \1_tmpa_tl

1313 }

1314 {s1}

1315 {

1316 \msg_error:nnn

1317 { markdown }

1318 { malformed-name-for-clist-option }
1319 {#3 1}

1320 ¥

1321 \tl_set:Nx

1322 \1_tmpa_tl

1323 {

1324 \tl_tail:V

1325 \1_tmpa_tl

1326 ¥

1327 \tl_reverse:N

1328 \1_tmpa_tl

1329 \tl_put_right:Nn

1330 \1_tmpa_tl

1331 {

1332 .code:n = {

1333 \@@_get_option_value:nN
1334 {#2 }

1335 \1_tmpa_tl

1336 \clist_set:NV

1337 \1_tmpa_clist

1338 { \1_tmpa_tl , { ##1 } }
1339 \@@_set_option_value:nV
1340 {#2 }

1341 \1_tmpa_clist

1342 }

1343 ¥

1344 \keys_define:nV

1345 { markdown/options }

1346 \1_tmpa_tl

1347 }

1348 }

1349 \cs_generate_variant:Nn

1350 \clist_set:Nn

1351 { NV }

1352 \cs_generate_variant:Nn

1353 \keys_define:nn

1354 { nV }

1355 \prg_generate_conditional_variant:Nnn
1356 \str_if_eq:nn

1357 { en }

71



1358 {p, F}

1359 \msg_new:nnn

1360  { markdown }

1361  { malformed-name-for-clist-option }

1362 {

1363 Clist~option~name~#1l~does~not~end~with~-s.

1364}

If plain TEX is the top layer, we use the \@@_define_option_commands_and_keyvals:
macro to define plain TEX option macros and key—values immediately. Otherwise,
we postpone the definition until the upper layers have been loaded.

1365 \str_if_eq:VVT

1366 \c_0@_top_layer_tl
1367 \c_0@_option_layer_plain_tex_tl
1368  {

1369 \Q@@_define_option_commands_and_keyvals:
1370}
1371 \ExplSyntaxOff

2.2.3 Themes

User-defined themes for the Markdown package provide a domain-specific interpreta-
tion of Markdown tokens. Themes allow the authors to achieve a specific look and
other high-level goals without low-level programming.

The key—values theme=(theme name) and import=(theme name), optionally
followed by @(theme version)y, load a TEX document (further referred to as a theme)
named markdowntheme(munged theme name).tex, where the munged theme name
is the theme name after the substitution of all forward slashes (/) for an underscore
(_). The theme name must be qualified and contain no underscores or at signs
(@). Themes are inspired by the Beamer IXTEX package, which provides similar
functionality with its \usetheme macro [11, Section 15.1].

A theme name is qualified if and only if it contains at least one forward slash.
Theme names must be qualified to minimize naming conflicts between different
themes with a similar purpose. The preferred format of a theme name is (theme
author)/{theme purposey/{private naming schemey, where the private naming scheme
may contain additional forward slashes. For example, a theme by a user witiko for
the MU theme of the Beamer document class may have the name witiko/beamer/MU.

Theme names are munged to allow structure inside theme names without dictating
where the themes should be located inside the TEX directory structure. For example,
loading a theme named witiko/beamer/MU would load a TEX document package
named markdownthemewitiko beamer MU.tex.

If o{theme version) is specified after (theme name), then the text theme version
will be available in the macro \markdownThemeVersion when the theme is loaded.

72



If @(theme version) is not specified, the macro \markdownThemeVersion will contain
the text latest [12].

1372 \ExplSyntaxOn

1373 \keys_define:nn

1374 { markdown/options }
1375 {

1376 theme .code:n = {

1377 \@@_set_theme:n

1378 { #1 }

1379 },

1380 import .code:n = {
1381 \tl_set:Nn

1382 \1_tmpa_tl

1383 {#1}

To ensure that keys containing forward slashes get passed correctly, we replace all
forward slashes in the input with backslash tokens with category code letter and
then undo the replacement. This means that if any unbraced backslash tokens with
category code letter exist in the input, they will be replaced with forward slashes.
However, this should be extremely rare.

1384 \tl_replace_all:NnV

1385 \1_tmpa_tl

1386 {/1%

1387 \c_backslash_str

1388 \keys_set:nV

1389 { markdown/options/import }
1390 \1_tmpa_tl

1391 },

1392}

To keep track of the current theme when themes are nested, we will maintain the
stacks \g_@@_theme_names_seq and \g_00_theme_versions_seq stack of theme
names and versions, respectively. For convenience, the name of the current
theme and version is also available in the macros \g_@@_current_theme_tl and
\markdownThemeVersion, respectively.

1393 \seq_new:N

1394 \g_0@_theme_names_seq

1395 \seq_new:N

1396 \g_0@_theme_versions_seq

1397 \t1l_new:N

1398 \g_0@_current_theme_tl

1399 \tl_gset:Nn

1400 \g_@@_current_theme_tl

1401 {3

1402 \seq_gput_right:NV

1403 \g_0@_theme_names_seq

1404 \g_0@_current_theme_tl

73



1405 \cs_new:Npn
1406 \markdownThemeVersion

1407 {3}

1408 \seq_gput_right:NV

1409 \g_0@_theme_versions_seq
1410 \g_0Q@_current_theme_tl

1411 \cs_new:Nn
1412 \@@_set_theme:n
1413 {

First, we validate the theme name.

1414 \str_if_in:nnF

1415 { #1 3}

1416 {/1%

1417 {

1418 \msg_error:nnn

1419 { markdown }

1420 { unqualified-theme-name }
1421 {#1 %

1422 }

1423 \str_if_in:nnT

1424 {#1 %

1425 {_1

1426 {

1427 \msg_error:nnn

1428 { markdown }

1429 { underscores-in-theme-name }
1430 {#1}

1431 }

Next, we extract the theme version.

1432 \str_if_in:nnTF

1433 { #1737

1434 {e}

1435 {

1436 \regex_extract_once:nnN
1437 { Gx) e (%}

1438 { #1732

1439 \1_tmpa_seq

1440 \seq_gpop_left:NN

1441 \1_tmpa_seq

1442 \1_tmpa_tl

1443 \seq_gpop_left:NN

1444 \1_tmpa_seq

1445 \1_tmpa_tl

1446 \tl_gset:NV

1447 \g_0@_current_theme_tl
1448 \1_tmpa_tl

74



1449 \seq_gpop_left:NN

1450 \1_tmpa_seq

1451 \1_tmpa_tl

1452 \cs_gset:Npe

1453 \markdownThemeVersion
1454 {

1455 \tl_use:N

1456 \1_tmpa_tl

1457 }

1458 }

1459 {

1460 \tl_gset:Nn

1461 \g_0@_current_theme_tl
1462 { #1732

1463 \cs_gset:Npn

1464 \markdownThemeVersion
1465 { latest }

1466 }

Next, we munge the theme name.

1467 \str_set:NV

1468 \1_tmpa_str

1469 \g_0@_current_theme_tl
1470 \str_replace_all:Nnn

1471 \1_tmpa_str

1472 {/17

1473 {_1%

Finally, we load the theme. Before loading the theme, we push down the current
name and version of the theme on the stack.

1474 \tl_set:NV

1475 \1_tmpa_tl

1476 \g_0Q@_current_theme_t1l
1477 \tl_put_right:Nn

1478 \g_0@_current_theme_tl
1479 {/1

1480 \seq_gput_right:NV

1481 \g_0@_theme_names_seq
1482 \g_0Q@_current_theme_t1l
1483 \seq_gput_right:NV

1484 \g_0@_theme_versions_seq
1485 \markdownThemeVersion
1486 \@@_load_theme:VeV

1487 \1_tmpa_tl

1488 { \markdownThemeVersion }
1489 \1_tmpa_str

75



After the theme has been loaded, we recover the name and version of the previous
theme from the stack.

1490 \seq_gpop_right:NN

1491 \g_00@_theme_names_seq
1492 \1_tmpa_tl

1493 \seq_get_right:NN

1494 \g_00@_theme_names_seq
1495 \1_tmpa_tl

1496 \tl_gset:NV

1497 \g_0@_current_theme_tl
1498 \1_tmpa_tl

1499 \seq_gpop_right:NN

1500 \g_0Q@_theme_versions_seq
1501 \1_tmpa_tl

1502 \seq_get_right:NN

1503 \g_0@_theme_versions_seq
1504 \1_tmpa_tl

1505 \cs_gset :Npe

1506 \markdownThemeVersion
1507 {

1508 \tl_use:N

1509 \1_tmpa_tl

1510 }

1511 }

1512 \msg_new:nnnn

1513 { markdown }

1514  { unqualified-theme-name }

1515  { Won't~load~theme~with~unqualified~name~#1 }

1516 { Theme~names~must~contain~at~least~one~forward~slash }
1517 \msg_new:nnnn

1518 { markdown }

1519  { underscores-in-theme-name }
1520 { Won't~load~theme~with~an~underscore~in~its~name~#1 }
1521 { Theme~names~must~not~contain~underscores~in~their~names }

1522 \cs_generate_variant:Nn

1523 \tl_replace_all:Nnn

1524 { NnV }

1525 \cs_generate_variant:Nn

1526 \cs_gset:Npn

1527 { Npe }

We also define the prop \g_00@_plain_tex_built_in_themes_prop that contains
the code of built-in themes. This is a packaging optimization, so that built-in themes
does not need to be distributed in many small files.

1528 \prop_new:N

1529 \g_0@_plain_tex_built_in_themes_prop

Built-in plain TEX themes provided with the Markdown package include:

76



witiko/diagrams A theme that typesets fenced code blocks with the infostrings
dot, mermaid, and plantuml as figures with diagrams produced with the
command dot from Graphviz tools, the command mmdc from the npm package
Omermaid-js/mermaid-cli, and the command plantuml from the package
PlantUML, respectively.

The key-value attribute caption can be used to specify the caption of the figure
and for the infostrings dot and plantuml, the key-value attribute format can
be used to specify the output image format. The remaining attributes are
treated as image attributes.

\documentclass{article}
\usepackage [import=witiko/diagrams@v2, relativeReferences]{markdown}
\begin{document}
\begin{markdown}
“7" dot {caption="An example directed graph" format=svg width=12cm #dot}
digraph tree {
margin = O;
rankdir = "LR";

latex —> pmml;

latex -> cmml;

pmml -> slt;

cmml -> opt;

cmml -> prefix;

cmml -> infix;

pmml -> mterms [style=dashed];
cmml -> mterms;

latex [label = "LaTeX"];

pmml [label = "Presentation MathML"];
cmml [label = "Content MathML"];

slt [label = "Symbol Layout Tree"];
opt [label = "Operator Tree"];
prefix [label = "Prefix"];

infix [label = "Infix"];

mterms [label = "M-Terms"];

" mermaid {caption="An example mindmap" width=9cm #mermaid}
mindmap
root )base-idea(

7



sub<br/>idea 1
«(?)
sub<br/>idea 2
o)
sub<br/>idea 3
o)
sub<br/>idea 4

«?)

* plantuml {caption="An example UML sequence diagram" width=7cm #plantuml}
O@startuml
' Define participants (actors)
participant "Client" as C
participant "Server" as S
participant "Database" as DB

' Diagram title
title Simple Request-Response Flow

' Messages
C -> S: Send Request
note over S: Process request

alt Request is valid
S -> DB: Query Data
DB -> S: Return Data
S -> C: Respond with Data
else Request is invalid
S -> C: Return Error
end
@enduml

~ s~

See the diagrams in figures <#dot>, <#mermaid>, and <#plantuml>.
\end{markdown}
\end{document}

Typesetting the above document produces the output shown in figures 4, 5,
and 6.

The theme requires a Unix-like operating system with GNU Diffutils, Graphviz,
the npm package @mermaid-js/mermaid-cli, and PlantUML installed. All

78



Symbol Layout Tree
Presentation MathML  >-----------
> Content MathML

Figure 4: An example directed graph

these packages are already included in the Docker image witiko/markdown;
consult Dockerfile to see how they are installed. The theme also requires
shell access unless the frozenCache plain TEX option is enabled.

witiko/graphicx/http A theme that adds support for downloading images whose
URL has the http or https protocol.

\documentclass{article}

\usepackage [import=witiko/graphicx/http] {markdown}

\begin{document}

\begin{markdown}

! [img] (https://github.com/witiko/markdown/raw/main/markdown.png
"The banner of the Markdown package")

\end{markdown}

\end{document}

Typesetting the above document produces the output shown in Figure 7. The
theme requires the catchfile IXTEX package and a Unix-like operating system
with GNU Coreutils md5sum and either GNU Wget or cURL installed. The
theme also requires shell access unless the frozenCache plain TEX option is
enabled.

witiko/tilde A theme that makes tilde (~) always typeset the non-breaking space
even when the hybrid Lua option is disabled.

’\input markdown

79



sub
idea 2

base-idea sub
idea 4

sub
idea 1

Figure 5: An example mindmap

80



Simple Request-Response Flow

Client Server Database
| | |
| | |
I Send Request ! !
L >| |
| | |
| |
| Process request [ﬁ |
| |
| | |

alt [Request is valid] : :

| |
' Query Data !
' Query >

Return Data
<

Respond with Data

[Requlbst is invalid]

Return Error

Client Server Database

Figure 6: An example UML sequence diagram

81




\documentclass{book}
\usepackage{markdown?}

\markdownSetup{pipeTables, tableCaptions} (jllaI)tEH? 1
\begin{document}

\begin{markdown?} .
## Section

### Subsection 1.1 Section

Hello *Markdown*!
1.1.1 Subsection

| Right | Left | Default | Center | Hello Markdown!

|------ S Rl REEELEEEE EEEEES |

| 12 | 12 | 12 | 12 |

| 123 | 123 | 123 | 123 | Right Left Default Center

| 1| 1 1 1 B b
123 123 123 123
11 1 1

: Table Table 1.1: Table

\end{markdown?} S

\end{document}

Figure 7: The banner of the Markdown package

\markdownSetup{import=witiko/tilde}
\markdownBegin

Bartel~Leendert van~der~Waerden
\markdownEnd

\bye

Typesetting the above document produces the following text: “Bartel Leendert
van der Waerden”.

witiko/markdown /defaults A plain TEX theme with the default definitions of token
renderer prototypes for plain TEX. This theme is loaded automatically together
with the package and explicitly loading it has no effect.

Please, see Section 3.2.2 for implementation details of the built-in plain TEX
themes.

2.2.4 Snippets

We may set up options as snippets using the \markdownSetupSnippet macro and
invoke them later. The \markdownSetupSnippet macro receives two arguments: the
name of the snippet and the options to store.

82



1530 \prop_new:N

1531 \g_0@_snippets_prop

1532 \cs_new:Nn

1533  \@@_setup_snippet:nn

1534 {

1535 \tl_if_empty:nT

1536 {#1}

1537 {

1538 \msg_error:nnn

1539 { markdown }

1540 { empty-snippet-name }
1541 {#1 3

1542 }

1543 \tl_set:NV

1544 \1_tmpa_tl

1545 \g_0Q@_current_theme_t1l
1546 \tl_put_right:Nn

1547 \1_tmpa_tl

1548 {#1}

1549 \@@_if_snippet_exists:nT
1550 {#1}

1551 {

1552 \msg_warning:nnV
1553 { markdown }

1554 { redefined-snippet }
1555 \1_tmpa_tl

1556 }

1557 \keys_precompile:nnN
1558 { markdown/options }
1559 {#2 }

1560 \1_tmpb_t1

1561 \prop_gput :NVV

1562 \g_0Q@_snippets_prop
1563 \1_tmpa_tl

1564 \1_tmpb_tl

1565  }

1566 \cs_gset_eq:NN

1567  \markdownSetupSnippet

1568 \@Q@_setup_snippet:nn

1569 \msg_new:nnnn

1570 { markdown }

I { empty-snippet-name }

2 { Empty~snippet~name~#1 }
3 { Pick~a~non-empty~name~for~your~snippet }
{ \msg_new:nnn

5  { markdown }

6 { redefined-snippet }

83



1577 { Redefined~snippet~#1 }

To decide whether a snippet exists, we can use the \markdownIfSnippetExists
macro.

1578 \tl_new:N

1579 \1_Q@@_current_snippet_tl

1580 \prg_new_conditional:Nnn

1581  \@@_if_snippet_exists:n

1582 { TF, T }

1583  {

1584 \tl_set:NV

1585 \1_@@_current_snippet_tl
1586 \g_0@_current_theme_tl
1587 \tl_put_right:Nn

1588 \1_@Q@_current_snippet_tl
1589 {#1 3%

1590 \prop_if_in:NVTF

1591 \g_0@_snippets_prop

1592 \1_@Q@_current_snippet_tl
1593 { \prg_return_true: }
1594 { \prg_return_false: }
1595}

1596 \cs_gset_eq:NN

1597 \markdownIfSnippetExists

1598  \@@_if_snippet_exists:nTF

The option with key snippet invokes a snippet named {value).
1599 \keys_define:nn

1600  { markdown/options }

1601 {

1602 snippet .code:n = {

1603 \tl_set:NV

1604 \1_tmpa_tl

1605 \g_0@_current_theme_tl
1606 \tl_put_right:Nn

1607 \1_tmpa_tl

1608 {#1}

1609 \@@_if_snippet_exists:nTF
1610 { #1}

1611 {

1612 \prop_get:NVN

1613 \g_0Q@_snippets_prop
1614 \1_tmpa_tl

1615 \1_tmpb_tl

1616 \tl_use:N

1617 \1_tmpb_tl

1618 }

1619 {

84



1620 \msg_error :nnV

1621 { markdown }

1622 { undefined-snippet }
1623 \1_tmpa_tl

1624 }

1625 }

1626  }

1627 \msg_new:nnn

1628  { markdown }

1629  { undefined-snippet }

1630 { Can't~invoke~undefined~snippet~#1 }
1631 \ExplSyntax0ff

Here is how we can use snippets to store options and invoke them later in IXTEX:

\markdownSetupSnippet{romanNumerals}{
renderers = {
olItemWithNumber = {\item[\romannumeral#i\relax.]},
},
}
\begin{markdown}

The following ordered list will be preceded by arabic numerals:

1. wahid
2. aithnayn

\end{markdown}
\begin{markdown} [snippet=romanNumerals]

The following ordered list will be preceded by roman numerals:

3. tres
4. quattuor

\end{markdown}

If the romanNumerals snippet were defined in the jdoe/1lists theme, we could im-
port the jdoe/lists theme and use the qualified name jdoe/lists/romanNumerals
to invoke the snippet:

\markdownSetup{import=jdoe/lists}
\begin{markdown} [snippet=jdoe/lists/romanNumerals]

The following ordered list will be preceded by roman numerals:

85



3. tres
4. quattuor

\end{markdown}

Alternatively, we can use the extended variant of the import IXTEX option that
allows us to import the romanNumerals snippet to the current namespace for easier
access:

\markdownSetup{
import = {
jdoe/lists = romanNumerals,
+s
b

\begin{markdown} [snippet=romanNumerals]
The following ordered list will be preceded by roman numerals:

3. tres
4. quattuor

\end{markdown}

Furthermore, we can also specify the name of the snippet in the current namespace,
which can be different from the name of the snippet in the jdoe/lists theme. For
example, we can make the snippet jdoe/lists/romanNumerals available under the
name roman.

\markdownSetup{
import = {
jdoe/lists = romanNumerals as roman,
3,
}

\begin{markdown} [snippet=roman]
The following ordered list will be preceded by roman numerals:

3. tres
4. quattuor

\end{markdown}

86



Several themes and/or snippets can be loaded at once using the extended variant
of the import IXTEX option:

\markdownSetup{
import = {
jdoe/longpackagename/lists = {
arabic as arabicl,
roman,
alphabetic,
1,
jdoe/anotherlongpackagename/lists = {
arabic as arabic?2,
1,
jdoe/yetanotherlongpackagename,

3,

}

1632 \ExplSyntaxOn

1633 \tl_new:N

1634  \1_@@_import_current_theme_tl

1635 \keys_define:nn

1636 { markdown/options/import }

1637 {

If a theme name is given without a list of snippets to import, we assume that an
empty list was given.

1638 unknown .default:n = {},

1639 unknown .code:n = {

To ensure that keys containing forward slashes get passed correctly, we replace all
forward slashes in the input with backslash tokens with category code letter and
then undo the replacement. This means that if any unbraced backslash tokens with
category code letter exist in the input, they will be replaced with forward slashes.
However, this should be extremely rare.

1640 \tl_set_eq:NN

1641 \1_0@_import_current_theme_tl
1642 \1_keys_key_str

1643 \tl_replace_all:NVn

1644 \1_0@_import_current_theme_tl
1645 \c_backslash_str

1646 {/1%

Here, we import the snippets.

1647 \clist_map_inline:nn

1648 { #1 %

87



1649 {

1650 \regex_extract_once:nnNTF
1651 { (. *?)\s+as\s+(.*7)$ }
1652 { ##1 }

1653 \1_tmpa_seq

1654 {

1655 \seq_pop:NN

1656 \1_tmpa_seq

1657 \1_tmpa_tl

1658 \seq_pop:NN

1659 \1_tmpa_seq

1660 \1_tmpa_tl

1661 \seq_pop:NN

1662 \1_tmpa_seq

1663 \1_tmpb_tl

1664 }

1665 {

1666 \tl_set:Nn

1667 \1_tmpa_tl

1668 { ##1 }

1669 \tl_set:Nn

1670 \1_tmpb_tl

1671 { ##1 }

1672 }

1673 \tl_put_left:Nn

1674 \1_tmpa_tl

1675 {/1%

1676 \tl_put_left:NV

1677 \1_tmpa_tl

1678 \1_0@_import_current_theme_tl
1679 \@@_setup_snippet:Vx

1680 \1_tmpb_tl

1681 { snippet = { \1_tmpa_tl } }
1682 }

Here, we load the theme.

1683 \@@_set_theme:V

1684 \1_0@_import_current_theme_tl
1685 1,

1686  }

1687 \cs_generate_variant:Nn
1688 \tl_replace_all:Nnn
1689  { NVn }

1690 \cs_generate_variant:Nn
1691 \@@_set_theme:n

16902 { V }

1693 \cs_generate_variant:Nn
1694  \@@_setup_snippet:nn

88



1695 {Vvx }

2.2.5 Token Renderers

The following TEX macros may occur inside the output of the converter functions
exposed by the Lua interface (see Section 2.1.1) and represent the parsed markdown
tokens. These macros are intended to be redefined by the user who is typesetting
a document. By default, they point to the corresponding prototypes (see Section
2.2.6).

To enable the enumeration of token renderers, we will maintain the
\g_00_renderers_seq sequence.
1696 \seq_new:N \g_0@_renderers_seq
To enable the reflection of token renderers and their parameters, we will maintain
the \g_@@_renderer_arities_prop property list.
1697 \prop_new:N \g_@Q@_renderer_arities_prop
1698 \ExplSyntax0ff
2.2.5.1 Attribute Renderers

The following macros are only produced, when at least one of the following options
for markdown attributes on different elements is enabled:

e autoldentifiers

e fencedCodeAttributes
e gfmAutoIdentifiers

e headerAttributes

e inlineCodeAttributes
e linkAttributes

\markdownRendererAttributeIdentifier represents the (identifier) of a mark-
down element (id="{identifier)" in HTML and #(identifier) in markdown attributes).
The macro receives a single attribute that corresponds to the {(identifier).

\markdownRendererAttributeClassName represents the {class name) of a mark-

down element (class="{class name) ..." in HTML and .{class name) in markdown
attributes). The macro receives a single attribute that corresponds to the {class
name).

\markdownRendererAttributeKeyValue represents a HI' ML attribute in the form
(keyy=(value) that is neither an identifier nor a class name. The macro receives two
attributes that correspond to the (key) and the {(wvalue), respectively.

1699 \ExplSyntaxOn
1700 \cs_gset_protected:Npn
1701 \markdownRendererAttributeIdentifier

1702 {
1703 \markdownRendererAttributeIdentifierPrototype
1704}

89



1705 \seq_gput_right:Nn

1706 \g_0@_renderers_seq

1707 { attributeldentifier }

1708 \prop_gput:Nnn

1709 \g_0@_renderer_arities_prop

1710 { attributeldentifier }

71 {13}

1712 \cs_gset_protected:Npn

1713 \markdownRendererAttributeClassName
1714 {

1715 \markdownRendererAttributeClassNamePrototype
1716}

1717 \seq_gput_right:Nn

1718 \g_0@_renderers_seq

1719 { attributeClassName }

1720 \prop_gput:Nnn

1721 \g_0Q@_renderer_arities_prop
1722 { attributeClassName }
1723 {1}

1724 \cs_gset_protected:Npn

1725 \markdownRendererAttributeKeyValue
1726 {

1727 \markdownRendererAttributeKeyValuePrototype
1728}

1729 \seq_gput_right:Nn

1730 \g_@@_renderers_seq

1731 { attributeKeyValue }

1732 \prop_gput :Nnn

1733 \g_0@_renderer_arities_prop

1734 { attributeKeyValue }

1735 {2}

1736 \ExplSyntaxOff

2.2.5.2 Block Quote Renderers
The \markdownRendererBlockQuoteBegin macro represents the beginning of a
block quote. The macro receives no arguments.

1737 \ExplSyntaxOn

1738 \cs_gset_protected:Npn

1739 \markdownRendererBlockQuoteBegin

1740 |

1741 \markdownRendererBlockQuoteBeginPrototype
1742}

1743 \seq_gput_right:Nn
1744 \g_0@_renderers_seq
1745 { blockQuoteBegin }
1746 \prop_gput :Nnn

90



1747 \g_0@@_renderer_arities_prop
1748 { blockQuoteBegin }

1749 { 0}

1750 \ExplSyntax0ff

The \markdownRendererBlockQuoteEnd macro represents the end of a block quote.
The macro receives no arguments.

1751 \ExplSyntaxOn

1752 \cs_gset_protected:Npn

1753 \markdownRendererBlockQuoteEnd
1754 {

1755 \markdownRendererBlockQuoteEndPrototype
1756}

1757 \seq_gput_right:Nn

1758 \g_0@_renderers_seq

1759  { blockQuoteEnd }

1760 \prop_gput :Nnn

1761 \g_0Q@_renderer_arities_prop
1762 { blockQuoteEnd }

1763 {0}

1764 \ExplSyntax0ff

2.2.5.3 Bracketed Spans Attribute Context Renderers
The following macros are only produced, when the bracketedSpans option is
enabled.
The \markdownRendererBracketedSpanAttributeContextBegin and \markdownRendererBrac
macros represent the beginning and the end of a context in which the attributes of
an inline bracketed span apply. The macros receive no arguments.

1765 \ExplSyntaxOn

1766 \cs_gset_protected:Npn

1767 \markdownRendererBracketedSpanAttributeContextBegin

1768 {

1769 \markdownRendererBracketedSpanAttributeContextBeginPrototype
1770}

1771 \seq_gput_right:Nn

1772 \g_@Q@_renderers_seq

1773 { bracketedSpanAttributeContextBegin }

1774 \prop_gput :Nnn

1775 \g_0@_renderer_arities_prop

1776 { bracketedSpanAttributeContextBegin }

77 {0}

1778 \cs_gset_protected:Npn

1779 \markdownRendererBracketedSpanAttributeContextEnd

1780 {

1781 \markdownRendererBracketedSpanAttributeContextEndPrototype

91



1782}

1783 \seq_gput_right:Nn

1784 \g_0@_renderers_seq

1785 { bracketedSpanAttributeContextEnd }
1786 \prop_gput:Nnn

1787 \g_0Q@_renderer_arities_prop
1788 { bracketedSpanAttributeContextEnd }
1789 {0 %}

1790 \ExplSyntax0ff

2.2.5.4 Bullet List Renderers

The \markdownRendererUlBegin macro represents the beginning of a bulleted list
that contains an item with several paragraphs of text (the list is not tight). The
macro receives no arguments.

1791 \ExplSyntaxOn

1792 \cs_gset_protected:Npn

1793 \markdownRendererUlBegin
1794 {

1795 \markdownRendererUlBeginPrototype
1796}

1797 \seq_gput_right:Nn

1798  \g_@Q@_renderers_seq

1799 { ulBegin }

1800 \prop_gput:Nnn

1801  \g_@@_renderer_arities_prop
1802 { ulBegin }

1803 {0}

1804 \ExplSyntaxOff

The \markdownRendererUlBeginTight macro represents the beginning of a bul-
leted list that contains no item with several paragraphs of text (the list is tight).
This macro will only be produced, when the tightLists option is disabled. The
macro receives no arguments.

1805 \ExplSyntaxOn
1806 \cs_gset_protected:Npn

1807 \markdownRendererUlBeginTight

1808 {

1809 \markdownRendererUlBeginTightPrototype
1810}

1811 \seq_gput_right:Nn

1812 \g_@Q@_renderers_seq

1813 { ulBeginTight }

1814 \prop_gput:Nnn

1815 \g_0Q@_renderer_arities_prop
1816 { ulBeginTight }

92



1817 {0}
1818 \ExplSyntaxOff

The \markdownRendererUlItem macro represents an item in a bulleted list. The
macro receives no arguments.

1819 \ExplSyntax0On
1820 \cs_gset_protected:Npn

1821 \markdownRendererUlItem

1822 {

1823 \markdownRendererUlItemPrototype
1824  }

1825 \seq_gput_right:Nn
1826 \g_0@_renderers_seq
1827 { ulltem }

1828 \prop_gput:Nnn

1829 \g_0@_renderer_arities_prop
1830  { ulItem }
1831 {01}

1832 \ExplSyntax0ff

The \markdownRendererUlItemEnd macro represents the end of an item in a
bulleted list. The macro receives no arguments.
1833 \ExplSyntax0On

1834 \cs_gset_protected:Npn
1835 \markdownRendererUlItemEnd

1836  {

1837 \markdownRendererUlItemEndPrototype
1838}

1839 \seq_gput_right:Nn

1840 \g_0@_renderers_seq

1841 { ullItemEnd }

1842 \prop_gput:Nnn

1843 \g_0@_renderer_arities_prop
1844  { ulIltemEnd }

1845 { 0}

1846 \ExplSyntaxOff

The \markdownRendererUlEnd macro represents the end of a bulleted list that
contains an item with several paragraphs of text (the list is not tight). The macro
receives no arguments.

1847 \ExplSyntaxOn

1848 \cs_gset_protected:Npn
1849 \markdownRendererUlEnd

1850 {
1851 \markdownRendererUlEndPrototype
1852}

93



1853 \seq_gput_right:Nn
1854 \g_0@_renderers_seq
1855  { ulEnd 7}

1856 \prop_gput :Nnn

1857 \g_0@_renderer_arities_prop
1858 { ulEnd }
1859 {0}

1860 \ExplSyntaxOff

The \markdownRendererUlEndTight macro represents the end of a bulleted list
that contains no item with several paragraphs of text (the list is tight). This macro
will only be produced, when the tightLists option is disabled. The macro receives
no arguments.

1861 \ExplSyntaxOn
1862 \cs_gset_protected:Npn
1863 \markdownRendererUlEndTight

1864 {
1865 \markdownRendererUlEndTightPrototype
1866}

1867 \seq_gput_right:Nn
1868  \g_0@_renderers_seq
1869  { ulEndTight }

1870 \prop_gput :Nnn

1871 \g_0@_renderer_arities_prop
1872 { ulEndTight }
1873 {0}

1874 \ExplSyntaxOff

2.2.5.5 Citation Renderers

The \markdownRendererCite macro represents a string of one or more parenthet-
ical citations. This macro will only be produced, when the citations option is
enabled. The macro receives the parameter {{(number of citations)} followed by
(suppress author) {{prenote)}{{postnote)}{{name)} repeated {number of citations)
times. The (suppress author) parameter is either the token -, when the author’s
name is to be suppressed, or + otherwise.

1875 \ExplSyntaxOn
1876 \cs_gset_protected:Npn

1877 \markdownRendererCite

1878 {

1879 \markdownRendererCitePrototype
1880  }

1881 \seq_gput_right:Nn
1882 \g_Q@_renderers_seq
1883 { cite }

1884 \prop_gput:Nnn

94



1885 \g_0@_renderer_arities_prop
1886 { cite }
1887 {1}
1888 \ExplSyntax0ff

The \markdownRendererTextCite macro represents a string of one or more text
citations. This macro will only be produced, when the citations option is enabled.
The macro receives parameters in the same format as the \markdownRendererCite
macro.

1889 \ExplSyntaxOn
1890 \cs_gset_protected:Npn

1891 \markdownRendererTextCite
1892 {

1893 \markdownRendererTextCitePrototype
1894  }

1895 \seq_gput_right:Nn

1896  \g_@Q@_renderers_seq

1897 { textCite }

1898 \prop_gput :Nnn

1899  \g_0@_renderer_arities_prop
1900 { textCite }

901 {17%

1902 \ExplSyntaxOff

2.2.5.6 Code Block Renderers

The \markdownRendererInputVerbatim macro represents a code block. The
macro receives a single argument that corresponds to the filename of a file containing
the code block contents.
1903 \ExplSyntaxOn

1904 \cs_gset_protected:Npn
1905 \markdownRendererInputVerbatim

1906

1907 \markdownRendererInputVerbatimPrototype
1908 }

1909 \seq_gput_right:Nn

1910 \g_0@_renderers_seq

1911 { inputVerbatim }

1912 \prop_gput:Nnn

1913 \g_0Q@_renderer_arities_prop
1914 { inputVerbatim }

915 {17}

1916 \ExplSyntax0ff

The \markdownRendererInputFencedCode macro represents a fenced code block.
This macro will only be produced, when the fencedCode option is enabled. The
macro receives three arguments that correspond to the filename of a file containing

95



the code block contents, the fully escaped code fence infostring that can be directly
typeset, and the raw code fence infostring that can be used outside typesetting.

1917 \ExplSyntaxOn
1918 \cs_gset_protected:Npn

1919 \markdownRendererInputFencedCode

1920 o

1921 \markdownRendererInputFencedCodePrototype
1922}

1923 \seq_gput_right:Nn
1924 \g_0@_renderers_seq
1925 { inputFencedCode }
1926 \prop_gput:Nnn

1927 \g_@Q@_renderer_arities_prop
1928 { inputFencedCode }
1929 {3 %}

1930 \ExplSyntaxOff

2.2.5.7 Code Span Renderer
The \markdownRendererCodeSpan macro represents inline code span in the input
text. It receives a single argument that corresponds to the inline code span.

1931 \ExplSyntax0On
1932 \cs_gset_protected:Npn

1933 \markdownRendererCodeSpan

1934 {

1935 \markdownRendererCodeSpanPrototype
1936}

1937 \seq_gput_right:Nn

1938 \g_0@_renderers_seq

1939 { codeSpan }

1940 \prop_gput:Nnn

1941 \g_0@_renderer_arities_prop
1942 { codeSpan }

1943 {1}

1944 \ExplSyntaxOff

2.2.5.8 Code Span Attribute Context Renderers
The following macros are only produced, when the inlineCodeAttributes option
is enabled.
The \markdownRendererCodeSpanAttributeContextBegin and \markdownRendererCodeSpanA
macros represent the beginning and the end of a context in which the attributes of
an inline code span apply. The macros receive no arguments.

1945 \ExplSyntaxOn
1946 \cs_gset_protected:Npn
1947 \markdownRendererCodeSpanAttributeContextBegin

96



1948  {

1949 \markdownRendererCodeSpanAttributeContextBeginPrototype
1950  }

1951 \seq_gput_right:Nn

1952 \g_0@_renderers_seq

1953 { codeSpanAttributeContextBegin }

1954 \prop_gput :Nnn

1955 \g_0@_renderer_arities_prop

1956 { codeSpanAttributeContextBegin }

957 {0}

1958 \cs_gset_protected:Npn

1959  \markdownRendererCodeSpanAttributeContextEnd
1960 {

1961 \markdownRendererCodeSpanAttributeContextEndPrototype
1962}

1963 \seq_gput_right:Nn

1964 \g_0@_renderers_seq

1965  { codeSpanAttributeContextEnd }

1966 \prop_gput:Nnn

1967 \g_0@_renderer_arities_prop

1968 { codeSpanAttributeContextEnd }

1969 {0}

1970 \ExplSyntaxOff

2.2.5.9 Content Block Renderers

The \markdownRendererContentBlock macro represents an iA Writer content
block. It receives four arguments: the local file or online image filename extension
cast to the lower case, the fully escaped URI that can be directly typeset, the raw
URI that can be used outside typesetting, and the title of the content block.
1971 \ExplSyntax0On
1972 \cs_gset_protected:Npn

1973 \markdownRendererContentBlock

1974  {

1975 \markdownRendererContentBlockPrototype
1976}

1977 \seq_gput_right:Nn

1978 \g_0@_renderers_seq

1979 { contentBlock }

1980 \prop_gput :Nnn

1981 \g_0@_renderer_arities_prop
1982 { contentBlock }

983 {4}

1984 \ExplSyntaxOff

97



The \markdownRendererContentBlockOnlineImage macro represents an
iA Writer online image content block. The macro receives the same arguments as
\markdownRendererContentBlock.

1985 \ExplSyntaxOn
1986 \cs_gset_protected:Npn

1987 \markdownRendererContentBlockOnlineImage

1988  {

1989 \markdownRendererContentBlockOnlineImagePrototype
1990  }

1991 \seq_gput_right:Nn

1992 \g_@Q@_renderers_seq

1993 { contentBlockOnlineImage }
1994 \prop_gput :Nnn

1995 \g_0@_renderer_arities_prop
1996 { contentBlockOnlineImage }
997 {4}

1998 \ExplSyntaxOff

The \markdownRendererContentBlockCode macro represents an iA Writer con-
tent block that was recognized as a file in a known programming language by its
filename extension s. If any markdown-languages.json file found by kpathsea3”
contains a record (k,v), then a non-online-image content block with the filename
extension s, s:lower () = k is considered to be in a known programming language v.
The macro receives five arguments: the local file name extension s cast to the lower
case, the language v, the fully escaped URI that can be directly typeset, the raw URI
that can be used outside typesetting, and the title of the content block.

Note that you will need to place place a markdown-languages. json file inside
your working directory or inside your local TEX directory structure. In this file,
you will define a mapping between filename extensions and the language names
recognized by your favorite syntax highlighter; there may exist other creative uses
beside syntax highlighting. The Languages. json file provided by Sotkov [6] is a
good starting point.

1999 \ExplSyntaxOn

)00 \cs_gset_protected:Npn
)01 \markdownRendererContentBlockCode

2002 {

2003 \markdownRendererContentBlockCodePrototype
2004  }

2005 \seq_gput_right:Nn

2006 \g_@@_renderers_seq

2007  { contentBlockCode }

0

35Filenames other than markdown-languages.json may be specified using the
contentBlocksLanguageMap Lua option.

98



2009  \g_0@_renderer_arities_prop
2010 { contentBlockCode }

oi1 {57

0

2.2.5.10 Definition List Renderers

The following macros are only produced, when the definitionLists option is
enabled.

The \markdownRendererD1Begin macro represents the beginning of a definition
list that contains an item with several paragraphs of text (the list is not tight). The
macro receives no arguments.

5 \markdownRendererD1Begin

o6 {

2017 \markdownRendererD1BeginPrototype
2018}

2019 \seq_gput_right:Nn

2020  \g_0@_renderers_seq

2021 { dlBegin }

2022 \prop_gput :Nnn

2023 \g_0@_renderer_arities_prop

2024 { dlBegin }

2025 {0 %}
2026 \ExplSyntaxOff

The \markdownRendererD1BeginTight macro represents the beginning of a defi-
nition list that contains no item with several paragraphs of text (the list is tight).
This macro will only be produced, when the tightLists option is disabled. The
macro receives no arguments.

2027 \ExplSyntaxOn

2028 \cs_gset_protected:Npn

029  \markdownRendererDlBeginTight

30 o

31 \markdownRendererD1BeginTightPrototype
32}

33 \seq_gput_right:Nn

34 \g_0@_renderers_seq
35  { dlBeginTight }

36 \prop_gput :Nnn

3 \g_0Q@_renderer_arities_prop
38 { dlBeginTight }

30 {0}

99



The \markdownRendererDl1Item macro represents a term in a definition list. The
macro receives a single argument that corresponds to the term being defined.

2(
2

41 \ExplSyntaxOn
42 \cs_gset_protected:Npn

=
w

2( \markdownRendererD1Item

2044 {

2045 \markdownRendererD1ItemPrototype
2046}

2047 \seq_gput_right:Nn

48 \g_0@_renderers_seq
19 { dlItem }

1 \g_0@_renderer_arities_prop
2 { dlItem }
3 {11}
{ \ExplSyntax0ff
The \markdownRendererD1ItemEnd macro represents the end of a list of definitions
for a single term.

)55 \ExplSyntax0On

)56 \cs_gset_protected:Npn

)57 \markdownRendererD1ItemEnd
58 A

)59 \markdownRendererD1ItemEndPrototype
060}

)61 \seq_gput_right:Nn

)62 \g_0@_renderers_seq

)63 { dlItemEnd }

)64 \prop_gput :Nnn

)65 \g_0@_renderer_arities_prop
066 { dlItemEnd }

67 {0}

)68 \ExplSyntaxOff

2
2
2
The \markdownRendererD1DefinitionBegin macro represents the beginning of
a definition in a definition list. There can be several definitions for a single term.

1 \markdownRendererD1DefinitionBegin

2 A

3 \markdownRendererD1DefinitionBeginPrototype
L}

5 \seq_gput_right:Nn

6 \g_0@_renderers_seq

7 { dlDefinitionBegin }

100



079 \g_0@_renderer_arities_prop
080  { dlDefinitionBegin }
ost  { 0%
2082 \ExplSyntax0ff
The \markdownRendererD1Def initionEnd macro represents the end of a definition
in a definition list. There can be several definitions for a single term.

2083 \ExplSyntaxOn

2084 \cs_gset_protected:Npn

085 \markdownRendererDlDefinitionEnd
)

2(

2086 {

2087 \markdownRendererD1DefinitionEndPrototype
2088}

2

89 \seq_gput_right:Nn

90  \g_0@_renderers_seq

91  { dlDefinitionEnd }

092 \prop_gput:Nnn

93 \g_0Q@_renderer_arities_prop
94 { dlDefinitionEnd }

95 {0}

096 \ExplSyntax0ff

The \markdownRendererDl1End macro represents the end of a definition list that
contains an item with several paragraphs of text (the list is not tight). The macro
receives no arguments.

2097 \ExplSyntaxOn
2098 \cs_gset_protected:Npn

2099 \markdownRendererDl1End

2100 {

2101 \markdownRendererD1EndPrototype
2102}

2103 \seq_gput_right:Nn
2104 \g_0@_renderers_seq
2105 { dlEnd }

2106 \prop_gput :Nnn

2107 \g_0@_renderer_arities_prop
2108 { dlEnd }
2100 {0 %}

2110 \ExplSyntax0ff

The \markdownRendererD1EndTight macro represents the end of a definition list
that contains no item with several paragraphs of text (the list is tight). This macro
will only be produced, when the tightLists option is disabled. The macro receives
no arguments.

2111 \ExplSyntaxOn
2112 \cs_gset_protected:Npn

101



2113 \markdownRendererD1EndTight

2114 {
2115 \markdownRendererD1EndTightPrototype
2116}

2117 \seq_gput_right:Nn

2118 \g_0@_renderers_seq

2119 { d1lEndTight }

2120 \prop_gput :Nnn

2121 \g_0@_renderer_arities_prop
2122 { dlEndTight }

2123 {02

2124 \ExplSyntax0ff

2.2.5.11 Ellipsis Renderer

The \markdownRendererE1llipsis macro replaces any occurrence of ASCII ellipses
in the input text. This macro will only be produced, when the smartEllipses option
is enabled. The macro receives no arguments.

2125 \ExplSyntaxOn
2126 \cs_gset_protected:Npn

2127 \markdownRendererEllipsis

2128  {

2129 \markdownRendererEllipsisPrototype
2130}

2131 \seq_gput_right:Nn

2132 \g_00@_renderers_seq

2133 { ellipsis }

2134 \prop_gput :Nnn

2135 \g_0@_renderer_arities_prop
2136 { ellipsis }

2137 { 0%

2138 \ExplSyntaxOff

2.2.5.12 Emphasis Renderers

The \markdownRendererEmphasis macro represents an emphasized span of text.
The macro receives a single argument that corresponds to the emphasized span of
text.
2139 \ExplSyntaxOn
2140 \cs_gset_protected:Npn
2141 \markdownRendererEmphasis

2142 {

2143 \markdownRendererEmphasisPrototype
2144}

2145 \seq_gput_right:Nn

2146 \g_0@_renderers_seq

2147  { emphasis }

102



2148 \prop_gput:Nnn

2149 \g_@@_renderer_arities_prop
2150  { emphasis }
2150 {1}

2152 \ExplSyntaxOff

The \markdownRendererStrongEmphasis macro represents a strongly emphasized
span of text. The macro receives a single argument that corresponds to the emphasized
span of text.

2153 \ExplSyntaxOn
2154 \cs_gset_protected:Npn
2155  \markdownRendererStrongEmphasis

2156 {

2157 \markdownRendererStrongEmphasisPrototype
2158  }

2159 \seq_gput_right:Nn

2160  \g_0@_renderers_seq

2161 { strongEmphasis }
2162 \prop_gput :Nnn

2163  \g_0@_renderer_arities_prop
2164  { strongEmphasis }
2165 {1}

2166 \ExplSyntaxOff

2.2.5.13 Fenced Code Attribute Context Renderers

The following macros are only produced, when the fencedCode and
fencedCodeAttributes options are enabled.

The \markdownRendererFencedCodeAttributeContextBegin and \markdownRendererFencedC
macros represent the beginning and the end of a context in which the attributes of a
fenced code apply. The macros receive no arguments.

2167 \ExplSyntaxOn
2168 \cs_gset_protected:Npn

2169 \markdownRendererFencedCodeAttributeContextBegin

2170 {

2171 \markdownRendererFencedCodeAttributeContextBeginPrototype
2172}

2173 \seq_gput_right:Nn

2174 \g_0@_renderers_seq

2175 { fencedCodeAttributeContextBegin }
2176 \prop_gput : Nnn

2177 \g_00@_renderer_arities_prop

2178 { fencedCodeAttributeContextBegin }

2179 {0}

2180 \cs_gset_protected:Npn

2181 \markdownRendererFencedCodeAttributeContextEnd

103



2182 {

2183 \markdownRendererFencedCodeAttributeContextEndPrototype
2184 }

2185 \seq_gput_right:Nn

2186 \g_0@_renderers_seq

2187  { fencedCodeAttributeContextEnd }
2188 \prop_gput :Nnn

2189 \g_0@_renderer_arities_prop
2190 { fencedCodeAttributeContextEnd }
2191 {01}

2192 \ExplSyntaxOff

2.2.5.14 Fenced Div Attribute Context Renderers

The following macros are only produced, when the fencedDiv option is enabled.

The \markdownRendererFencedDivAttributeContextBegin and \markdownRendererFencedDi
macros represent the beginning and the end of a context in which the attributes of a
div apply. The macros receive no arguments.

2193 \ExplSyntaxOn
2194 \cs_gset_protected:Npn
2195  \markdownRendererFencedDivAttributeContextBegin

2196 {

2197 \markdownRendererFencedDivAttributeContextBeginPrototype
2198}

2199 \seq_gput_right:Nn

2200 \g_0@_renderers_seq

2201 { fencedDivAttributeContextBegin }

2202 \prop_gput :Nnn
2203  \g_0@_renderer_arities_prop
2204  { fencedDivAttributeContextBegin }

2205 {0}

2206 \cs_gset_protected:Npn

2207 \markdownRendererFencedDivAttributeContextEnd

2208  {

2209 \markdownRendererFencedDivAttributeContextEndPrototype
2210}

2211 \seq_gput_right:Nn

2212 \g_0@_renderers_seq

2213  { fencedDivAttributeContextEnd }
2214 \prop_gput :Nnn

2215 \g_0@_renderer_arities_prop

2216 { fencedDivAttributeContextEnd }
2217 {0 %}

2218 \ExplSyntaxOff

2.2.5.15 Header Attribute Context Renderers

104



The following macros are only produced, when the autoIldentifiers,
gfmAutoIdentifiers, or headerAttributes options are enabled.

The \markdownRendererHeaderAttributeContextBegin and \markdownRendererHeaderAttril
macros represent the beginning and the end of a context in which the attributes of a
heading apply. The macros receive no arguments.
2219 \ExplSyntaxOn
2220 \cs_gset_protected:Npn

2221 \markdownRendererHeaderAttributeContextBegin

2222 o

2223 \markdownRendererHeaderAttributeContextBeginPrototype
2224}

2225 \seq_gput_right:Nn

2226 \g_0@_renderers_seq

2227 { headerAttributeContextBegin }

2228 \prop_gput :Nnn

29 \g_0@_renderer_arities_prop

30 { headerAttributeContextBegin }

31 {07}

32 \cs_gset_protected:Npn

33 \markdownRendererHeaderAttributeContextEnd

30 A

35 \markdownRendererHeaderAttributeContextEndPrototype

6}

2237 \seq_gput_right:Nn

38  \g_0Q@_renderers_seq

30 { headerAttributeContextEnd }

10 \prop_gput:Nnn
11 \g_0@_renderer_arities_prop
42 { headerAttributeContextEnd }
3 {0}

244 \ExplSyntaxOff

2.2.5.16 Heading Renderers
The \markdownRendererHeadingOne macro represents a first level heading. The
macro receives a single argument that corresponds to the heading text.

2245 \ExplSyntaxOn

2246 \cs_gset_protected:Npn

2247 \markdownRendererHeadingOne

2248 {

2249 \markdownRendererHeadingOnePrototype
2250  }

2251 \seq_gput_right:Nn

2252 \g_0@_renderers_seq

2253  { headingOne }

o

2254 \prop_gput:Nnn

105



wt

\g_0@_renderer_arities_prop
{ headingOne }
{11}

\ExplSyntax0ff

OO

ot Ot Ot Ot
-~

NN
oo

The \markdownRendererHeadingTwo macro represents a second level heading.
The macro receives a single argument that corresponds to the heading text.

259 \ExplSyntax0On
260 \cs_gset_protected:Npn

2
o
2261 \markdownRendererHeadingTwo
9

262 {
2263 \markdownRendererHeadingTwoPrototype
2264  }

2265 \seq_gput_right:Nn
2266 \g_0@_renderers_seq

2267  { headingTwo }

2268 \prop_gput :Nnn

2269 \g_0@_renderer_arities_prop
2270 { headingTwo }

2211 {132

2272 \ExplSyntaxOff

The \markdownRendererHeadingThree macro represents a third level heading.
The macro receives a single argument that corresponds to the heading text.

2273 \ExplSyntaxOn

2274 \cs_gset_protected:Npn

2275 \markdownRendererHeadingThree

2276 {

2277 \markdownRendererHeadingThreePrototype
2278}

2279 \seq_gput_right:Nn

2280  \g_@@_renderers_seq

2281 { headingThree }
2282 \prop_gput : Nnn

2283 \g_0Q@_renderer_arities_prop
2284 { headingThree }
2285 {1}

2286 \ExplSyntaxOff
The \markdownRendererHeadingFour macro represents a fourth level heading.
The macro receives a single argument that corresponds to the heading text.

2287 \ExplSyntaxOn
2288 \cs_gset_protected:Npn

2289  \markdownRendererHeadingFour

2290 o

2291 \markdownRendererHeadingFourPrototype
2292}

106



2293 \seq_gput_right:Nn
2294 \g_@@_renderers_seq
2295  { headingFour }

2296 \prop_gput : Nnn

2297 \g_0@_renderer_arities_prop
2298 { headingFour }
2299 {1}

2300 \ExplSyntaxOff

The \markdownRendererHeadingFive macro represents a fifth level heading. The
macro receives a single argument that corresponds to the heading text.

2301 \ExplSyntaxOn
2302 \cs_gset_protected:Npn
2303 \markdownRendererHeadingFive

2304 {
2305 \markdownRendererHeadingFivePrototype
2306  }

2307 \seq_gput_right:Nn
2308 \g_0@_renderers_seq

2309  { headingFive }

2310 \prop_gput :Nnn

2311 \g_0@_renderer_arities_prop
2312 { headingFive }

2313 {1}

2314 \ExplSyntaxOff

The \markdownRendererHeadingSix macro represents a sixth level heading. The
macro receives a single argument that corresponds to the heading text.

2315 \ExplSyntaxOn
2316 \cs_gset_protected:Npn

2317 \markdownRendererHeadingSix

2318 {

2319 \markdownRendererHeadingSixPrototype
2320}

2321 \seq_gput_right:Nn

2322 \g_0@_renderers_seq

2323 { headingSix }

2324 \prop_gput :Nnn

2325 \g_0@_renderer_arities_prop
2326 { headingSix }

2327 {1}

2328 \ExplSyntax0ff

2.2.5.17 Inline HTML Comment Renderer

The \markdownRendererInlineHtmlComment macro represents the contents of an
inline HTML comment. This macro will only be produced, when the html option is

107



enabled. The macro receives a single argument that corresponds to the contents of
the HTML comment.

2329 \ExplSyntaxOn
2330 \cs_gset_protected:Npn

2331 \markdownRendererInlineHtmlComment
2332 o

2333 \markdownRendererInlineHtmlCommentPrototype
2334}

2335 \seq_gput_right:Nn

2336 \g_0@_renderers_seq

2337 { inlineHtmlComment }

2338 \prop_gput :Nnn

2339 \g_0@_renderer_arities_prop

2340 { inlineHtmlComment }

2341 {1 %}

2342 \ExplSyntaxOff

2.2.5.18 HTML Tag and Element Renderers

The \markdownRendererInlineHtmlTag macro represents an opening, closing, or
empty inline HTML tag. This macro will only be produced, when the html option is
enabled. The macro receives a single argument that corresponds to the contents of
the HTML tag.

The \markdownRendererInputBlockHtmlElement macro represents a block HTML
element. This macro will only be produced, when the html option is enabled. The
macro receives a single argument that filename of a file containing the contents of
the HTML element.

2343 \ExplSyntaxOn
2344 \cs_gset_protected:Npn
2345  \markdownRendererInlineHtmlTag

2346 {

2347 \markdownRendererInlineHtmlTagPrototype
2348  }

2349 \seq_gput_right:Nn

2350  \g_@@_renderers_seq

2351 { inlineHtmlTag }
2352 \prop_gput :Nnn

2353 \g_0Q@_renderer_arities_prop
2354 { inlineHtmlTag }
2355 {1}

2356 \cs_gset_protected:Npn

2357 \markdownRendererInputBlockHtmlElement

2358 {

2359 \markdownRendererInputBlockHtmlElementPrototype
2360  }

2361 \seq_gput_right:Nn

108



2362 \g_0@_renderers_seq

2363 { inputBlockHtmlElement }
2364 \prop_gput :Nnn

2365 \g_0@_renderer_arities_prop
2366 { inputBlockHtmlElement }
2367 {1 %

2368 \ExplSyntaxOff

2.2.5.19 Image Renderer

The \markdownRendererImage macro represents an image. It receives four argu-
ments: the label, the fully escaped URI that can be directly typeset, the raw URI that
can be used outside typesetting, and the title of the link.

2369 \ExplSyntaxOn
2370 \cs_gset_protected:Npn
1 \markdownRendererImage

237

2372 {

2373 \markdownRendererImagePrototype
2374}

2375 \seq_gput_right:Nn

2376 \g_0@_renderers_seq

2377 { image }

2378 \prop_gput : Nnn

2379 \g_0@_renderer_arities_prop

2380  { image }

2381 {4}

2382 \ExplSyntaxOff

2.2.5.20 Image Attribute Context Renderers
The following macros are only produced, when the linkAttributes option is
enabled.
The \markdownRendererImageAttributeContextBegin and \markdownRendererImageAttribu
macros represent the beginning and the end of a context in which the attributes of
an image apply. The macros receive no arguments.
2383 \ExplSyntaxOn
2384 \cs_gset_protected:Npn
2385  \markdownRendererImageAttributeContextBegin

2386 o

2387 \markdownRendererImageAttributeContextBeginPrototype
2388  }

2389 \seq_gput_right:Nn

2390  \g_0@_renderers_seq

2391 { imageAttributeContextBegin }
2392 \prop_gput : Nnn
2393  \g_0@_renderer_arities_prop

109



2394 { imageAttributeContextBegin }

2395 {0}

2396 \cs_gset_protected:Npn

2397 \markdownRendererImageAttributeContextEnd

2398 {

2399 \markdownRendererImageAttributeContextEndPrototype
2400 }

2401 \seq_gput_right:Nn

2402 \g_0@_renderers_seq

2403 { imageAttributeContextEnd }
2404 \prop_gput :Nnn

2405  \g_0@_renderer_arities_prop
2406  { imageAttributeContextEnd }
2¢07 {0}

2408 \ExplSyntaxOff

2.2.5.21 Interblock Separator Renderers
The \markdownRendererInterblockSeparator macro represents an interblock
separator between two markdown block elements. The macro receives no arguments.

2409 \ExplSyntaxOn
2410 \cs_gset_protected:Npn
2411 \markdownRendererInterblockSeparator

2412 o

2413 \markdownRendererInterblockSeparatorPrototype
2414}

2415 \seq_gput_right:Nn

2416 \g_@@_renderers_seq

2417 { interblockSeparator }
2418 \prop_gput : Nnn

2419  \g_0@_renderer_arities_prop
2420 { interblockSeparator }
2421 { 0 }

2422 \ExplSyntaxOff

Users can use more than one blank line to delimit two block to indicate the end
of a series of blocks that make up a logical paragraph. This produces a paragraph
separator instead of an interblock separator. Between some blocks, such as markdown
paragraphs, a paragraph separator is always produced.

The \markdownRendererParagraphSeparator macro represents a paragraph sep-
arator. The macro receives no arguments.

2423 \ExplSyntaxOn

2424 \cs_gset_protected:Npn

2425 \markdownRendererParagraphSeparator

2426 {

2427 \markdownRendererParagraphSeparatorPrototype

110



2428  }
2429 \seq_gput_right:Nn
2430  \g_0@_renderers_seq

2431 { paragraphSeparator }

2432 \prop_gput : Nnn

2433 \g_0Q@_renderer_arities_prop
2434 { paragraphSeparator }

2435 { 0 }

2436 \ExplSyntaxOff

2.2.5.22 Line Block Renderers
The following macros are only produced, when the 1ineBlocks option is enabled.
The \markdownRendererLineBlockBegin and \markdownRendererLineBlockEnd
macros represent the beginning and the end of a line block. The macros receive no
arguments.

2437 \ExplSyntaxOn
2438 \cs_gset_protected:Npn

2439  \markdownRendererLineBlockBegin

2440 {

2441 \markdownRendererLineBlockBeginPrototype
2442}

2443 \seq_gput_right:Nn
2444  \g_0@_renderers_seq
2445  { lineBlockBegin }
2446 \prop_gput :Nnn

2447 \g_0@_renderer_arities_prop

2448 { lineBlockBegin }

2440 {0 }

2450 \cs_gset_protected:Npn

2451 \markdownRendererLineBlockEnd

2452 {

2453 \markdownRendererLineBlockEndPrototype
2454}

2455 \seq_gput_right:Nn
2456 \g_0@_renderers_seq

2457  { lineBlockEnd }

2458 \prop_gput :Nnn

2459 \g_0@_renderer_arities_prop
2460  { lineBlockEnd }

2461 {01}

2462 \ExplSyntax0ff
2.2.5.23 Line Break Renderers

The \markdownRendererSoftLineBreak macro represents a soft line break. The
macro receives no arguments.

111



2463 \ExplSyntaxOn
2464 \cs_gset_protected:Npn
2465 \markdownRendererSoftLineBreak

2466 {

2467 \markdownRendererSoftLineBreakPrototype
2468  }

2469 \seq_gput_right:Nn

2470 \g_0@_renderers_seq

2471 { softLineBreak }
2472 \prop_gput : Nnn

2473 \g_0@_renderer_arities_prop
2474  { softLineBreak }
2475 {0 %}

2476 \ExplSyntax0ff

The \markdownRendererHardLineBreak macro represents a hard line break. The
macro receives no arguments.

2477 \ExplSyntaxOn
2478 \cs_gset_protected:Npn

2479 \markdownRendererHardLineBreak

2480 |

2481 \markdownRendererHardLineBreakPrototype
2482 }

2483 \seq_gput_right:Nn
2484 \g_0@_renderers_seq
2485  { hardLineBreak }
2486 \prop_gput : Nnn

2487 \g_0Q@_renderer_arities_prop
2488 { hardLineBreak }
2489 {0 %}

2490 \ExplSyntax0ff

2.2.5.24 Link Renderer

The \markdownRendererLink macro represents a hyperlink. It receives four ar-
guments: the label, the fully escaped URI that can be directly typeset, the raw URI
that can be used outside typesetting, and the title of the link.
2491 \ExplSyntaxOn

2492 \cs_gset_protected:Npn
2493 \markdownRendererLink

2494 |
2495 \markdownRendererLinkPrototype
2496}

2497 \seq_gput_right:Nn
2498 \g_0@_renderers_seq
2499 { link }

2500 \prop_gput :Nnn

112



01 \g_0@@_renderer_arities_prop
02 { link }

2503 {4}

2504 \ExplSyntax0ff

2.2.5.25 Link Attribute Context Renderers
The following macros are only produced, when the linkAttributes option is
enabled.
The \markdownRendererLinkAttributeContextBegin and \markdownRendererLinkAttribute
macros represent the beginning and the end of a context in which the attributes of a
hyperlink apply. The macros receive no arguments.

2505 \ExplSyntaxOn
2506 \cs_gset_protected:Npn

2507 \markdownRendererLinkAttributeContextBegin

2508  {

2509 \markdownRendererLinkAttributeContextBeginPrototype
2510  }

2511 \seq_gput_right:Nn
2512 \g_0@_renderers_seq
2513 { linkAttributeContextBegin }

2514 \prop_gput :Nnn

2515 \g_0@_renderer_arities_prop

2516 { linkAttributeContextBegin }

2517 {0}

2518 \cs_gset_protected:Npn

2519 \markdownRendererLinkAttributeContextEnd
2520 {

2521 \markdownRendererLinkAttributeContextEndPrototype
2522}

2523 \seq_gput_right:Nn

2524 \g_0@_renderers_seq

2525  { linkAttributeContextEnd }

2526 \prop_gput :Nnn

2527 \g_0@_renderer_arities_prop

2528  { linkAttributeContextEnd }

2520 {0}

2530 \ExplSyntaxOff

2.2.5.26 Marked Text Renderer

The following macro is only produced, when the mark option is enabled.

The \markdownRendererMark macro represents a span of marked or highlighted
text. The macro receives a single argument that corresponds to the marked text.
2531 \ExplSyntaxOn
2532 \cs_gset_protected:Npn

113



33 \markdownRendererMark
34 {
5 \markdownRendererMarkPrototype

G}

38 \g_00_renderers_seq

39  { mark }

10 \prop_gput:Nnn

41 \g_0@_renderer_arities_prop
12 { mark }

43 {1}

2.2.5.27 Markdown Document Renderers

The \markdownRendererDocumentBegin and \markdownRendererDocumentEnd
macros represent the beginning and the end of a markdown document. The macros
receive no arguments.

A TEX document may contain any number of markdown documents. Additionally,
markdown documents may appear not only in a sequence, but several markdown
documents may also be nested. Redefinitions of the macros should take this into
account.

2545 \ExplSyntaxOn
16 \cs_gset_protected:Npn
47 \markdownRendererDocumentBegin
18 {
\markdownRendererDocumentBeginPrototype
b
\seq_gput_right:Nn

P )

2 \g_0@_renderers_seq
3 { documentBegin }
4 \prop_gput :Nnn

\g_0Q@_renderer_arities_prop
{ documentBegin }

{07}

(SIS N B |
LIRS, B BN, B, TR BN, B, B G|
o Ot

N o

)

558 \cs_gset_protected:Npn

559 \markdownRendererDocumentEnd

560

561 \markdownRendererDocumentEndPrototype
562}

3 \seq_gput_right:Nn

564  \g_0Q@_renderers_seq

565 { documentEnd }

566 \prop_gput:Nnn

567  \g_0@_renderer_arities_prop
2568  { documentEnd }

114



569 {07%
5

2
2570 \ExplSyntaxOff

2.2.5.28 Non-Breaking Space Renderer
The \markdownRendererNbsp macro represents a non-breaking space.

N
ot

I \ExplSyntaxOn
2 \cs_gset_protected:Npn

257

2573 \markdownRendererNbsp

2574 |

2575 \markdownRendererNbspPrototype
2576}

2577 \seq_gput_right:Nn

2578  \g_@@_renderers_seq

2579 { nbsp }

2580 \prop_gput : Nnn

2581 \g_0@_renderer_arities_prop
2582 { nbsp }

2583 {0}

2

2584 \ExplSyntaxOff
2.2.5.29 Note Renderer

The \markdownRendererNote macro represents a note. This macro will only be
produced, when the notes option is enabled. The macro receives a single argument
that corresponds to the note text.

2585 \def\markdownRendererNote{/,
2586  \markdownRendererNotePrototypel’
2587 \ExplSyntaxOn

2588 \seq_gput_right:Nn

2589  \g_0@_renderers_seq

2590  { note }

2591 \prop_gput :Nnn

2592 \g_00_renderer_arities_prop
2593 { note }

2504 {1}

2595 \ExplSyntaxOff

2.2.5.30 Ordered List Renderers

The \markdownRenderer0lBegin macro represents the beginning of an ordered
list that contains an item with several paragraphs of text (the list is not tight). This
macro will only be produced, when the fancyLists option is disabled. The macro
receives no arguments.
2596 \ExplSyntaxOn
2597 \cs_gset_protected:Npn

115



2598 \markdownRenderer(lBegin

2599  {

2600 \markdownRendererOlBeginPrototype
2601}

2602 \seq_gput_right:Nn

2603  \g_0@_renderers_seq

2604  { olBegin }
2605 \prop_gput :Nnn

2606 \g_0@_renderer_arities_prop
2607  { olBegin }
2608 { 0}

2609 \ExplSyntax0ff

The \markdownRenderer01BeginTight macro represents the beginning of an or-
dered list that contains no item with several paragraphs of text (the list is tight).
This macro will only be produced, when the tightLists option is enabled and the
fancyLists option is disabled. The macro receives no arguments.

2610 \ExplSyntaxOn
2611 \cs_gset_protected:Npn
2612 \markdownRenderer(0lBeginTight

2613 {

2614 \markdownRenderer0l1BeginTightPrototype
2615  }

2616 \seq_gput_right:Nn

2617 \g_0@_renderers_seq

2618 { olBeginTight }
2619 \prop_gput :Nnn

2620 \g_00_renderer_arities_prop
2621 { olBeginTight }
2622 {0 %}

2623 \ExplSyntax0ff

The \markdownRendererFancy0lBegin macro represents the beginning of a fancy
ordered list that contains an item with several paragraphs of text (the list is not tight).
This macro will only be produced, when the fancyLists option is enabled. The
macro receives two arguments: the style of the list item labels (Decimal, LowerRoman,
UpperRoman, LowerAlpha, and UpperAlpha), and the style of delimiters between list
item labels and texts (Default, OneParen, and Period).

2624 \ExplSyntaxOn
2625 \cs_gset_protected:Npn

2626 \markdownRendererFancy0lBegin

2627 {

2628 \markdownRendererFancy0OlBeginPrototype
2629 }

2630 \seq_gput_right:Nn
2631 \g_0Q@_renderers_seq

116



2632 { fancyOlBegin }

2633 \prop_gput :Nnn

2634 \g_0@_renderer_arities_prop
2635  { fancyOlBegin }

2636 { 2}

2637 \ExplSyntaxOff

The \markdownRendererFancy0lBeginTight macro represents the beginning of
a fancy ordered list that contains no item with several paragraphs of text (the list is
tight). This macro will only be produced, when the fancyLists and tightLists
options are enabled. The macro receives two arguments: the style of the list item
labels, and the style of delimiters between list item labels and texts. See the
\markdownRendererFancy0lBegin macro for the valid style values.
2638 \ExplSyntaxOn
2639 \cs_gset_protected:Npn
2640  \markdownRendererFancyOlBeginTight

2641 {
2642 \markdownRendererFancy0lBeginTightPrototype
2643}

2644 \seq_gput_right:Nn

2645  \g_0@_renderers_seq

2646 { fancyOlBeginTight }

2647 \prop_gput :Nnn

2648 \g_00_renderer_arities_prop

2649  { fancyOlBeginTight }
2650 {2}
2651 \ExplSyntax0ff

The \markdownRenderer0lItem macro represents an item in an ordered list. This
macro will only be produced, when the startNumber option is disabled and the
fancyLists option is disabled. The macro receives no arguments.

2652 \ExplSyntaxOn
2653 \cs_gset_protected:Npn
2654 \markdownRenderer0lItem

2655 {

2656 \markdownRenderer0lItemPrototype
2657 }

2658 \seq_gput_right:Nn

2659  \g_0@_renderers_seq

2660  { olItem 2}

2661 \prop_gput : Nnn

2662 \g_0@_renderer_arities_prop
2663 { olltem }

2664 {0 }

2665 \ExplSyntax0ff

117



The \markdownRendererOlItemEnd macro represents the end of an item in an
ordered list. This macro will only be produced, when the fancyLists option is
disabled. The macro receives no arguments.

2666 \ExplSyntaxOn
2667 \cs_gset_protected:Npn
2668  \markdownRenderer0lItemEnd

2669  {
2670 \markdownRenderer0lItemEndPrototype
2671}

2672 \seq_gput_right:Nn
2673 \g_0@_renderers_seq
2674 { olItemEnd }

2675 \prop_gput :Nnn

2676 \g_0@_renderer_arities_prop
2677 { olItemEnd }
2678 { 0 %

2679 \ExplSyntaxOff

The \markdownRendererOlItemWithNumber macro represents an item in an or-
dered list. This macro will only be produced, when the startNumber option is
enabled and the fancyLists option is disabled. The macro receives a single numeric
argument that corresponds to the item number.

2680 \ExplSyntaxOn
2681 \cs_gset_protected:Npn
2682  \markdownRenderer(0lItemWithNumber

2683 {

2684 \markdownRenderer0lItemWithNumberPrototype
2685  }

2686 \seq_gput_right:Nn

2687  \g_0@_renderers_seq

2688 { olItemWithNumber }
2689 \prop_gput:Nnn

2690  \g_@@_renderer_arities_prop
2691 { olItemWithNumber }
2602 {1}

2693 \ExplSyntaxOff

The \markdownRendererFancy0lItem macro represents an item in a fancy ordered
list. This macro will only be produced, when the startNumber option is disabled
and the fancyLists option is enabled. The macro receives no arguments.

2694 \ExplSyntaxOn
2695 \cs_gset_protected:Npn

2696  \markdownRendererFancyOlItem

2697  {

2698 \markdownRendererFancyOlItemPrototype
2699  }

118



270

2701 \g_0@_renderers_seq

2702 { fancyOlItem }

2703 \prop_gput : Nnn

2704 \g_0@_renderer_arities_prop
2705 { fancyOlItem }

2706 { 0 }

2707 \ExplSyntaxOff

The \markdownRendererFancy0lItemEnd macro represents the end of an item in
a fancy ordered list. This macro will only be produced, when the fancyLists option
is enabled. The macro receives no arguments.
2708 \ExplSyntaxOn
2709 \cs_gset_protected:Npn

2710 \markdownRendererFancyOlItemEnd
2711 o

2712 \markdownRendererFancyOlItemEndPrototype
2713}

2714 \seq_gput_right:Nn

2715 \g_0@_renderers_seq

2716 { fancyOlItemEnd }

2717 \prop_gput:Nnn

2718 \g_@@_renderer_arities_prop
2719 { fancyOlItemEnd }

220 { 0 }

2721 \ExplSyntaxOff

The \markdownRendererFancy0lItemWithNumber macro represents an item in a
fancy ordered list. This macro will only be produced, when the startNumber and
fancyLists options are enabled. The macro receives a single numeric argument that
corresponds to the item number.

2722 \ExplSyntaxOn

2723 \cs_gset_protected:Npn

2724 \markdownRendererFancy0lItemWithNumber
50 A

6 \markdownRendererFancy0lItemWithNumberPrototype
X

8 \seq_gput_right:Nn

9  \g_00_renderers_seq

30 { fancyOlItemWithNumber }

31 \prop_gput:Nnn

32 \g_0@_renderer_arities_prop

3

N NN NN
3

3 { fancyOlItemWithNumber }
+ {1}
5

NN NN DN NN NN

\)
~
[x2]
>
o)
=
w0
<
[=}
t
)
ol
o
H
Hh

119



The \markdownRenderer(01End macro represents the end of an ordered list that
contains an item with several paragraphs of text (the list is not tight). This macro
will only be produced, when the fancyLists option is disabled. The macro receives
no arguments.

6 \ExplSyntaxOn

7 \cs_gset_protected:Npn

8 \markdownRenderer(01End

39 A{

740 \markdownRenderer01EndPrototype
Lo

2 \seq_gput_right:Nn

3 \g_0@_renderers_seq

1 { olEnd }

5 \prop_gput:Nnn

746 \g_Q@@_renderer_arities_prop
747 { olEnd }

w {07}

19 \ExplSyntaxOff

The \markdownRenderer01EndTight macro represents the end of an ordered list
that contains no item with several paragraphs of text (the list is tight). This macro
will only be produced, when the tightLists option is enabled and the fancyLists
option is disabled. The macro receives no arguments.

0 \ExplSyntaxOn

I \cs_gset_protected:Npn

52 \markdownRendererOlEndTight
3 {
1 \markdownRenderer01EndTightPrototype

55}

56 \seq_gput_right:Nn

57 \g_0@_renderers_seq

58  { olEndTight }

59 \prop_gput :Nnn

760 \g_0@_renderer_arities_prop

61 { 0lEndTight }

62 {01}

763 \ExplSyntaxOff

The \markdownRendererFancy0lEnd macro represents the end of a fancy ordered
list that contains an item with several paragraphs of text (the list is not tight). This
macro will only be produced, when the fancyLists option is enabled. The macro
receives no arguments.

2764 \ExplSyntaxOn
2765 \cs_gset_protected:Npn
2766 \markdownRendererFancyOlEnd

120



67 A

68 \markdownRendererFancyOlEndPrototype
69 %}

70 \seq_gput_right:Nn

71 \g_0@_renderers_seq

72 { fancy0lEnd }

73 \prop_gput :Nnn

74 \g_0@_renderer_arities_prop
75 { fancyOlEnd }

w {0%}

The \markdownRendererFancy0lEndTight macro represents the end of a fancy
ordered list that contains no item with several paragraphs of text (the list is tight).
This macro will only be produced, when the fancyLists and tightLists options
are enabled. The macro receives no arguments.

2778 \ExplSyntaxOn
2779 \cs_gset_protected:Npn
2780  \markdownRendererFancyOlEndTight

2781 o
2782 \markdownRendererFancy0lEndTightPrototype
2783  }

2784 \seq_gput_right:Nn

2785  \g_0@_renderers_seq

2786 { fancyOlEndTight }

2787 \prop_gput :Nnn

2788 \g_0@_renderer_arities_prop
2789 { fancyOlEndTight }

2790 { 0 }

2791 \ExplSyntaxOff

2.2.5.31 Raw Content Renderers

The \markdownRendererInputRawInline macro represents an inline raw span.
The macro receives two arguments: the filename of a file containing the inline raw
span contents and the raw attribute that designates the format of the inline raw
span. This macro will only be produced, when the rawAttribute option is enabled.
2792 \ExplSyntaxOn
2793 \cs_gset_protected:Npn

2794 \markdownRendererInputRawInline

2795 {

2796 \markdownRendererInputRawInlinePrototype
2797}

2798 \seq_gput_right:Nn

2799  \g_0@_renderers_seq

2800  { inputRawInline }

121



2801 \prop_gput:Nnn

2802  \g_@@_renderer_arities_prop
2803 { inputRawInline }

2804 {2}

2805 \ExplSyntaxOff

The \markdownRendererInputRawBlock macro represents a raw block. The macro
receives two arguments: the filename of a file containing the raw block and the raw
attribute that designates the format of the raw block. This macro will only be
produced, when the rawAttribute and fencedCode options are enabled.

2806 \ExplSyntaxOn
2807 \cs_gset_protected:Npn
2808 \markdownRendererInputRawBlock

2809 o

2810 \markdownRendererInputRawBlockPrototype
2811}

2812 \seq_gput_right:Nn

2813 \g_0@_renderers_seq

2814  { inputRawBlock }
2815 \prop_gput:Nnn

2816 \g_0@_renderer_arities_prop
2817 { inputRawBlock }
2818 {2}

2819 \ExplSyntaxOff

2.2.5.32 Section Renderers
The \markdownRendererSectionBegin and \markdownRendererSectionEnd
macros represent the beginning and the end of a section based on headings.
2820 \ExplSyntaxOn
2821 \cs_gset_protected:Npn
2822 \markdownRendererSectionBegin

2823 {
2824 \markdownRendererSectionBeginPrototype
2825  }

2826 \seq_gput_right:Nn

2827  \g_0@_renderers_seq

2828  { sectionBegin }

2829 \prop_gput :Nnn

2830  \g_0@_renderer_arities_prop
2831  { sectionBegin }

2832 {0 %

2833 \cs_gset_protected:Npn

2834  \markdownRendererSectionEnd

2835 o
2836 \markdownRendererSectionEndPrototype
2837  }

122



2838 \seq_gput_right:Nn

2839  \g_@@_renderers_seq

2840 { sectionEnd }

2841 \prop_gput : Nnn

2842 \g_0@_renderer_arities_prop
2843 { sectionEnd }

2844 { 0 }

2845 \ExplSyntaxOff

2.2.5.33 Replacement Character Renderers

The \markdownRendererReplacementCharacter macro represents the U+0000
and U+FFFD Unicode characters. The macro receives no arguments.
2846 \ExplSyntaxOn

2847 \cs_gset_protected:Npn
2848 \markdownRendererReplacementCharacter

2849  {
2850 \markdownRendererReplacementCharacterPrototype
2851}

2852 \seq_gput_right:Nn

2853  \g_0@_renderers_seq

2854  { replacementCharacter }
2855 \prop_gput : Nnn

2856 \g_0@_renderer_arities_prop
2857  { replacementCharacter }
2858 { 0 %

2859 \ExplSyntax0ff

2.2.5.34 Special Character Renderers

The following macros replace any special plain TEX characters, including the
active pipe character (|) of ConTEXt, in the input text. These macros will only be
produced, when the hybrid option is false.

2860 \ExplSyntaxOn
2861 \cs_gset_protected:Npn
2862 \markdownRendererLeftBrace

2863 1

2864 \markdownRendererLeftBracePrototype
2865  }

2866 \seq_gput_right:Nn

2867  \g_@@_renderers_seq

2868  { leftBrace }
2869 \prop_gput : Nnn

2870 \g_0@_renderer_arities_prop
2871 { leftBrace }
2872 { 0 }

2873 \cs_gset_protected:Npn

123



2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901

2902
2903
2904
2905
2906
2907
2908
2909
2910
2911

2912
2913
2914
2915
2916
2917
2918
2919
2920

\markdownRendererRightBrace
{
\markdownRendererRightBracePrototype
}
\seq_gput_right:Nn
\g_0Q@_renderers_seq
{ rightBrace }
\prop_gput :Nnn
\g_0@_renderer_arities_prop
{ rightBrace }
{01}
\cs_gset_protected:Npn
\markdownRendererDollarSign
{
\markdownRendererDollarSignPrototype
}
\seq_gput_right:Nn
\g_0@_renderers_seq
{ dollarSign }
\prop_gput : Nnn
\g_0@_renderer_arities_prop
{ dollarSign }
{07}
\cs_gset_protected:Npn
\markdownRendererPercentSign
{
\markdownRendererPercentSignPrototype
}
\seq_gput_right:Nn
\g_0@_renderers_seq
{ percentSign }
\prop_gput : Nnn
\g_0Q@_renderer_arities_prop
{ percentSign }
{07}
\cs_gset_protected:Npn
\markdownRendererAmpersand
{
\markdownRendererAmpersandPrototype
X
\seq_gput_right:Nn
\g_0Q@_renderers_seq
{ ampersand }
\prop_gput :Nnn
\g_0@_renderer_arities_prop
{ ampersand }

{01}

124



2021
2022
2023
2024
2025
2026
2027
2028
2029
2930
2931
2032
2933
2934
2935
2936
2937
2938
2039
2940
2041
2042
2043
2944
2945
2946
2047
2048
2049
2950
2051
2052
2053
2054
2055
2056
2057
2058
2959
2960
2061
2062
2963
2064
2065
2066
2067

\cs_gset_protected:Npn
\markdownRendererUnderscore
{
\markdownRendererUnderscorePrototype
}
\seq_gput_right:Nn
\g_0@_renderers_seq
{ underscore }
\prop_gput : Nnn
\g_0@_renderer_arities_prop
{ underscore }
{0}
\cs_gset_protected:Npn
\markdownRendererHash
{
\markdownRendererHashPrototype
}
\seq_gput_right:Nn
\g_0@_renderers_seq
{ hash }
\prop_gput : Nnn
\g_0Q@_renderer_arities_prop
{ hash }
{07}
\cs_gset_protected:Npn
\markdownRendererCircumflex
{
\markdownRendererCircumflexPrototype
¥
\seq_gput_right:Nn
\g_0@_renderers_seq
{ circumflex }
\prop_gput : Nnn
\g_0@_renderer_arities_prop
{ circumflex }
{0}
\cs_gset_protected:Npn
\markdownRendererBackslash
{
\markdownRendererBackslashPrototype
}
\seq_gput_right:Nn
\g_0Q@_renderers_seq
{ backslash }
\prop_gput :Nnn
\g_0@_renderer_arities_prop
{ backslash }

125



2068 { 0 }
2969 \cs_gset_protected:Npn

2970 \markdownRendererTilde

2971 {

2972 \markdownRendererTildePrototype
2973}

2974 \seq_gput_right:Nn

2075 \g_0@_renderers_seq

2976 { tilde }

2977 \prop_gput : Nnn

2978 \g_0@_renderer_arities_prop
2979 { tilde }

2080 {0}

2081 \cs_gset_protected:Npn

2082 \markdownRendererPipe

2083 {
2984 \markdownRendererPipePrototype
2985  }

2086 \seq_gput_right:Nn
2087  \g_0@_renderers_seq
2088 { pipe }

2089 \prop_gput : Nnn

2090  \g_@@_renderer_arities_prop
2091 { pipe }
2902 {0 %}

2993 \ExplSyntaxOff

2.2.5.35 Strike-Through Renderer
The \markdownRendererStrikeThrough macro represents a strike-through span
of text. The macro receives a single argument that corresponds to the striked-out

span of text. This macro will only be produced, when the strikeThrough option is
enabled.

2994 \ExplSyntaxOn
2995 \cs_gset_protected:Npn

2996  \markdownRendererStrikeThrough

2997 {

2998 \markdownRendererStrikeThroughPrototype
2099  }

3000 \seq_gput_right:Nn

3001  \g_0@_renderers_seq

3002  { strikeThrough }

3003 \prop_gput : Nnn

3004 \g_0Q@_renderer_arities_prop
3005  { strikeThrough }
3006 {13}

3007 \ExplSyntax0ff

126



2.2.5.36 Subscript Renderer

The \markdownRendererSubscript macro represents a subscript span of text.
The macro receives a single argument that corresponds to the subscript span of text.
This macro will only be produced, when the subscripts option is enabled.

08 \ExplSyntaxOn
3009 \cs_gset_protected:Npn

3010 \markdownRendererSubscript

3011 {

3012 \markdownRendererSubscriptPrototype
3( }

3

4 \seq_gput_right:Nn

5 \g_0@_renderers_seq

6 { subscript }

)17 \prop_gput : Nnn

3018 \g_0@_renderer_arities_prop
3019 { subscript }

30200 {13}

2.2.5.37 Superscript Renderer

The \markdownRendererSuperscript macro represents a superscript span of text.
The macro receives a single argument that corresponds to the superscript span of
text. This macro will only be produced, when the superscripts option is enabled.

3021 \cs_gset_protected:Npn

3022  \markdownRendererSuperscript

3023 {

3024 \markdownRendererSuperscriptPrototype
3025}

26 \seq_gput_right:Nn
\g_0@_renderers_seq

8  { superscript }

29 \prop_gput:Nnn

30 \g_@@_renderer_arities_prop
31 { superscript }

32 {1}

33 \ExplSyntax0ff

2.2.5.38 Table Attribute Context Renderers

The following macros are only produced, when the tableCaptions and
tableAttributes options are enabled.

The \markdownRendererTableAttributeContextBegin and \markdownRendererTableAttribu
macros represent the beginning and the end of a context in which the attributes of a
table apply. The macros receive no arguments.

3034 \ExplSyntaxOn

127



35 \cs_gset_protected:Npn

36 \markdownRendererTableAttributeContextBegin
37 A
3

3038 \markdownRendererTableAttributeContextBeginPrototype
3039}

3040 \seq_gput_right:Nn

3041 \g_0@_renderers_seq

2 { tableAttributeContextBegin }
3 \prop_gput:Nnn

I \g_0@_renderer_arities_prop
45  { tableAttributeContextBegin }
6 {0}
17 \cs_gset_protected:Npn
48 \markdownRendererTableAttributeContextEnd
19
50 \markdownRendererTableAttributeContextEndPrototype
510}
52 \seq_gput_right:Nn
53 \g_00_renderers_seq
54 { tableAttributeContextEnd }
55 \prop_gput :Nnn
56 \g_0Q@_renderer_arities_prop
57 { tableAttributeContextEnd }
58 {017}
59 \ExplSyntax0ff

2.2.5.39 Table Renderer

The \markdownRendererTable macro represents a table. This macro will only be
produced, when the pipeTables option is enabled. The macro receives the parameters
{{caption)}{{number of rowsy}{{number of columns)} followed by {{alignments)}
and then by {{row)} repeated {number of rows) times, where (row) is {{column)}
repeated (number of columns) times, {alignments) is {alignment) repeated {number
of columns) times, and {(alignment) is one of the following:

o d — The corresponding column has an unspecified (default) alignment.
e 1 — The corresponding column is left-aligned.

e ¢ — The corresponding column is centered.

e r — The corresponding column is right-aligned.

3060 \ExplSyntaxOn

3061 \cs_gset_protected:Npn

3062 \markdownRendererTable

3063 {

3064 \markdownRendererTablePrototype
3065 7}

3066 \seq_gput_right:Nn

128



67  \g_0@_renderers_seq

68 { table }

69 \prop_gput:Nnn

0 \g_0@_renderer_arities_prop
1 { table }

2 {317

3 \ExplSyntaxOff

2.2.5.40 TeX Math Renderers

The \markdownRendererInlineMath and \markdownRendererDisplayMath
macros represent inline and display TEX math. Both macros receive a single argument
that corresponds to the TEX math content. These macros will only be produced, when
the texMathDollars, texMathSingleBackslash, or texMathDoubleBackslash op-
tion are enabled.

74 \ExplSyntaxOn

75 \cs_gset_protected:Npn

76 \markdownRendererInlineMath
o A

78 \markdownRendererInlineMathPrototype
7 X

\seq_gput_right:Nn

81 \g_0@_renderers_seq

82 { inlineMath }

083 \prop_gput:Nnn

84 \g_0Q@_renderer_arities_prop
85 { inlineMath }

s6 {113}

3087 \cs_gset_protected:Npn

3088  \markdownRendererDisplayMath
3089

3090 \markdownRendererDisplayMathPrototype
3091}

3092 \seq_gput_right:Nn

3093  \g_0@_renderers_seq

3094  { displayMath }

3095 \prop_gput : Nnn

3096 \g_0@_renderer_arities_prop
3097 { displayMath }
3008 {1}

3099 \ExplSyntax0ff
2.2.5.41 Thematic Break Renderer

The \markdownRendererThematicBreak macro represents a thematic break. The
macro receives no arguments.

129



3100 \ExplSyntaxOn
3101 \cs_gset_protected:Npn
3102 \markdownRendererThematicBreak

3103 {

3104 \markdownRendererThematicBreakPrototype
3105}

3106 \seq_gput_right:Nn

3107 \g_0@@_renderers_seq

3108  { thematicBreak }

3109 \prop_gput : Nnn

3110 \g_0@_renderer_arities_prop
3111 { thematicBreak }

3112 {0}

3113 \ExplSyntax0ff

2.2.5.42 Tickbox Renderers

The macros named \markdownRendererTickedBox, \markdownRendererHalfTickedBox,
and \markdownRendererUntickedBox represent ticked and unticked boxes, respec-
tively. These macros will either be produced, when the taskLists option is enabled,
or when the Ballot Box with X (X], U+2612), Hourglass (-], U+231B) or Ballot Box
(o, U+2610) Unicode characters are encountered in the markdown input, respectively.

3114 \ExplSyntaxOn
3115 \cs_gset_protected:Npn

3116 \markdownRendererTickedBox

3117 o

3118 \markdownRendererTickedBoxPrototype
3119 }

3120 \seq_gput_right:Nn

3121 \g_0@_renderers_seq

3122 { tickedBox }

3123 \prop_gput : Nnn

3124 \g_0@_renderer_arities_prop
3125 { tickedBox }

3126 {0}

3127 \cs_gset_protected:Npn

3128 \markdownRendererHalfTickedBox
3129 o

3130 \markdownRendererHalfTickedBoxPrototype
3131 }

3132 \seq_gput_right:Nn

3133 \g_0@_renderers_seq

3134 { halfTickedBox }

3135 \prop_gput :Nnn

3136 \g_00@_renderer_arities_prop
3137 { halfTickedBox }

3133. {0}

130



3139 \cs_gset_protected:Npn

3140 \markdownRendererUntickedBox

3141 {

3142 \markdownRendererUntickedBoxPrototype
3143}

3144 \seq_gput_right:Nn

3145  \g_0@_renderers_seq

3146 { untickedBox }

3147 \prop_gput : Nnn

3148 \g_00_renderer_arities_prop
3149  { untickedBox }

3150 {0}

3151 \ExplSyntax0ff

2.2.5.43 Warning and Error Renderers

The \markdownRendererWarning and \markdownRendererError macros repre-
sent warnings and errors produced by the markdown parser. Both macros receive
four parameters:

1. The fully escaped text of the warning or error that can be directly typeset

2. The raw text of the warning or error that can be used outside typesetting for
e.g. logging the warning or error.

3. The fully escaped text with more details about the warning or error that can
be directly typeset. Can be empty, unlike the first two parameters.

4. The raw text with more details about the warning or error that can be used
outside typesetting for e.g. logging the warning or error. Can be empty, unlike
the first two parameters.

3152 \ExplSyntaxOn
3153 \cs_gset_protected:Npn
3154 \markdownRendererWarning

3155 {

3156 \markdownRendererWarningPrototype
3157}

3158 \cs_gset_protected:Npn

3159 \markdownRendererError

3160 o{

3161 \markdownRendererErrorPrototype
3162}

3163 \seq_gput_right:Nn
3164 \g_0@_renderers_seq
3165  { warning }

3166 \prop_gput : Nnn

3167 \g_00@_renderer_arities_prop
3168 { warning }
3160 {4}

131



3170 \seq_gput_right:Nn

3171 \g_0@_renderers_seq

3172 { error }

3173 \prop_gput : Nnn

3174 \g_0@_renderer_arities_prop
3175  { error }

3176 { 4}

3177 \ExplSyntax0ff

2.2.5.44 YAML Metadata Renderers

The \markdownRendererJekyllDataBegin macro represents the beginning of a
YAML document. This macro will only be produced when the jekyllData option is
enabled. The macro receives no arguments.
3178 \ExplSyntaxOn
3179 \cs_gset_protected:Npn
3180 \markdownRendererJekyllDataBegin

3181 {
3182 \markdownRendererJekyllDataBeginPrototype
3183}

3184 \seq_gput_right:Nn

3185 \g_0@_renderers_seq

3186 { jekyllDataBegin }

3187 \prop_gput : Nnn

3188 \g_0Q@_renderer_arities_prop
3189 { jekyllDataBegin }

3100 {0}

3191 \ExplSyntax0ff

The \markdownRendererJekyllDataEnd macro represents the end of a YAML
document. This macro will only be produced when the jekyllData option is enabled.
The macro receives no arguments.

3192 \ExplSyntaxOn

3193 \cs_gset_protected:Npn

3194  \markdownRendererJekyllDataEnd
3195 {

3196 \markdownRendererJekyllDataEndPrototype
3197}

3198 \seq_gput_right:Nn

3199 \g_Q0_renderers_seq

3200 { jekyllDataEnd }

3201 \prop_gput:Nnn

3202 \g_0@_renderer_arities_prop
3203 { jekyllDataEnd }

3200 {032

3205 \ExplSyntax0ff

w

N DN b

™)

132



The \markdownRendererJekyllDataMappingBegin macro represents the begin-
ning of a mapping in a YAML document. This macro will only be produced when the
jekyllData option is enabled. The macro receives two arguments: the scalar key
in the parent structure, cast to a string following YAML serialization rules, and the
number of items in the mapping.

3206 \ExplSyntaxOn
3207 \cs_gset_protected:Npn
3208  \markdownRendererJekyllDataMappingBegin

3209  {

3210 \markdownRendererJekyllDataMappingBeginPrototype
3211}

3212 \seq_gput_right:Nn

3213 \g_Q0_renderers_seq

3214 { jekyllDataMappingBegin }
3215 \prop_gput :Nnn

3216 \g_0@_renderer_arities_prop
3217 { jekyllDataMappingBegin }
3218 {23}

3219 \ExplSyntax0ff

The \markdownRendererJekyllDataMappingEnd macro represents the end of
a mapping in a YAML document. This macro will only be produced when the
jekyllData option is enabled. The macro receives no arguments.

3220 \ExplSyntaxOn
3221 \cs_gset_protected:Npn
3222 \markdownRendererJekyllDataMappingEnd

3223 {

3224 \markdownRendererJekyllDataMappingEndPrototype
3225}

3226 \seq_gput_right:Nn

3227  \g_0@@_renderers_seq

3228  { jekyllDataMappingEnd }

3229 \prop_gput : Nnn

3230 \g_0@_renderer_arities_prop
3231 { jekyllDataMappingEnd }
232 {032}

3 \ExplSyntaxOff

The \markdownRendererJekyllDataSequenceBegin macro represents the begin-
ning of a sequence in a YAML document. This macro will only be produced when the
jekyllData option is enabled. The macro receives two arguments: the scalar key
in the parent structure, cast to a string following YAML serialization rules, and the
number of items in the sequence.

2

34 \ExplSyntaxOn
35 \cs_gset_protected:Npn

2
o
2
o

2
2

133



3236 \markdownRendererJekyllDataSequenceBegin

3237 A{

3238 \markdownRendererJekyllDataSequenceBeginPrototype
3239}

3240 \seq_gput_right:Nn

3241 \g_0Q@_renderers_seq

3242 { jekyllDataSequenceBegin }
3243 \prop_gput:Nnn

3244 \g_0@_renderer_arities_prop
3245  { jekyllDataSequenceBegin }
3246 {2 %

3247 \ExplSyntax0ff

The \markdownRendererJekyllDataSequenceEnd macro represents the end of
a sequence in a YAML document. This macro will only be produced when the
jekyllData option is enabled. The macro receives no arguments.

3248 \ExplSyntaxOn
3249 \cs_gset_protected:Npn
3250 \markdownRendererJekyllDataSequenceEnd
3 {
\markdownRendererJekyllDataSequenceEndPrototype
b
\seq_gput_right:Nn
\g_0@_renderers_seq
{ jekyllDataSequenceEnd }
\prop_gput : Nnn
\g_0Q@_renderer_arities_prop
: { jekyllDataSequenceEnd }
32600 {0}
3261 \ExplSyntax0ff

N b
[N

Y UL R W N =

ot Oov Ot Ot gt Ut
N O

w W W w
BN NN NN DN NN N

ot
oo

w

ND

3

The \markdownRendererJekyllDataBoolean macro represents a boolean scalar
value in a YAML document. This macro will only be produced when the jekyllData
option is enabled. The macro receives two arguments: the scalar key in the parent
structure, and the scalar value, both cast to a string following YAML serialization
rules.

3262 \ExplSyntaxOn
3263 \cs_gset_protected:Npn
3264  \markdownRendererJekyllDataBoolean

3265 {

3266 \markdownRendererJekyllDataBooleanPrototype
3267}

3268 \seq_gput_right:Nn

3269 \g_0Q@_renderers_seq

3270 { jekyllDataBoolean }

3271 \prop_gput:Nnn

134



2 \g_00_renderer_arities_prop
3 { jekyllDataBoolean }
{27

The \markdownRendererJekyllDataNumber macro represents a numeric scalar
value in a YAML document. This macro will only be produced when the jekyllData
option is enabled. The macro receives two arguments: the scalar key in the parent
structure, and the scalar value, both cast to a string following YAML serialization
rules.

3276 \ExplSyntaxOn
3277 \cs_gset_protected:Npn
3278 \markdownRendererJekyllDataNumber

3279 {

3280 \markdownRendererJekyllDataNumberPrototype
3281}

3282 \seq_gput_right:Nn

3283  \g_Q@_renderers_seq

3284 { jekyllDataNumber }
3285 \prop_gput:Nnn

3286 \g_0@_renderer_arities_prop
3287  { jekyllDataNumber }
3288 {23}

3289 \ExplSyntax0ff

The \markdownRendererJekyllDataTypographicString and \markdownRendererJekyllDataP:
macros represent string scalar values in a YAML document. This macro will only
be produced when the jekyllData option is enabled. The macro receives two
arguments: the scalar key in the parent structure, cast to a string following YAML
serialization rules, and the scalar value.

For each string scalar value, both macros are produced. Whereas \markdownRendererJekyllDatal
receives the scalar value after all markdown markup and special TEX characters in the
string have been replaced by TEX macros, \markdownRendererJekyllDataProgrammaticString
receives the raw scalar value. Therefore, whereas the \markdownRendererJekyllDataTypographicS:
macro is more appropriate for texts that are supposed to be typeset
with TgX, such as document titles, author names, or exam questions, the
\markdownRendererJekyllDataProgrammaticString macro is more appropriate
for identifiers and other programmatic text that won’t be typeset by TEX.

3290 \ExplSyntaxOn
3291 \cs_gset_protected:Npn

3292 \markdownRendererJekyllDataTypographicString

3203 {

3294 \markdownRendererJekyllDataTypographicStringPrototype
3295

3296 \cs_gset_protected:Npn

135



3297 \markdownRendererJekyllDataProgrammaticString

3298 {
3299 \markdownRendererJekyllDataProgrammaticStringPrototype
3300 }

3301 \seq_gput_right:Nn

3302  \g_Q@_renderers_seq

3303 { jekyllDataTypographicString }
3304 \prop_gput:Nnn

3305 \g_0@_renderer_arities_prop
3306  { jekyllDataTypographicString }

3307 {2}
3308 \seq_gput_right:Nn
3309  \g_0@_renderers_seq

3310 { jekyllDataProgrammaticString 7}
3311 \prop_gput :Nnn

3312 \g_0Q@_renderer_arities_prop

3313 { jekyllDataProgrammaticString }
33.4 {2}

3315 \ExplSyntax0ff

Before Markdown 3.7.0, the \markdownRendererJekyllDataTypographicString
macro was named \markdownRendererJekyllDataString and the \markdownRendererJekyllData
macro was not produced. The \markdownRendererJekyllDataString has been
deprecated and will be removed in Markdown 4.0.0.

3316 \ExplSyntaxOn
3317 \cs_gset:Npn
3318 \markdownRendererJekyllDataTypographicString

3319 {

3320 \cs_if_exist:NTF

3321 \markdownRendererJekyllDataString

3322 {

3323 \@@_if_option:nTF

3324 { experimental }

3325 {

3326 \markdownError

3327 {

3328 The~jekyllDataString~renderer~has~been~deprecated, ~
3329 to~be~removed~in~Markdown~4.0.0

3330 }

3331 }

3332 {

3333 \markdownWarning

3334 {

3335 The~jekyllDataString~renderer~has~been~deprecated, ~
3336 to~be~removed~in~Markdown~4.0.0

3337 }

3338 \markdownRendererJekyllDataString

136



3339 }

3340 }

3341 {

3342 \cs_if_exist:NTF

3343 \markdownRendererJekyllDataStringPrototype

3344 {

3345 \@@_if_option:nTF

3346 { experimental }

3347 {

3348 \markdownError

3349 {

3350 The~jekyllDataString~renderer~prototype~
3351 has~been~deprecated, ~

3352 to~be~removed~in~Markdown~4.0.0

3353 }

3354 }

3355 {

3356 \markdownWarning

3357 {

3358 The~jekyllDataString~renderer~prototype~
3359 has~been~deprecated, ~

3360 to~be~removed~in~Markdown~4.0.0

3361 }

3362 \markdownRendererJekyllDataStringPrototype
3363 }

3364 }

3365 {

3366 \markdownRendererJekyllDataTypographicStringPrototype
3367 }

3368 }

3369}

3370 \seq_gput_right:Nn

3371 \g_0Q@_renderers_seq

3372 { jekyllDataString }
3373 \prop_gput:Nnn
3374 \g_0@_renderer_arities_prop
3375 { jekyllDataString }
3376 {2 %
3377 \ExplSyntax0ff

The \markdownRendererJekyllDataEmpty macro represents an empty scalar value
in a YAML document. This macro will only be produced when the jekyllData option
is enabled. The macro receives one argument: the scalar key in the parent structure,
cast to a string following YAML serialization rules.

See also Section 2.2.6.1 for the description of the high-level expl3 interface that
you can also use to react to YAML metadata.

137



3378 \ExplSyntaxOn
3379 \cs_gset_protected:Npn
3380  \markdownRendererJekyllDataEmpty

3381 {
3382 \markdownRendererJekyllDataEmptyPrototype
3383 }

3384 \seq_gput_right:Nn

3385  \g_0@_renderers_seq

3386 { jekyllDataEmpty }

3387 \prop_gput : Nnn

3388 \g_0@_renderer_arities_prop
3389  { jekyllDataEmpty }

3300 {13}

3391 \ExplSyntax0ff

2.2.5.45 Generating Plain TEX Token Renderer Macros and Key-Values

We define the command \@@_define_renderers: that defines plain TEX macros
for token renderers. Furthermore, the \markdownSetup macro also accepts the
renderers and unprotectedRenderers keys. The value for these keys must be a
list of key—values, where the keys correspond to the markdown token renderer macros
and the values are new definitions of these token renderers.

Whereas the key renderers defines protected functions, which are usually prefer-
able for typesetting, the key unprotectedRenderers defines unprotected functions,
which are easier to expand and may be preferable for programming.

3392 \ExplSyntaxOn
3393 \cs_new:Nn \@@_define_renderers:

3394 |

3395 \seq_map_inline:Nn

3396 \g_0@_renderers_seq

3397 {

3398 \@@_define_renderer:n
3399 { ##1 }

3400 }

3401 }

3402 \cs_new:Nn \@@_define_renderer:n
3403 A{

3404 \@@_renderer_tl_to_csname:nN
3405 {#1 3}

3406 \1_tmpa_tl

3407 \prop_get :NnN

3408 \g_0@_renderer_arities_prop
3409 {#1 3}

3410 \1_tmpb_tl

3411 \@@_define_renderer:ncV

3412 {#1}

138



3413 { \1_tmpa_t1 }

3414 \1_tmpb_tl

3415}

3416 \cs_new:Nn \@@_renderer_tl_to_csname:nN
sarr A

3418 \tl_set:Nn

3419 \1_tmpa_tl

3420 { \str_uppercase:n { #1 } }
3421 \tl_set:Nx

3422 #2

3423 {

3424 markdownRenderer

3425 \tl_head:f { \1_tmpa_tl }
3426 \tl_tail:n { #1 }

3427 }

3428}

3429 \tl_new:N

3430  \1_@@_renderer_definition_tl

3431 \bool_new:N

3432 \g_0@_appending_renderer_bool
3433 \bool_new:N

3434 \g_0@_unprotected_renderer_bool
3435 \cs_new:Nn \@@_define_renderer:nNn
3436 {

3437 \keys_define:nn

3438 { markdown/options/renderers }
3439 {

3440 #1 .code:n = {

3441 \tl_set:Nn

3442 \1_0@_renderer_definition_tl
3443 { ##1 %}

3444 \regex_replace_all:nnN

3445 { \cP\#0 }

3446 {#1 3}

3447 \1_0@_renderer_definition_tl
3448 \bool_if:NT

3449 \g_0@_appending_renderer_bool
3450 {

3451 \@@_t1_set_from_cs:NNn
3452 \1_tmpa_tl

3453 #2

3454 { #3 %

3455 \tl_put_left:NV

3456 \1_0@_renderer_definition_tl
3457 \1_tmpa_tl

3458 }

3459 \bool_if:NTF

139



3460 \g_0@_unprotected_renderer_bool

3461 {

3462 \tl_set:Nn

3463 \1_tmpa_tl

3464 { \cs_set:Npn }

3465 }

3466 {

3467 \tl_set:Nn

3468 \1_tmpa_tl

3469 { \cs_set_protected:Npn }
3470 }

3471 \exp_last_unbraced:NNV

3472 \cs_generate_from_arg_count:NNnV
3473 #2

3474 \1_tmpa_tl

3475 {#3}

3476 \1_0@_renderer_definition_tl
3477 },

3478 }

If the token renderer macro has been deprecated, we undefine it.
The \markdownRendererJekyllDataString macro has been deprecated and will
be removed in Markdown 4.0.0.

3479 \str_if_eq:nnT

3480 { #1 3}

3481 { jekyllDataString }
3482 {

3483 \cs_undefine:N
3484 #2

3485 }

3486}

We define the function \@@_t1_set_from_cs:NNn [13]. The function takes a token
list, a control sequence with undelimited parameters, and the number of parameters
the control sequence accepts, and locally assigns the replacement text of the control
sequence to the token list.

3487 \cs_new_protected:Nn
3488  \@@_t1_set_from_cs:NNn

3489 o

3490 \tl_set:Nn

3491 \1_tmpa_tl

3492 {#2 }

3493 \int_step_inline:nn
3494 {#3 }

3495 {

3496 \exp_args:NNc

3497 \tl_put_right:Nn

140



3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522

3523

3

\cs_

\1_tmpa_tl
{ @0_t1l_set_from_cs_parameter_ ##1 }
}
\exp_args: NNV
\tl_set:No
\1_tmpb_t1l
\1_tmpa_tl
\regex_replace_all:nnN
{ \cP. }
{ \0\O }
\1_tmpb_tl
\int_step_inline:nn
{#3 1}
{
\regex_replace_all:nnN
{ \c { @@_t1_set_from_cs_parameter_ ##1 } }
{ \cP\# ##1 }
\1_tmpb_tl
}
\tl_set:NV
#1
\1_tmpb_tl

generate_variant:Nn

\@@_define_renderer:nNn

{

ncV }

3524 \cs_generate_variant:Nn
\cs_generate_from_arg_count:NNnn

525
596

1

2
26
527

o N
00]

{

\cs_

NNnV }
generate_variant:Nn

\tl_put_left:Nn

{

Nv }

\keys_define:nn

{
{

markdown/options }

renderers .code:n = {
\bool_gset_false:N
\g_0@_unprotected_renderer_bool
\keys_set:nn
{ markdown/options/renderers }
{#1 %}
1,
unprotectedRenderers .code:n = {
\bool_gset_true:N
\g_0@_unprotected_renderer_bool
\keys_set:nn
{ markdown/options/renderers }

141



3545 {#1}

3546 },

3547}

The following example code showcases a possible configuration of the \markdownRendererLink
and \markdownRendererEmphasis token renderer macros.

\markdownSetup{
renderers = {
link = {#4}, /, Render links as the link title.

emphasis = {{\it #1}}, 7/ Render emphasized text using italics.
}
}

3548 \tl_new:N
3549  \1_Q@@_renderer_glob_definition_tl
3550 \seq_new:N

3551 \1_@@_renderer_glob_results_seq
3552 \regex_const:Nn

3553 \c_Q@_appending_key_regex

3554 { \s*+$ }

3555 \keys_define:nn

3556 { markdown/options/renderers }
3557 {

3558 unknown .code:n = {

Besides defining renderers at once, we can also define them incrementally using the
appending operator (+=). This can be especially useful in defining rules for processing
different HTML class names and identifiers:

\markdownSetup{
renderers = {
/4 Start with empty renderers.
headerAttributeContextBegin = {},
attributeClassName = {},
attributeldentifier = {7},
% Define the processing of a single specific HIML class name.
headerAttributeContextBegin += {
\markdownSetup{
renderers = {
attributeClassName += {...},
3,
b
3,
/# Define the processing of a single spectific HIML identifier.

142



headerAttributeContextBegin += {
\markdownSetup{
renderers = {
attributeIdentifier += {...},

} b
}
} b
} ’
}
3559 % TODO: Use ~\regex_if_match”™ in TeX Live 2025.
3560 \regex_match:NVTF
3561 \c_@@_appending_key_regex
3562 \1_keys_key_str
3563 {
3564 \bool_gset_true:N
3565 \g_0@_appending_renderer_bool
3566 \tl_set:NV
3567 \1_tmpa_tl
3568 \1_keys_key_str
3569 \regex_replace_once:NnN
3570 \c_0Q@_appending_key_regex
3571 {13}
3572 \1_tmpa_tl
3573 \tl_set:Nx
3574 \1_tmpb_tl
3575 {{ \1_tmpa_tl } =}
3576 \tl_put_right:Nn
3577 \1_tmpb_tl
3578 {{#1}}
3579 \keys_set:nV
3580 { markdown/options/renderers }
3581 \1_tmpb_tl
3582 \bool_gset_false:N
3583 \g_00@_appending_renderer_bool
3584 }

In addition to exact token renderer names, we also support wildcards (*) and
enumerations (|) that match multiple token renderer names:

\markdownSetup{

renderers = {
heading* = {{\bf #1}}, /4 Render headings using the bold face.
jekyllData(String|Number) = {7 / Render YAML string and numbers
{\it #2}/ % using italics.

143



Wildcards and enumerations can be combined:

\markdownSetup{
renderers = {
*1Item(|End) = {"}, % Quote ordered/bullet list items.
}
}

To determine the current token renderer, you can use the pseudo-parameter #0:

\markdownSetup{

renderers = {

heading* = {#0: #1}, /4 Render headings as the renderer name

} /4 followed by the heading tewt.
}
3585 {
3586 \@@_glob_seq:VnN
3587 \1_keys_key_str
3588 { g_00@_renderers_seq }
3589 \1_0@_renderer_glob_results_seq
3590 \seq_if_empty:NTF
3591 \1_@@_renderer_glob_results_seq
3592 {
3593 \msg_error:nnV
3594 { markdown }
3595 { undefined-renderer }
3596 \1_keys_key_str
3597 }
3598 {
3599 \tl_set:Nn
3600 \1_0@_renderer_glob_definition_tl
3601 { \exp_not:n { #1 } }
3602 \seq_map_inline:Nn
3603 \1_0@_renderer_glob_results_seq
3604 {
3605 \tl_set:Nn
3606 \1_tmpa_tl
3607 {{##1}=1%
3608 \tl_put_right:Nx

144




3609 \1_tmpa_tl

3610 { { \1_0@_renderer_glob_definition_tl } }
3611 \keys_set:nV

3612 { markdown/options/renderers }

3613 \1_tmpa_tl

3614 }

3615 }

3616 }

3617 1,

3618}

3619 \msg_new:nnn
3620  { markdown }
3621 { undefined-renderer }

3622 {
3623 Renderer~#1~is~undefined.
3624 }

3625 \cs_generate_variant:Nn

3626 \@Q@_glob_seq:nnN

3627  { VoN }

3628 \cs_generate_variant:Nn

3629  \cs_generate_from_arg_count:NNnn
3630  { cNVV }

3631 \cs_generate_variant:Nn

3632  \msg_error:nnn

3633  { nnV }

3634 \prg_generate_conditional_variant:Nnn
3635 % TODO: Use ~\regex_if_match™ in TeX Live 2025.
3636 \regex_match:Nn % noga: w202

3637  { NV }

3638 { TF }

3639 \prop_new:N

3640 \g_0@_glob_cache_prop

3641 \tl_new:N

3642 \1_@@_current_glob_tl

3643 \cs_new:Nn

3644  \@@_glob_seq:nnN

3645  {

3646 \tl_set:Nn

3647 \1_@@_current_glob_tl
3648 {"#18%1}

3649 \prop_get :NeNTF

3650 \g_0@_glob_cache_prop
3651 { #2 / \1_0@_current_glob_tl1 }
3652 \1_tmpa_clist

3653 {

3654 \seq_set_from_clist:NN
3655 #3

145



3656 \1_tmpa_clist

3657 }

3658 {

3659 \seq_clear:N

3660 #3

3661 \regex_replace_all:nnN
3662 {\* 2

3663 { .7

3664 \1_@Q@_current_glob_tl
3665 \regex_set:NV

3666 \1_tmpa_regex

3667 \1_Q@_current_glob_tl
3668 \seq_map_inline:cn

3669 { #2 7

3670 {

3671 % TODO: Use ~\regex_if_match” in TeX Live 2025.
3672 \regex_match:NnT % noqa: w202
3673 \1_tmpa_regex

3674 { ##1

3675 {

3676 \seq_put_right:Nn
3677 #3

3678 { ##1 }

3679 }

3680 }

3681 \clist_set_from_seq:NN
3682 \1_tmpa_clist

3683 #3

3684 \prop_gput :NeV

3685 \g_0@_glob_cache_prop
3686 { #2 / \1_0@_current_glob_tl1l }
3687 \1_tmpa_clist

3688 }

3689  }

3690 \cs_generate_variant:Nn

3691  \regex_set:Nn

36902 { NV }

3693 \cs_generate_variant:Nn

3694  \prop_gput:Nnn

3695  { NeV }

If plain TEX is the top layer, we use the \@@_define_renderers: macro to de-
fine plain TEX token renderer macros and key—values immediately. Otherwise, we
postpone the definition until the upper layers have been loaded.

3696 \str_if_eq:VVT

3697 \c_Q@@_top_layer_tl

3698  \c_@@_option_layer_plain_tex_tl

146



3699 o

3700 \@@_define_renderers:
3701}

3702 \ExplSyntax0ff

2.2.6 Token Renderer Prototypes

2.2.6.1 YAML Metadata Renderer Prototypes
For simple YAML metadata, a simple high-level interface is provided that can be pro-
grammed by setting the expl3 key—values [3] for the module markdown/jekyllData.
3703 \ExplSyntaxOn
3704 \keys_define:nn
3705  { markdown/jekyllData }
306 { %
3707 \ExplSyntax0ff
The option jekyllDataRenderers=(key-values) can be used to set the (key-values)
for the module markdown/jekyllData without using the expl3 syntax.
3708 \ExplSyntaxOn
3709 \@@_with_various_cases:nn
3710 { jekyllDataRenderers }

3711 {

3712 \keys_define:nn

3713 { markdown/options }
3714 {

3715 #1 .code:n = {
3716 \tl_set:Nn

3717 \1_tmpa_tl
3718 { ##1 }

To ensure that keys containing forward slashes get passed correctly, we replace all
forward slashes in the input with backslash tokens with category code letter and
then undo the replacement. This means that if any unbraced backslash tokens with
category code letter exist in the input, they will be replaced with forward slashes.
However, this should be extremely rare.

3719 \tl_replace_all:NnV
3720 \1_tmpa_tl

3721 {7}%

3722 \c_backslash_str
3723 \keys_set:nV

3724 { markdown/options/jekyll-data-renderers }
3725 \1_tmpa_tl

3726 },

3727 ¥

3728 }

3729 \keys_define:nn

373

30 { markdown/options/jekyll-data-renderers }

147



\keys_define:nV

6 { markdown/jekyllData }
7 \1_tmpa_tl

8 }

749}
750 \ExplSyntax0ff

373

3732 unknown .code:n = {
3733 \tl_set_eq:NN

3734 \1_tmpa_tl

3735 \1_keys_key_str
3736 \tl_replace_all:NVn
3737 \1_tmpa_tl

3738 \c_backslash_str
3739 {/7%

3740 \tl_put_right:Nn
3741 \1_tmpa_tl

3742 {

3743 .code:n = { #1 }
3744 }

3745

374

374

374

374

3750

For complex YAML metadata, the option jekyllDataKeyValue={module) [14] can
be used to route the processing of all YAML metadata in the current TEX group to
the key—values from (module).

2.2.6.2 Generating Plain TgX Token Renderer Prototype Macros and Key-Values

We define the command \@@_define_renderer_prototypes: that defines plain
TEX macros for token renderer prototypes. Furthermore, the \markdownSetup macro
also accepts the rendererPrototypes and unprotectedRendererPrototypes keys.
The value for these keys must be a list of key—values, where the keys correspond to
the markdown token renderer prototype macros and the values are new definitions
of these token renderer prototypes.

Whereas the key rendererPrototypes defines protected functions, which are
usually preferable for typesetting, the key unprotectedRendererPrototypes de-
fines unprotected functions, which are easier to expand and may be preferable for
programming.

3751 \ExplSyntaxOn
3752 \cs_new:Nn \@@_define_renderer_prototypes:

3753 {

3754 \seq_map_inline:Nn

3755 \g_0Q@_renderers_seq

3756 {

3757 \@@_define_renderer_prototype:n
3758 { ##1 }

148



3759 }

3760  }

3761 \cs_new:Nn \@Q@_define_renderer_prototype:n
3762 {

3763 \@@_renderer_prototype_tl_to_csname:nN
3764 {#172

3765 \1_tmpa_tl

3766 \prop_get :NnN

3767 \g_00@_renderer_arities_prop
3768 {#1 3}

3769 \1_tmpb_tl

3770 \Q@@_define_renderer_prototype:ncV
3771 {#1 3}

3772 { \1_tmpa_tl }

3773 \1_tmpb_t1

3774}

3775 \cs_new:Nn \@@_renderer_prototype_tl_to_csname:nN
3776 {

3777 \tl_set:Nn

3778 \1_tmpa_tl

3779 { \str_uppercase:n { #1 } }
3780 \tl_set:Nx

3781 #2

3782 {

3783 markdownRenderer

3784 \tl_head:f { \1_tmpa_tl }
3785 \tl_tail:n { #1 }

3786 Prototype

3787 }

3788}

3789 \tl_new:N

3790 \1_0@_renderer_prototype_definition_tl

3791 \bool_new:N

3792 \g_0@_appending_renderer_prototype_bool
3793 \bool_new:N

3794 \g_0@_unprotected_renderer_prototype_bool
3795 \cs_new:Nn \@@_define_renderer_prototype:nNn
3796 {

3797 \keys_define:nn

3798 { markdown/options/renderer-prototypes }
3799 {

3800 #1 .code:n = {

3801 \tl_set:Nn

3802 \1_0@_renderer_prototype_definition_tl
3803 { ##1

3804 \regex_replace_all:nnN

3805 { \cP\#0 }

149



3806 {#1}

3807 \1_@@_renderer_prototype_definition_tl
3808 \bool_if:NT

3809 \g_0@_appending_renderer_prototype_bool
3810 {

3811 \@@_t1_set_from_cs:NNn

3812 \1_tmpa_tl

3813 #2

3814 { #3 %

3815 \tl_put_left:NV

3816 \1_0@_renderer_prototype_definition_tl
3817 \1_tmpa_tl

3818 }

3819 \bool_if:NTF

3820 \g_0@_unprotected_renderer_prototype_bool
3821 {

3822 \tl_set:Nn

3823 \1_tmpa_tl

3824 { \cs_set:Npn }

3825 }

3826 {

3827 \tl_set:Nn

3828 \1_tmpa_tl

3829 { \cs_set_protected:Npn }

3830 }

3831 \exp_last_unbraced:NNV

3832 \cs_generate_from_arg_count:NNnV

3833 #2

3834 \1_tmpa_tl

3835 { #3 %

3836 \1_0@_renderer_prototype_definition_tl
3837 },

3838 }

Unless the token renderer prototype macro has already been defined or unless, it has
been deprecated, we provide an empty definition.

The \markdownRendererJekyllDataStringPrototype macro has been depre-
cated and will be removed in Markdown 4.0.0.

3839 \str_if_eq:nnF

3840 { #1732

3841 { jekyllDataString }

3842 {

3843 \cs_if_free:NT

3844 #2

3845 {

3846 \cs_generate_from_arg_count:NNnn
3847 #2

150



3848 \cs_gset_protected:Npn

3849 {#3 }
3850 {17}
3851 }

3852 }

3853}

3854 \cs_generate_variant:Nn

3855 \@@_define_renderer_prototype:nNn

3856 { ncV }

The following example code showcases a possible configuration of the \markdownRendererImageProt«
and \markdownRendererCodeSpanPrototype token renderer prototype macros.

\markdownSetup{
rendererPrototypes = {
image = {\pdfximage{#2}}, /i Embed PDF images in the document.
codeSpan = {{\tt #1}}, /i Render inline code using monospace.
}
}

3857 \keys_define:nn

3858  { markdown/options/renderer-prototypes }
3859  {

3860 unknown .code:n = {

Besides defining renderer prototypes at once, we can also define them incrementally
using the appending operator (+=). This can be especially useful in defining rules for
processing different HTML class names and identifiers:

\markdownSetup{
rendererPrototypes = {
/i Start with empty renderer prototypes.
headerAttributeContextBegin = {},
attributeClassName = {},
attributeIdentifier = {7},
/% Define the processing of a single spectific HIML class name.
headerAttributeContextBegin += {
\markdownSetup{
rendererPrototypes = {
attributeClassName += {...},
3,
¥
s
/4 Define the processing of a single specific HTML identifier.
headerAttributeContextBegin += {

151



\markdownSetup{
rendererPrototypes = {
attributeldentifier += {...},

}’
+
},
}’
}
3861 % TODO: Use “\regex_if_match” in TeX Live 2025.
3862 \regex_match:NVTF
3863 \c_0@_appending_key_regex
3864 \1_keys_key_str
3865 {
3866 \bool_gset_true:N
3867 \g_0@_appending_renderer_prototype_bool
3868 \tl_set:NV
3869 \1_tmpa_tl
3870 \1_keys_key_str
3871 \regex_replace_once:NnN
3872 \c_@@_appending_key_regex
3873 {3}
3874 \1_tmpa_tl
3875 \tl_set:Nx
3876 \1_tmpb_tl
3877 {{ \1_tmpa_tl } =}
3878 \tl_put_right:Nn
3879 \1_tmpb_tl
3880 {{# }}
3881 \keys_set:nV
3882 { markdown/options/renderer-prototypes }
3883 \1_tmpb_t1
3884 \bool_gset_false:N
3885 \g_0Q@_appending_renderer_prototype_bool
3886 }

In addition to exact token renderer prototype names, we also support wildcards (x)
and enumerations (|) that match multiple token renderer prototype names:

\markdownSetup{
rendererPrototypes = {
heading* = {{\bf #1}}, % Render headings using the bold face.
jekyllData(String|Number) = { / Render VAML string and numbers
{\it #2}/ % using italics.
1,

152



Wildcards and enumerations can be combined:

\markdownSetup{
rendererPrototypes = {
*1Item(|End) = {"}, / Quote ordered/bullet list items.
}
}

To determine the current token renderer prototype, you can use the pseudo-
parameter #0:

\markdownSetup{
rendererPrototypes = {
heading* = {#0: #1}, / Render headings as the renderer prototype

} % mame followed by the heading text.
}
3887 {
3888 \@@_glob_seq:VnN
3889 \1_keys_key_str
3890 { g_00@_renderers_seq }
3891 \1_0@_renderer_glob_results_seq
3892 \seq_if_empty:NTF
3893 \1_@@_renderer_glob_results_seq
3894 {
3895 \msg_error:nnV
3896 { markdown }
3897 { undefined-renderer-prototype }
3898 \1_keys_key_str
3899 }
3900 {
3901 \tl_set:Nn
3902 \1_0@_renderer_glob_definition_tl
3903 { \exp_not:n { #1 } }
3904 \seq_map_inline:Nn
3905 \1_0@_renderer_glob_results_seq
3906 {
3907 \tl_set:Nn
3908 \1_tmpa_tl
3909 {{##1 } =1}
3910 \tl_put_right:Nx

153



3911 \1_tmpa_tl

3912 { { \1_0@_renderer_glob_definition_tl } }
3913 \keys_set:nV

3914 { markdown/options/renderer-prototypes }
3915 \1_tmpa_tl

3916 }

3917 }

3918 }

3919 1,

3920}

3921 \msg_new:nnn
3922 { markdown }
3923 { undefined-renderer-prototype

3924 {
3925 Renderer~prototype~#1l~is~undefined.
3926}

3927 \@@_with_various_cases:nn
3928  { rendererPrototypes }

3920 {

3930 \keys_define:nn

3931 { markdown/options }

3932 {

3933 #1 .code:n = {

3934 \bool_gset_false:N

3935 \g_0@_unprotected_renderer_prototype_bool
3936 \keys_set:nn

3937 { markdown/options/renderer-prototypes }
3938 { ##1 }

3939 },

3940 }

3941}

3942 \@@_with_various_cases:nn
3943 { unprotectedRendererPrototypes }

3944 {

3945 \keys_define:nn

3946 { markdown/options }

3947 {

3948 #1 .code:n = {

3949 \bool_gset_true:N

3950 \g_0@_unprotected_renderer_prototype_bool
3951 \keys_set:nn

3952 { markdown/options/renderer-prototypes }
3953 { ##1 %}

3954 },

3955 }

3956}

If plain TEX is the top layer, we use the \@@_define_renderer_prototypes: macro

154



to define plain TEX token renderer prototype macros and key—values immediately.
Otherwise, we postpone the definition until the upper layers have been loaded.

3957 \str_if_eq:VVT

30958  \c_0@_top_layer_tl

3959 \c_0@_option_layer_plain_tex_tl
3960  {

3961 \@@_define_renderer_prototypes:
3962}

3963 \ExplSyntax0ff

2.2.7 Logging Facilities

The \markdownInfo, \markdownWarning, and \markdownError macros perform log-
ging for the Markdown package. Their first argument specifies the text of the info,
warning, or error message. The \markdownError macro receives a second argument
that provides a help text. You may redefine these macros to redirect and process the
info, warning, and error messages.

The \markdownInfo, \markdownWarning, and \markdownError macros have been
deprecated and will be removed in the next major version of the Markdown package.

2.2.8 Miscellanea

The \markdownMakeOther macro is used by the package, when a TEX engine that
does not support direct Lua access is starting to buffer a text. The plain TEX
implementation changes the category code of plain TEX special characters to other,
but there may be other active characters that may break the output. This macro
should temporarily change the category of these to other.

3964 \let\markdownMakeOther\relax

The \markdownReadAndConvert macro implements the \markdownBegin and
\yamlBegin macros. The first argument specifies the token sequence that will
terminate the markdown input when the plain TEX special characters have had
their category changed to other: \markdownEnd for the \markdownBegin macro
and \yamlEnd for the \yamlBegin macro. The second argument specifies the token
sequence that will actually be inserted into the document, when the ending token
sequence has been found.

3965 \let\markdownReadAndConvert\relax

3966 \begingroup

Locally swap the category code of the backslash symbol (\) with the pipe symbol
(1). This is required in order that all the special symbols in the first argument of the
markdownReadAndConvert macro have the category code other.

3967  \catcode \|=0\catcode \\=12Y%

3968 | gdef ImarkdownBegin{/

3969 |markdownReadAndConvert{\markdownEnd}%

155



3970 {|markdownEnd}}%
3971 |gdef|yamlBegin{¥

3972 | begingroup

3973 | yamlSetup{jekyllData, expectJekyllData, ensureJekyllDatal/,
3974 |ImarkdownReadAndConvert{\yamlEnd}%

3975 {|yamlEnd}}%

3976 | endgroup

The macro is exposed in the interface, so that users can create their own markdown

environments. Due to the way the arguments are passed to Lua, the first argument

may not contain the string 11 (regardless of the category code of the bracket symbol).
The code key, which can be used to immediately expand and execute code.

3977 \ExplSyntaxOn

3978 \keys_define:nn

3979 { markdown/options }
3980  {

3981 code .code:n = { #1 },
3982}

3983 \ExplSyntax0ff

This can be especially useful in snippets.

2.3 ATEX Interface

The IXTEX interface provides IATEX environments for the typesetting of markdown
input from within KTEX, facilities for setting Lua, plain TEX, and IATEX options
used during the conversion from markdown to plain TEX, and facilities for changing
the way markdown tokens are rendered. The rest of the interface is inherited from
the plain TEX interface (see Section 2.2).

To determine whether IATEX is the top layer or if there are other layers above
IXTEX, we take a look on whether the \c_@@_top_layer_tl token list has already
been defined. If not, we will assume that IXTEX is the top layer.

3984 \ExplSyntaxOn

3985 \tl_const:Nn \c_@@_option_layer_latex_tl { latex }
3986 \cs_generate_variant:Nn

3987  \tl_const:Nn

3988 { NV }

3989 \tl_if_exist:NF

3990  \c_0@_top_layer_tl

3991 {

3992 \tl_const:NV

3993 \c_0Q@_top_layer_tl

3994 \c_0Q@_option_layer_latex_tl
3995  }

3996 \ExplSyntax0ff
3997 \input markdown/markdown

156



The KTEX interface is implemented by the markdown. sty file, which can be loaded
from the IATEX document preamble as follows:

\usepackage [{options)] {markdown}

where (options) are the IWTEX interface options (see Section 2.3.3). Note that
{options) inside the \usepackage macro may not set the markdownRenderers (see
Section 2.2.5.45) and markdownRendererPrototypes (see Section 2.2.6.2) keys. Fur-
thermore, although the base variant of the import key that loads a single IXTEX
theme (see Section 2.3.4) can be used, the extended variant that can load multiple
themes and import snippets from them (see Section 2.2.4) cannot. This limitation is
due to the way IXTEX 2¢ parses package options.

2.3.1 Typesetting Markdown

The interface exposes the markdown, markdown*, and yaml IATEX environments, and
redefines the \markinline, \markdownInput, and \yamlInput commands.

2.3.1.1 Typesetting Markdown and YAML directly

The markdown and markdown* IATEX environments are aliases for the macros
\markdownBegin and \markdownEnd exposed by the plain TEX interface.

The markdown* environment has been deprecated and will be removed in the next
major version of the Markdown package.
3998 \newenvironment{markdownl}\relax\relax
3999 \newenvironment{markdownx*}[1]\relax\relax
Furthermore, both environments accept ITEX interface options (see Section 2.3.3)
as the only argument. This argument is optional for the markdown environment and
mandatory for the markdown* environment.

The markdown and markdown* environments are subject to the same limitations
as the \markdownBegin and \markdownEnd macros.

The following example IATEX code showcases the usage of the markdown and
markdown* environments:

\documentclass{article} \documentclass{article}
\usepackage{markdown} \usepackage{markdown}
\begin{document} \begin{document}
\begin{markdown} [smartEllipses] \begin{markdown*}{smartEllipses}
_Hello_ **worldx** ... _Hello_ **world*x ...
\end{markdown} \end{markdownx*}

\end{document} \end{document}

You can’t directly extend the markdown IATEX environment by using it in other
environments as follows:

157



\newenvironment{fool}/
{code before \begin{markdown}[some, options]}/
{\end{markdown} code after}

This is because the implementation looks for the literal string \end{markdown} to
stop scanning the markdown text. However, you can work around this limitation by
using the \markdown and \markdownEnd macros directly in the definition as follows:

\newenvironment{fool}/
{code before \markdown[some, options]}/
{\markdownEnd code after}

Specifically, the \markdown macro must appear at the end of the replacement
before-text and must be followed by text that has not yet been ingested by TEX’s
input processor.

Furthermore, using the \markdownEnd macro in of after the replacement after-text
is optional and only makes a difference if you redefined it to produce special effects
before and after the markdown IXTEX environment.

Lastly, you can’t nest the other environments. For example, the following definition
would be incorrect:

\newenvironment{bar}{\begin{foo}}{\end{foo}}

In this example, you should use the \markdown macro directly in the definition of
the environment bar:

\newenvironment{bar}{\markdown[some, options]}{\markdownEnd}

The yaml IATEX environment is an alias for the macros \yamlBegin and \yamlEnd
exposed by the plain TEX interface.

4000 \newenvironment{yaml}\relax\relax

Furthermore, the environment accepts INTEX interface options (see Section 2.3.3) as
the only optional argument.

The yaml environment is subject to the same limitations as the \markdownBegin
and \markdownEnd macros.

The following example IXTEX code showcases the usage of the yaml environment:

\documentclass{article}
\usepackage{markdown}
\begin{document}

158



\begin{yaml} [smartEllipses]
title: _Hello_ **worldx** ...
author: John Doe

\end{yaml}

\end{document}

The above code has the same effect as the below code:

\documentclass{article}
\usepackage{markdown}
\begin{document}
\begin{markdown} [
jekyllData,
expectJekyllData,
ensureJekyllData,
smartEllipses,
]
title: _Hello_ **world*x* ...
author: John Doe
\end{markdown}
\end{document}

You can’t directly extend the yaml IATEX environment by using it in other en-
vironments. However, you can work around this limitation by using the \yaml
and \yamlEnd macros directly in the definition, similarly to the \markdown and
\markdownEnd macros described previously. Unlike with the \markdown and
\markdownEnd macros, The \yamlEnd macro _must__ be used in or after the replace-
ment after-text.

The \markinline macro accepts a single mandatory parameter containing inline
markdown content and expands to the result of the conversion of the input markdown
document to plain TEX. Unlike the \markinline macro provided by the plain TEX
interface, this macro also accepts IATEX interface options (see Section 2.3.3) as its
optional argument. These options will only influence this markdown content.

2.3.1.2 Typesetting Markdown and YAML from external documents

The \markdownInput macro accepts a single mandatory parameter containing the
filename of a markdown document and expands to the result of the conversion of
the input markdown document to plain TEX. Unlike the \markdownInput macro
provided by the plain TEX interface, this macro also accepts ITEX interface options
(see Section 2.3.3) as its optional argument. These options will only influence this
markdown document.

159



The following example IXTEX code showcases the usage of the \markdownInput
macro:

\documentclass{article}
\usepackage{markdown}

\begin{document}

\markdownInput [smartEllipses]{hello.md}
\end{document}

The \yamlInput macro accepts a single mandatory parameter containing the
filename of a YAML document and expands to the result of the conversion of the input
YAML document to plain TEX. Unlike the \yamlInput macro provided by the plain
TEX interface, this macro also accepts IATEX interface options (see Section 2.3.3) as
its optional argument. These options will only influence this YAML document.

The following example IATEX code showcases the usage of the \yamlInput macro:

\documentclass{article}
\usepackage{markdown}
\begin{document}

\yamlInput [smartEllipses]{hello.yml}
\end{document}

The above code has the same effect as the below code:

\documentclass{article}
\usepackage{markdown}
\begin{document}
\markdownInput [
jekyllData,
expectJekyllData,
ensureJekyllData,
smartEllipses,
J{hello.yml}
\end{document}

2.3.2 Using IBTEX hooks with the Markdown package

IXTEX provides an intricate hook management system that allows users to insert
extra material before and after certain TEX macros and IATEX environments, among
other things. [15, Section 3.1.2]

The Markdown package is compatible with hooks and allows the use of hooks to
insert extra material before TEX commands and before/after INTEX environments
without restriction:

160



\documentclass{article}

\usepackage{markdown}

\begin{document}
\AddToHook{cmd/markdownRendererEmphasis/before}{emphasis: }
\AddToHook{env/markdown/before}{<markdown>}
\AddToHook{env/markdown/after}{</markdown>}
\begin{markdown}

foo _bar_ baz!

\end{markdown}

\end{document}

Processing the above example with IATEX will produce the text “foo emphasis:
__bar__ baz!”, as expected.

However, using hooks to insert extra material after TEX commands only works for
commands with a fixed number of parameters that don’t use currying.

If, in the above example, you explicitly defined the renderer for emphasis using
\markdownSetup or another method that does not use currying, then you would be
able to insert extra material even after the renderer:

\documentclass{article}

\usepackage{markdown}
\markdownSetup{renderers={emphasis={\emph{#1}}}}
\begin{document}
\AddToHook{cmd/markdownRendererEmphasis/before}{<emphasis>}
\AddToHook{cmd/markdownRendererEmphasis/after}{</emphasis>}
\AddToHook{env/markdown/before}{<markdown>}
\AddToHook{env/markdown/after}{</markdown>}
\begin{markdown}

foo _bar_ baz!

\end{markdown}

\end{document}

Processing the above example with ITEX will produce the text “foo _bar_ baz!”,
as expected.

However, the default renderer for emphasis uses currying and calls the renderer
prototype in a way that prevents the use of hooks to insert extra material after the
renderer, see Section 2.2.5.12. In such a case, you would need to redefine the renderer
in a way that does not use currying before you would be able to use hooks to insert
extra material after it.

Hooks also cannot be used to insert extra material after renderers with a variable
number of parameters such as the renderer for tables, see Section 2.2.5.39.

161



2.3.3 Options

The IXTEX options are represented by a comma-delimited list of (key)=(value) pairs.
For boolean options, the =(value)y part is optional, and (key) will be interpreted as
(keyy=true if the =(value) part has been omitted.

IATEX options map directly to the options recognized by the plain TEX interface (see
Section 2.2.2) and to the markdown token renderers and their prototypes recognized
by the plain TEX interface (see Sections 2.2.5 and 2.2.6).

The IXTEX options may be specified when loading the ATEX package, when using
the markdown* IATEX environment or the \markdownInput macro (see Section 2.3),
or via the \markdownSetup macro.

2.3.3.1 Finalizing and Freezing the Cache

To ensure compatibility with the minted package [16, Section 5.1], which supports
the finalizecache and frozencache package options with similar semantics to the
finalizeCache and frozenCache plain TEX options, the Markdown package also
recognizes these as aliases and accepts them as document class options. By passing
finalizecache and frozencache as document class options, you may conveniently
control the behavior of both packages at once:

\documentclass[frozencache]{article}
\usepackage{markdown,minted}
\begin{document}

\end{document}

We hope that other packages will support the finalizecache and frozencache
package options in the future, so that they can become a standard interface for
preparing IXTEX document sources for distribution.

4001 \DeclareOption{finalizecache}{\markdownSetup{finalizeCache}}
1002 \DeclareOption{frozencache}{\markdownSetup{frozenCachel}}

2.3.3.2 Generating Plain TEX Option, Token Renderer, and Token Renderer
Prototype Macros and Key-Values

If IATEX is the top layer, we use the \@@_define_option_commands_and_keyvals:,
\@@_define_renderers:, and \@@_define_renderer_prototypes: macro to de-
fine plain TEX option, token renderer, and token renderer prototype macros and
key—values immediately. Otherwise, we postpone the definition until the upper layers
have been loaded.
1003 \ExplSyntax0On
1004 \str_if_eq:VVT
4005 \c_@@_top_layer_tl
4006 \c_Q@_option_layer_latex_tl

162



4007 {

08 \@@_define_option_commands_and_keyvals:
09 \@@_define_renderers:

1010 \@@_define_renderer_prototypes:

4011 }

4012 \ExplSyntax0ff

i

(
(
0
(

The following example IXTEX code showcases a possible configuration of plain TEX
interface options hybrid, smartEllipses, and cacheDir.

\markdownSetup{
hybrid,
smartEllipses,
cacheDir = /tmp,

2.3.4 Themes

In Section 2.2.3, we described the concept of themes. In IXTEX, we expand on the
concept of themes by allowing a theme to be a full-blown IATEX package. Specifically,
the key—values theme=(theme name) and import=(theme name) load a IXTEX
package named markdowntheme(munged theme name).sty if it exists and a TEX
document named markdowntheme(munged theme name).tex otherwise.

Having the Markdown package automatically load either the generic .tex theme
file or the I¥TFX-specific . sty theme file allows developers to have a single theme file,
when the theme is small or the difference between TEX formats is unimportant, and
scale up to separate theme files native to different TEX formats for large multi-format
themes, where different code is needed for different TEX formats. To enable code
reuse, developers can load the .tex theme file from the .sty theme file using the
\markdownLoadPlainTeXTheme macro.

If the IATEX option with keys theme or import is (repeatedly) specified in the
\usepackage macro, the loading of the theme(s) will be postponed in first-in-first-out
order until after the Markdown IXTEX package has been loaded. Otherwise, the
theme(s) will be loaded immediately. For example, the following code would first
load the Markdown package, then the theme witiko/example/foo, and finally the
theme witiko/example/bar:

\usepackage [
import=witiko/example/foo,
import=witiko/example/bar,

J{markdown}

1013 \newif\ifmarkdownLaTeXLoaded
1014 \markdownLaTeXLoadedfalse

163



Due to limitations of IATEX, themes may not be loaded after the beginning of a IXTEX
document.

We also define the prop \g_00_latex_built_in_themes_prop that contains the
code of built-in themes. This is a packaging optimization, so that built-in themes
does not need to be distributed in many small files.

5 \ExplSyntaxOn

6 \prop_new:N

7 \g_00_latex_built_in_themes_prop
1018 \ExplSyntaxOff

Built-in IATEX themes provided with the Markdown package include:

witiko/markdown/defaults A IATEX theme with the default definitions of token
renderer prototypes for plain TEX. This theme is loaded automatically together
with the package and explicitly loading it has no effect.

4019 \AtEndOfPackage{\markdownLaTeXLoadedtrue}

At the end of the IXTEX module, we load the witiko/markdown/defaults IXTEX
theme (see Section 2.2.3) with the default definitions for token renderer prototypes
unless the option noDefaults has been enabled (see Section 2.2.2.3).

1020 \ExplSyntaxOn
4021 \str_if_eq:VVT

4022 \c_0@_top_layer_tl

1023 \c_@@_option_layer_latex_tl
1024 4

4025 \use:c

4026 { ExplSyntax0ff }

4027 \AtEndOfPackage

1028 {

1029 \@@_if_option:nF

1030 { noDefaults }

4031 {

4032 \@@_if_option:nTF
4033 { experimental }
1034 {

1035 \@@_setup:n
1036 { theme = witiko/markdown/defaults@experimental }
4037 ¥

4038 {

1039 \@@_setup:n
1040 { theme = witiko/markdown/defaults }
1041 }

4042 }

4043 }

4044 \use:c

1045 { ExplSyntaxOn }

164



4046
1047 \ExplSyntaxOff

Please, see Section 3.3.2 for implementation details of the built-in IATEX themes.

2.4 ConTEgXt Interface

To determine whether ConTEXt is the top layer or if there are other layers above
ConTEXt, we take a look on whether the \c_@@_top_layer_tl token list has already
been defined. If not, we will assume that ConTEXt is the top layer.

048 \ExplSyntax0On
4049 \tl_const:Nn \c_0@_option_layer_context_tl { context }

) \cs_generate_variant:Nn

51 \tl_const:Nn
52 { NV }
53 \tl_if_exist:NF

1050

)5

)5

05
4054 \c_0@_top_layer_tl

1055  {

1056 \tl_const:NV
4057 \c_0@_top_layer_tl
4058 \c_0Q@_option_layer_context_tl
4059  }

1060 \ExplSyntaxOff

The ConTEXt interface provides a start-stop macro pair for the typesetting of mark-
down input from within ConTEXt and facilities for setting Lua, plain TEX, and
ConTEXt options used during the conversion from markdown to plain TEX. The rest
of the interface is inherited from the plain TEX interface (see Section 2.2).

4061 \writestatus{loading}{ConTeXt User Module / markdown},

1062 \startmodule [markdown]

1063 \def\dospecials{\do\ \do\\\do\{\do\}\do\$\do\&%

1064 \do\#\do\"\do\_\do\%\do\~1}%

4065 \input markdown/markdown
The ConTEXt interface is implemented by the t-markdown.tex ConTEXt module file
that can be loaded as follows:
\usemodule [t] [markdown]

It is expected that the special plain TEX characters have the expected category codes,
when \inputting the file.

2.4.1 Typesetting Markdown and YAML

The interface exposes the \startmarkdown, \stopmarkdown, \startyaml,
\stopyaml, \inputmarkdown, and \inputyaml macros.

165



2.4.1.1 Typesetting Markdown and YAML directly

The \startmarkdown and \stopmarkdown macros are aliases for the macros
\markdownBegin and \markdownEnd exposed by the plain TEX interface.
4066 \let\startmarkdown\relax
4067 \let\stopmarkdown\relax
You may prepend your own code to the \startmarkdown macro and redefine the
\stopmarkdown macro to produce special effects before and after the markdown
block.

The macros \startmarkdown and \stopmarkdown are subject to the same limita-
tions as the \markdownBegin and \markdownEnd macros.

The following example ConTEXt code showcases the usage of the \startmarkdown
and \stopmarkdown macros:

\usemodule [t] [markdown]
\starttext
\startmarkdown

_Hello_ **worldx**
\stopmarkdown
\stoptext

The \startyaml and \stopyaml macros are aliases for the macros \yamlBegin
and \yamlEnd exposed by the plain TEX interface.
4068 \let\startyaml\relax
4069 \let\stopyaml\relax
You may prepend your own code to the \startyaml macro and append your own
code to the \stopyaml macro to produce special effects before and after the YAML
document.

The macros \startyaml and \stopyaml are subject to the same limitations as
the \markdownBegin and \markdownEnd macros.

The following example ConTEXt code showcases the usage of the \startyaml and
\stopyaml macros:

\usemodule [t] [markdown]
\starttext

\startyaml

title: _Hello_ **worldx*x*
author: John Doe
\stopyaml

\stoptext

The above code has the same effect as the below code:

166



\usemodule [t] [markdown]

\starttext

\setupyaml [jekyllData, expectJekyllData, ensureJekyllData]
\startyaml

title: _Hello_ **world*x* ...

author: John Doe

\stopyaml

\stoptext

2.4.1.2 Typesetting Markdown and YAML from external documents
The \inputmarkdown macro aliases the macro \markdownInput exposed by the
plain TEX interface.

4070 \let\inputmarkdown\relax

Furthermore, the \inputmarkdown macro also accepts ConTEXt interface options
(see Section 2.4.2) as its optional argument. These options will only influence this
markdown document.

The following example ConTEXt code showcases the usage of the \inputmarkdown
macro:

\usemodule [t] [markdown]

\starttext

\inputmarkdown [smartEllipses]{hello.md}
\stoptext

The above code has the same effect as the below code:

\usemodule [t] [markdown]
\starttext

\setupmarkdown [smartEllipses]
\inputmarkdown{hello.md}
\stoptext

The \inputyaml macro aliases the macro \yamlInput exposed by the plain TEX
interface.
4071 \let\inputyaml\relax
Furthermore, the \inputyaml macro also accepts ConTEXt interface options (see
Section 2.4.2) as its optional argument. These options will only influence this YAML
document.

The following example ConTEXt code showcases the usage of the \inputyaml
macro:

167



\usemodule [t] [markdown]

\starttext

\inputyaml [smartEllipses]{hello.yml}
\stoptext

The above code has the same effect as the below code:

\usemodule [t] [markdown]
\starttext

\setupyaml [smartEllipses]
\inputyaml{hello.yml}
\stoptext

2.4.2 Options

The ConTEXt options are represented by a comma-delimited list of (key)=(value)
pairs. For boolean options, the =(value) part is optional, and (key) will be interpreted
as (key)=true (or, equivalently, (key)=yes) if the =(value) part has been omitted.

ConTEXt options map directly to the options recognized by the plain TEX interface
(see Section 2.2.2).

The ConTEXt options may be specified when using the \inputmarkdown macro
(see Section 2.4), via the \markdownSetup macro, or via the \setupmarkdown [#1]
macro, which is an alias for \markdownSetup{#1}.

4072 \ExplSyntaxOn
4073 \cs_new:Npn
4074 \setupmarkdown

4075 [ #1 1]

4076 {

4077 \@@_setup:n
4078 {#1 3}
4079 }

The command \setupyaml is also available as an alias for the command
\setupmarkdown.

4080 \cs_gset_eq:NN
1081 \setupyaml
4082  \setupmarkdown

2.4.2.1 Generating Plain TEX Option Macros and Key-Values
Unlike plain TEX, we also accept caseless variants of options in line with the style

of ConTEXt.

1083 \cs_new:Nn \@@_caseless:N

168




4084 {

)

4085 \regex_replace_all:nnN

1086 { ([a-z]) ([A-Z]) }

4087 { \1 \c { str_lowercase:n } \cB\{ \2 \cE\} }
4088 #1

4089 \tl_set:Nx

4090 #1

1091 {#1 3}

4092 ¥

1093 \seq_gput_right:Nn \g_@@_cases_seq { @@_caseless:N }

If ConTEXt is the top layer, we use the \@@_define_option_commands_and_keyvals:,
\Q@Q@_define_renderers:, and \@Q_define_renderer_prototypes: macro to de-

fine plain TEX option, token renderer, and token renderer prototype macros and

key—values immediately. Otherwise, we postpone the definition until the upper layers

have been loaded.

1094 \str_if_eq:VVT

4095  \c_0@_top_layer_tl

4096 \c_0Q@_option_layer_context_tl

)
1097 {
4098 \@@_define_option_commands_and_keyvals:
4099 \@@_define_renderers:
4100 \Q@@_define_renderer_prototypes:
4101 }
2.4.3 Themes

In Section 2.2.3, we described the concept of themes. In ConTEXt, we expand on
the concept of themes by allowing a theme to be a full-blown ConTEXt module.
Specifically, the key—values theme=(theme name) and import={theme name) load
a ConTEXt module named t-markdowntheme{munged theme name).tex if it exists
and a TEX document named markdowntheme(munged theme name).tex otherwise.

Having the Markdown package automatically load either the generic . tex theme file
or the ConTEXt-specific t-*.tex theme file allows developers to have a single theme
file, when the theme is small or the difference between TEX formats is unimportant,
and scale up to separate theme files native to different TEX formats for large multi-
format themes, where different code is needed for different TX formats. To enable
code reuse, developers can load the .tex theme file from the t-*.tex theme file
using the \markdownLoadPlainTeXTheme macro.

For example, to load a theme named witiko/tilde in your document:

\usemodule [t] [markdown]
\setupmarkdown [import=witiko/tilde]

169



We also define the prop \g_00_context_built_in_themes_prop that contains
the code of built-in themes. This is a packaging optimization, so that built-in themes
does not need to be distributed in many small files.

4102 \prop_new:N
4103 \g_0@_context_built_in_themes_prop
1104 \ExplSyntaxOff

Built-in ConTEXt themes provided with the Markdown package include:

witiko/markdown /defaults A ConTEXt theme with the default definitions of token
renderer prototypes for plain TEX. This theme is loaded automatically together
with the package and explicitly loading it has no effect.

4105 \startmodule [markdownthemewitiko_markdown_defaults]
1106 \unprotect

Please, see Section 3.4.2 for implementation details of the built-in ConTEXt themes.

3 Implementation

This part of the documentation describes the implementation of the interfaces exposed
by the package (see Section 2) and is aimed at the developers of the package, as well
as the curious users.

Figure 1 shows the high-level structure of the Markdown package: The translation
from markdown to TEX token renderers is performed by the Lua layer. The plain
TEX layer provides default definitions for the token renderers. The IXTEX and
ConTEXt layers correct idiosyncrasies of the respective TEX formats, and provide
format-specific default definitions for the token renderers.

3.1 Lua Implementation

The Lua implementation implements writer and reader objects, which provide the
conversion from markdown to plain TEX, and extensions objects, which provide
syntax extensions for the writer and reader objects.

The Lunamark Lua module implements writers for the conversion to various other
formats, such as DocBook, Groff, or HTML. These were stripped from the module
and the remaining markdown reader and plain TEX writer were hidden behind the
converter functions exposed by the Lua interface (see Section 2.1).

Furthermore, here are some abbreviations that we inherited from the Lunamark
library and which are used throughout the Lua implementation.

1107 local upper, format, length =

4108  string.upper, string.format, string.len

4109 local P, R, S, VvV, C, Cg, Cb, Cmt, Cc, Ct, B, Cs, Cp, any =

4110  1lpeg.P, lpeg.R, lpeg.S, lpeg.V, lpeg.C, lpeg.Cg, lpeg.Cb,

1111 lpeg.Cmt, lpeg.Cc, lpeg.Ct, lpeg.B, lpeg.Cs, lpeg.Cp, lpeg.P(1)

170



3.1.1 Unicode Support

To start off, we load a Lua file named markdown-unicode-data.lua that contains
our implementation of various Unicode algorithms.

4112 local early_warnings = {}

4113 local unicode_data = require("markdown-unicode-data")

1114 if metadata.version ~= unicode_data.metadata.version then
1115 table.insert(

4116 early_warnings,

4117 "markdown.lua " .. metadata.version .. " used with "

4118 "markdown-unicode-data.lua " .. unicode_data.metadata.version .. "."
4119 )

1120 end

In the following subsections, we’ll write a second-order file named markdown-unicode-data-generat.
The code from this file will be executed during the compilation of the Mark-

down package and the standard output will be stored in a generated file named
markdown-unicode-data.lua. First, let’s define a couple helper functions.

The function depth_first_search performs the depth first search algorithm on
a tree with nodes being tables with the key _type equal to either intermediate or
leaf and with edges labeled with bytes.

Since the algorithm is implemented using recursion, it should only be used for
the traversal of shallow trees to prevent exceeding the maximum recursion depth
(usually 100).

4121 local function depth_first_search(node, path, visit, leave)
4122 assert(node._type == "intermediate")

1123 visit(node, path)

1124 for label, child in pairs(mnode) do

4125 if label == "_type" then

4126 goto continue

4127 end

4128 if child._type == "intermediate" then
1129 depth_first_search(child, path .. label, visit, leave)
4130 else

4131 assert(child._type == "leaf")

4132 visit(child, path)

4133 end

1134 ::continue::

1135 end

1136 leave(node, path)

4137 end

The function serialize_byte_parser produces the Lua code for a PEG parser that
matches a single byte.

4138 local function serialize_byte_parser (byte)
4139 if byte == '"' then
1140 return "P('" .. byte .. "')"

171



4141 elseif byte == "\\" then

1142 return 'P("\\\\")'

1143 else

1144 return 'P("' .. byte .. '")'
4145 end

4146 end

The function serialize_byte_range_parser produces the Lua code for a PEG
parser that matches a contiguous range of bytes.

1147 local function serialize_byte_range_parser(start_byte, end_byte)
4148  assert(start_byte <= end_byte)

1149 if start_byte == "\\" then

4150 start_byte = "\\\\"

4151 end

1152 if end_byte == "\\" then

1153 end_byte = "\\\\"

4154 end

4155 if start_byte == '"' or end_byte == '"' then
4156 return "R('" .. start_byte .. end_byte .. "')"
1157  else

1158 return 'R("' .. start_byte .. end_byte .. '")'
1159 end

4160 end

The function serialize_replacement produces the Lua code for a string literal
with one or more UTF-8-encoded Unicode characters.

4161 local function serialize_replacement (codepoints)

1162 assert (#codepoints > 0)

1163 local buffer = {'"'}

1164  for _, codepoint in ipairs(codepoints) do

4165 local code = utf8.char(codepoint)
4166 for i = 1, #code do

1167 local byte = code:sub(i, i)
1168 if byte == '"' then

4169 table.insert (buffer, '\\\"')
4170 elseif byte == "\\" then

4171 table.insert (buffer, "\\\\")
4172 else

1173 table.insert(buffer, byte)
4174 end

4175 end

4176 end

4177 table.insert(buffer, '"')

1178  return table.concat (buffer)

1179 end

172



The function read_decompositions is an iterator that reads a file UnicodeData.txt
that has previously been opened for reading and yields all canonical and compatibility
decompositions from that file.

4180 local function read_decompositions(file)
4181  return function()

1182 local from_codepoint, mapping

4183 for line in file:lines() do

1184 from_codepoint, mapping

4185 = line:match ("~ (%x+); [7;1*;%ha*;%hd+; hak; ([<ha>kx 1%)")
4186 assert(from_codepoint ~= nil)

1187 if #mapping > O then

1188 break

4189 end

4190 end

4191 if #mapping == 0 then

1192 return nil

1193 end

1194 from_codepoint = tonumber(from_codepoint, 16)

4195 local to_codepoints, decomposition_type = {}, "canonical"
4196 for raw_codepoint in mapping:gmatch("%S+") do

4197 assert (#raw_codepoint > 0)

1198 if raw_codepoint:sub(1l, 1) == "<" then

4199 decomposition_type = "compatibility"

1200 else

4201 local codepoint = tonumber(raw_codepoint, 16)

4202 table.insert(to_codepoints, codepoint)

4203 end

1204 end

4205 assert (#to_codepoints > 0)

4206 return decomposition_type, from_codepoint, to_codepoints
4207  end

1208 end

Next, let’s define some aliases in the generated file.

1209 print("local P, R, Cc, C = lpeg.P, lpeg.R, lpeg.Cc, lpeg.C")
1210 print("local fail = P(false)")

4211 print("-- luacheck: push no max line length")

3.1.1.1 Canonical and Compatibility Decomposition

Low-level parsers that decompose UTF-8-encoded Unicode characters using either
the canonical or the compatibility decomposition [17, Section 3.7] are organized in
table unicode_data.decomposition_mapping based on the number of bytes they
occupy after conversion to UTF-8.

First, let’s read the file UnicodeData.txt.
4212 ; (function()
1213 local file = assert(io.open("UnicodeData.txt", "r"),

173



4214

[[Could not open file "UnicodeData.txt"]])

In order to minimize the size and speed of the parser, we will first construct prefix
trees of UTF-8 encodings for all codepoints of a given decomposition type and code

length.

1215
4216
4217
4218
1219
1220
4221
4222
4223
1224
1225
1226
4227
4228
1229
1230
1231
4232
4233
4234
1235
1236
1237
4238
4239
1240

local decomposition_types = {"canonical", "compatibility"}
local prefix_trees = {}
for _, decomposition_type in ipairs(decomposition_types) do
prefix_trees[decomposition_typel = {}
for char_length = 1, 4 do
prefix_trees[decomposition_type] [char_length]
= {_type = "intermediate"}
end
end
for decomposition_type, from_codepoint, to_codepoints
in read_decompositions(file) do
local from_code = utf8.char(from_codepoint)
local node = prefix_trees[decomposition_type] [#from_codel
for i = 1, #from_code do
local from_byte = from_code:sub(i, i)
if i < #from_code then
if node[from_byte] == nil then

node [from_byte] = {_type = "intermediate"}
end
node = node[from_byte]
else
table.insert(node, {from_byte, to_codepoints, _type = "leaf"})
end
end
end

assert(file:close())

Next, we will construct parsers out of the prefix trees.

4241
4242
4243
1244
1245
1246
4247
4248
1249
1250
1251
4252
4253
4254
1255

print ("M.decomposition_mapping = {}")
for _, decomposition_type in ipairs(decomposition_types) do
print("M.decomposition_mapping." .. decomposition_type .. " = {}")
for length, prefix_tree in pairs(prefix_trees[decomposition_typel)
do
local subparsers = {}
depth_first_search(prefix_tree, "", function(node, path)
if node._type == "leaf" then
local from_byte, to_codepoints = table.unpack(node)
local suffix = serialize_byte_parser(from_byte)

... "/ " .. serialize_replacement (to_codepoints)
if subparsers[path] ~= nil then

subparsers[path] = subparsers[path] .. " + " .. suffix
else

subparsers[path] = suffix

174



4256 end

1257 end

1258 end, function(_, path)

1259 if #path > O then

4260 local byte = path:sub(#path, #path)

4261 local parent_path = path:sub(1l, #path-1)

4262 local prefix = serialize_byte_parser(byte)

1263 local suffix

4264 if subparsers[path]:find(" %+ ") then

1265 suffix = prefix .. " * (" .. subparsers[path] .. ")"
4266 else

4267 suffix = prefix .. " * " .. subparsers[path]

1268 end

1269 if subparsers[parent_path] ~= nil then

4270 subparsers[parent_path] = subparsers[parent_path]
4271 oo+ "L suffix

4272 else

4273 subparsers [parent_path] = suffix

1274 end

1275 else

4276 print(

4277 "M.decomposition_mapping." .. decomposition_type
4278 .. "[" .. length .. "] =" .. (subparsers[path] or "fail")
1279 )

4280 end

1281 end)

4282 end

4283  end

1284 end) ()

3.1.1.2 Hangul Syllable Decomposition

Low-level parsers that decompose UTF-8-encoded Unicode characters using the
Hangul syllable decomposition [17, Section 3.12.2] are also organized in table
unicode_data.decomposition_mapping, previously defined in Section 3.1.1.1 based
on the number of bytes they occupy after conversion to UTF-8.

First, let’s read the file HangulSyllableType. txt.
1285 ; (function()
4286  local file = assert(io.open("HangulSyllableType.txt", "r"),
4287 [[Could not open file "HangulSyllableType.txt"]1])
In order to minimize the size and speed of the parser, we will first construct prefix
trees of UTF-8 encodings for all codepoints of a given syllable type and code length.
1288  local syllable_types = {"LV", "LVI"}

4289  local prefix_trees = {}
1200 for _, syllable_type in ipairs(syllable_types) do
4291 prefix_trees[syllable_typel = {}

175



4292 for char_length =1, 4 do

1293 prefix_trees([syllable_typel] [char_length]

1294 = {_type = "intermediate"}

1295 end

4296  end

4297 for line in file:lines() do

4298 if #line == 0 or line:sub(l, 1) == "#" then

1299 goto continue

1300 end

1301 local codepoint, syllable_type = line:match("~([%x.]+)%s*;%s*(%a*x)")
4302 assert(codepoint ~= nil)

4303 if prefix_trees[syllable_type] == nil then

1304 goto continue

1305 end

1306 local codepoint_start, codepoint_end

4307 if codepoint:find("%.%.") then

4308 codepoint_start, codepoint_end

1309 = codepoint:match("~(%x+)%.%. (hx+)$")

1310 else

1311 codepoint_start, codepoint_end = codepoint, codepoint
4312 end

4313 codepoint_start = tonumber(codepoint_start, 16)
4314 codepoint_end = tonumber(codepoint_end, 16)

1315 local prev_code, prev_leaf_node

1316 for codepoint = codepoint_start, codepoint_end do
1317 local code = utf8.char(codepoint)

4318 local node = prefix_trees[syllable_type] [#codel
4319 for i = 1, #code do

1320 local byte = code:sub(i, i)

1321 if i < #code then

4322 if node[byte] == nil then

4323 node [byte] = {_type = "intermediate"}
4324 end

4325 node = nodel[bytel

1326 else

1327 local leaf_node

4328 if (

4329 prev_code ~= nil

4330 and #prev_code == #code

1331 and code:sub(1, #code - 1)

1332 == prev_code:sub(1l, #code - 1)

1333 ) then

4334 assert(prev_leaf_node ~= nil)

4335 leaf_node = prev_leaf_node

1336 leaf_node[2] = byte

1337 else

1338 leaf_node = {byte, byte, _type = "leaf"}

176



4339
1340
1341
1342

4343

4344

4345
1346
4347

table.insert(node, leaf_node)

end

prev_code, prev_leaf_node =

end
end
end

::continue:

end

assert(file:close())

code, leaf_node

Next, we will define constants and functions with the Hangul syllable (de)composition

algorithm.

4348 print(string.format("local s_base = %d", tonumber("ACO0", 16)))
4349 print(string.format("local 1_base = %d", tonumber("1100", 16)))
1350 print(string.format("local v_base = Jd", tonumber("1161", 16)))
1351 print(string.format("local t_base = Jd", tonumber("11A7", 16)))
1352 print(string.format("local 1_count = %d", 19))

4353  print(string.format("local v_count = %d", 21))

4354  print(string.format("local t_count = %d", 28))

1355 print("local n_count = v_count * t_count")

1356 print("local s_count = 1_count * n_count")

1357

4358  print("local function hangul_decompose_LV(byte)")

4359  print(" local s = utf8.codepoint(byte)")

4360 print(" local s_index = s - s_base")

1361 print(" local 1_index = s_index // n_count")

1362 print(" local v_index = (s_index % n_count) // t_count")

1363 print(" local 1_part = 1_base + 1_index")

4364  print(" local v_part = v_base + v_index")

4365  print(" return utf8.char(l_part) .. utf8.char(v_part)")

1366 print("end")

1367

1368  print("local function hangul_decompose_LVT(byte)")

4369  print(" local s = utf8.codepoint(byte)")

4370 print(" local s_index = s - s_base")

4371 print(" local lv_index = (s_index // t_count) * t_count")

1372 print(" local t_index = s_index J t_count")

1373 print(" local lv_part = s_base + lv_index")

4374 print(" local t_part = t_base + t_index")

4375  print(" return utf8.char(lv_part) .. utf8.char(t_part)")

4376 print("end")

1377

1378 print("function M.hangul_compose(first_byte, second_byte)")

1379 print(" local last = utf8.codepoint(first_byte)")

4380  print(" local ch = utf8.codepoint(second_byte)")

4381 print(" local 1_index = last - 1_base")

1382 print(" if 0 <= 1_index and 1_index < 1_count then")

177



4383 print (" local v_index = ch - v_base")

1384 print(" if 0 <= v_index and v_index < v_count then")
1385 print (" return utf8.char(")

1386 print (" s_base + (1_index * v_count + v_index) * t_count")
4387 print (" A

4388  print(" end")

4389 print(" end")

1390  print(" local s_index = last - s_base")

1391 print(" if O <= s_index and s_index < s_count")

1392 print (" and s_index % t_count == 0O then")

4393 print (" local t_index = ch - t_base")

4394  print(" if 0 < t_index and t_index < t_count then")
1395 print (" return utf8.char(last + t_index)")

1396 print (" end")

1397 print(" end")
4398 print(" return nil")

4399  print("end")

Next, we will construct parsers out of the prefix trees.

4400 print("M.decomposition_mapping.hangul = {}")

1401 for _, syllable_type in ipairs(syllable_types) do

1402 print ("M.decomposition_mapping.hangul." .. syllable_type = {3
1403 for length, prefix_tree in pairs(prefix_trees[syllable_typel]) do
4404 local subparsers = {}

4405 depth_first_search(prefix_tree, "", function(node, path)

1406 if node._type == "leaf" then

1407 local start_byte, end_byte = table.unpack(node)

1408 local suffix

4409 if start_byte == end_byte then

4410 suffix = serialize_byte_parser(start_byte)

1411 else

1412 assert(start_byte < end_byte)

1413 suffix = serialize_byte_range_parser(start_byte, end_byte)
4414 end

4415 if subparsers[path] ~= nil then

4416 subparsers [path] = subparsers[path] .. " + " suffix
1417 else

1418 subparsers[path] = suffix

1419 end

4420 end

4421 end, function(_, path)

1422 if #path > O then

1423 local byte = path:sub(#path, #path)

1424 local parent_path = path:sub(l, #path-1)

4425 local prefix = serialize_byte_parser(byte)

4426 local suffix

4427 if subparsers([path]:find(" %+ ") then

1428 suffix = prefix .. " * (" .. subparsers[path] DR

178



4429 else

1430 suffix = prefix .. " * " .. subparsers[path]

1431 end

1432 if subparsers[parent_path] ~= nil then

4433 subparsers[parent_path] = subparsers[parent_path]
4434 Lo+t suffix

4435 else

1436 subparsers[parent_path] = suffix

4437 end

1438 else

4439 if subparsers[path] then

4440 print(

1441 "M.decomposition_mapping.hangul." .. syllable_type
1442 .. "[" .. length .. "] = C(" .. subparsers[path]
4443 .. " / hangul _decompose_" .. syllable_type

4444 )

4445 else

4446 print(

1447 "M.decomposition_mapping.hangul." .. syllable_type
1448 .. "[" .. length .. "] = fail"

4449 )

4450 end

4451 end

1452 end)

4453 end

1454 end

1455 end) ()

3.1.1.3 Canonical Composition

Il)ll

Low-level parsers that map pairs of UTF-8-encoded Unicode characters from a
canonical or compatibility decomposition into their primary composites [17, Sec-
tion 3.11.6] are organized in table unicode_data.composition_mapping based on

the number of bytes the characters occupy after conversion to UTF-8.

First, let’s read the file DerivedNormalizationProps.txt and record all canonical

decomposable characters that are not full composition exclusions.
4456 ; (function()

4457  local file = assert(io.open("DerivedNormalizationProps.txt", "r"),
4458 [[Could not open file "DerivedNormalizationProps.txt"]])

1459  local full_composition_exclusions = {}

4460  for line in file:lines() do

1461 if #line == 0 or line:sub(l, 1) == "#" then

4462 goto continue

4463 end

1464 local codepoint, property = line:match("~([%x.]1+)%s*;%s*([%a_J+)")
1465 assert(codepoint ~= nil)

4466 if property ~= "Full_Composition_Exclusion" then

179



4467
1468
1469
1470

4471

4472

4473
4474
4475
1476

4477

4478
4479
1480
1481

4482

4483

goto continue
end
local codepoint_start, codepoint_end
if codepoint:find("%.%.") then
codepoint_start, codepoint_end
= codepoint:match ("~ (%hx+)%.%. (hx+)$")
else
codepoint_start, codepoint_end = codepoint, codepoint
end
codepoint_start = tonumber(codepoint_start, 16)
codepoint_end = tonumber(codepoint_end, 16)
for codepoint = codepoint_start, codepoint_end do
full_composition_exclusions[codepoint] = true
end
::continue::
end
assert(file:close())

Next, let’s also read the file UnicodeData.txt.

4484
4485

In order to minimize the size and speed of the parser, we will first construct prefix

file = assert(io.open("UnicodeData.txt", "r"),
[[Could not open file "UnicodeData.txt"]])

trees of UTF-8 encodings for all pairs of codepoints of given code lengths.

1486
1487
4488
4489
4490
1491
1492
1493
4494
4495
1496
1497
1498
4499
4500
1501
1502
1503
4504
4505
4506
1507
1508
1509

local prefix_trees = {starters = {}, both = {}}
for first_char_length = 1, 4 do
prefix_trees.starters[first_char_length]
= {_type = "intermediate"}
prefix_trees.both[first_char_length] = {}
for second_char_length = 1, 4 do
prefix_trees.both[first_char_length] [second_char_length]
= {_type = "intermediate"}
end
end
local seen_starter_codes = {}
for decomposition_type, to_codepoint, from_codepoints
in read_decompositions(file) do

if (
decomposition_type ~= '"canonical"
or #from_codepoints ~= 2
or full_composition_exclusions[to_codepoint]
) then
goto continue
end

local starter_code = utf8.char(from_codepoints[1])

local combining_character_code = utf8.char(from_codepoints[2])
local starter_node = prefix_trees.starters[#starter_code]
local both_node

180



4510 = prefix_trees.both[#starter_code] [#combining_character_codel
1511 for i = 1, #starter_code do

1512 local from_byte = starter_code:sub(i, i)

1513 if both_node[from_byte] == nil then

4514 both_node[from_byte] = {_type = "intermediate"}
4515 end

4516 both_node = both_node[from_byte]

41517 if i < #starter_code then

1518 if starter_node[from_byte] == nil then

1519 starter_node[from_byte] = {_type = "intermediate"}
4520 end

4521 starter_node = starter_node[from_byte]

1522 elseif seen_starter_codes[starter_code] == nil then
1523 seen_starter_codes[starter_code] = true

1524 table.insert(starter_node, {from_byte, _type = "leaf"})
4525 end

4526 end

1527 for i = 1, #combining_character_code do

1528 local from_byte = combining_character_code:sub(i, i)
1529 if i < #combining_character_code then

4530 if both_node[from_byte] == nil then

4531 both_node[from_byte]l = {_type = "intermediate"}
4532 end

1533 both_node = both_node[from_byte]

1534 else

1535 table.insert(

4536 both_node,

4537 {from_byte, to_codepoint, _type = "leaf"}

1538 )

1539 end

1540 end

4541 ::continue::

4542 end

4543  assert(file:close())

Next, we will construct parsers out of the prefix trees.

1544 print ("M.composition_mapping = {starters = {}, both = {}}")
1545 for first_char_length = 1, 4 do

1546 local prefix_tree = prefix_trees.starters[first_char_length]
4547 local subparsers = {}

4548 depth_first_search(prefix_tree, "", function(node, path)

1549 if node._type == "leaf" then

4550 local from_byte = table.unpack(node)

1551 local suffix = serialize_byte_parser(from_byte)

4552 if subparsers[path] ~= nil then

4553 subparsers[path] = subparsers[path] .. " + " .. suffix
4554 else

1555 subparsers[path] = suffix

181



4556 end

1557 end

1558 end, function(_, path)

1559 if #path > O then

4560 local byte = path:sub(#path, #path)

4561 local parent_path = path:sub(1l, #path-1)

4562 local prefix = serialize_byte_parser(byte)

1563 local suffix

1564 if subparsers[path]:find(" %+ ") then

1565 suffix = prefix .. " * (" .. subparsers[path] .. ")"
4566 else

4567 suffix = prefix .. " * " .. subparsers[path]

1568 end

1569 if subparsers[parent_path] ~= nil then

1570 subparsers [parent_path] = subparsers[parent_path]
4571 "+ " .. suffix

4572 else

1573 subparsers [parent_path] = suffix

1574 end

1575 else

4576 print(

4577 "M.composition_mapping.starters["

4578 first_char_length .. "] = " .. (subparsers[path] or "fail")
4579 )

1580 end

1581 end)

4582 print(

4583 string.format(

1584 "M.composition_mapping.both[%d] = {}",

1585 first_char_length

4586 )

4587 )

4588 for second_char_length = 1, 4 do

4589 prefix_tree

1590 = prefix_trees.both[first_char_length] [second_char_length]
1591 subparsers = {}

4592 depth_first_search(prefix_tree, "", function(node, path)
4593 if node._type == "leaf" then

4594 local from_byte, to_codepoint = table.unpack(node)
1595 local suffix = serialize_byte_parser(from_byte)

1596 ... "/ " .. serialize_replacement ({to_codepoint})
1597 if subparsers[path] ~= nil then

4598 subparsers[path] = subparsers[path] .. " + " .. suffix
4599 else

1600 subparsers [path] = suffix

1601 end

1602 end

182



4603 end, function(_, path)

1604 if #path > O then

1605 local byte = path:sub(#path, #path)

1606 local parent_path = path:sub(l, #path-1)

4607 local prefix = serialize_byte_parser(byte)

4608 local suffix

4609 if subparsers[path]:find(" %+ ") then

1610 suffix = prefix .. " * (" .. subparsers[path] .. ")"
4611 else

1612 suffix = prefix .. " * " .. subparsers[path]

4613 end

4614 if subparsers([parent_path] ~= nil then

1615 subparsers[parent_path] = subparsers[parent_path]
1616 Lo+ L suffix

4617 else

4618 subparsers[parent_path] = suffix

4619 end

1620 else

1621 print(

1622 "M.composition_mapping.both[" .. first_char_length .. "]["
4623 .. second_char_length .. "] ="

4624 .. (subparsers[path] or "fail")

4625 )

1626 end

4627 end)

1628 end

4629  end

4630 end) ()

3.1.1.4 Case Folding
Low-level parsers that case-fold UTF-8-encoded Unicode characters us-
ing the full mapping (C and F) [17, Section 3.13.3] are organized in table
unicode_data.casefold_mapping based on the number of bytes they occupy
after conversion to UTF-8.
First, let’s read the file CaseFolding. txt.
1631 ; (function()
1632 local file = assert(io.open("CaseFolding.txt", "r"),
4633 [[Could not open file "CaseFolding.txt"]])
In order to minimize the size and speed of the parser, we will first construct prefix
trees of UTF-8 encodings for all codepoints of a given code length.
4634 local prefix_trees = {}
1635  for char_length = 1, 4 do
4636 prefix_trees[char_length] = {_type = "intermediate"}
1637  end
4638 for line in file:lines() do

183



4639 if #line == 0 or line:sub(l, 1) == "#" then

1640 goto continue

1641 end

1642 local raw_from_codepoint, status, raw_to_codepoints
4643 = line:match ("~ (%x+); ([CFST1); ([kx 1+);")

4644 assert(raw_from_codepoint ~= nil)

4645 assert(status ~= nil)

1646 assert(raw_to_codepoints ~= nil)

1647 if status ~= "C" and status ~= "F" then

1648 goto continue

4649 end

4650 local from_codepoint = tonumber(raw_from_codepoint, 16)
1651 local to_codepoints = {}

1652 for raw_codepoint in raw_to_codepoints:gmatch('%x+') do
1653 local codepoint = tonumber(raw_codepoint, 16)

4654 table.insert(to_codepoints, codepoint)

4655 end

1656 local from_code = utf8.char(from_codepoint)

1657 local node = prefix_trees[#from_code]

1658 for i = 1, #from_code do

4659 local from_byte = from_code:sub(i, i)

4660 if i < #from_code then

4661 if node[from_byte] == nil then

1662 node[from_byte] = {_type = "intermediate"}
1663 end

1664 node = node[from_byte]

4665 else

4666 table.insert(node, {from_byte, to_codepoints, _type = "leaf"})
1667 end

1668 end

1669 ::continue::

4670 end

4671  assert(file:close())

Next, we will construct parsers out of the prefix trees.
4672 print("M.casefold_mapping = {}")
1673 for length, prefix_tree in pairs(prefix_trees) do

1674 local subparsers = {}

1675 depth_first_search(prefix_tree, "", function(node, path)
4676 if node._type == "leaf" then

4677 local from_byte, to_codepoints = table.unpack(node)
1678 local suffix = serialize_byte_parser(from_byte)

1679 ... "/ "™ .. serialize_replacement (to_codepoints)
1680 if subparsers[path] ~= nil then

4681 subparsers [path] = subparsers[path] .. " + " .. suffix
4682 else

4683 subparsers [path] = suffix

1684 end

184



4685 end

1686 end, function(_, path)

1687 if #path > O then

1688 local byte = path:sub(#path, #path)

4689 local parent_path = path:sub(1l, #path-1)

4690 local prefix = serialize_byte_parser(byte)
4691 local suffix

1692 if subparsers[path]:find(" %+ ") then

4693 suffix = prefix .. " * (" .. subparsers[path] .. ")"
1694 else

4695 suffix = prefix .. " * " .. subparsers[path]
4696 end

4697 if subparsers[parent_path] ~= nil then

1698 subparsers [parent_path] = subparsers[parent_path]
4699 oot " L suffix
4700 else

4701 subparsers [parent_path] = suffix

4702 end

1703 else

1704 print(

4705 "M.casefold_mapping[" .. length .. "] ="
4706 .. (subparsers[path] or "fail")

4707 )

1708 end

4709 end)

1710 end

4711 end) )

3.1.1.5 Character Categories

Low-level parsers of UTF-8-encoded Unicode characters from different general
categories [17, Section 4.5] are organized in table unicode_data.categories based
on the number of bytes they occupy after conversion to UTF-8.

First, let’s read the file UnicodeData.txt.
1712 ; (function()
4713 local file = assert(io.open("UnicodeData.txt", "r"),
4714 [[Could not open file "UnicodeData.txt"]])
In order to minimize the size and speed of the parser, we will first construct prefix
trees of UTF-8 encodings for all codepoints of a given Unicode category and code
length.

4715 local categories = {"L", "N", "P", "Pc", "S", "Z"}

4716 local prefix_trees = {}

1717 for _, category in ipairs(categories) do

4718 prefix_trees[category] = {}

AT19 for char_length =1, 4 do

4720 prefix_trees[category] [char_length] = {_type = "intermediate"}

185



end
end
for line in file:lines() do
local codepoint, full_category = line:match("~(%x+);[";1*; (%a*x)")
assert (#full_category >= 1)
local major_category = full_category:sub(l, 1)
for _, category in ipairs({full_category, major_category}) do
if prefix_trees[category] == nil then
goto continue
end
local code = utf8.char(tonumber(codepoint, 16))
local node = prefix_trees[category] [#code]
for i = 1, #code do
local byte = code:sub(i, i)
if i < #code then

if node[byte] == nil then
node [byte] = {_type = "intermediate"}
end
node = node[bytel
else
table.insert(node, {byte, _type = "leaf"})
end
end
::continue::
end

end
assert(file:close())

Next, we will construct parsers out of the prefix trees.

4748
1749
4750
1751

4752

4753

4754
4755
1756
1757

4758

4759
1760
4761
1762

4763

4764

4765
1766

print ("M.categories = {}")
for _, category in ipairs(categories) do
print("M.categories." .. category .. " = {}")
for length, prefix_tree in pairs(prefix_trees[category]) do
local subparsers = {}
depth_first_search(prefix_tree, "", function(node, path)
if node._type == "leaf" then
local byte = nodel[1]
local suffix = serialize_byte_parser(byte)

if subparsers[path] ~= nil then
subparsers[path] = subparsers[path] .. " + " .. suffix
else
subparsers [path] = suffix
end
end

end, function(_, path)
if #path > 0 then
local byte = path:sub(#path, #path)
local parent_path = path:sub(1l, #path-1)

186



4767 local prefix = serialize_byte_parser(byte)

1768 local suffix

A769 if subparsers[path]:find(" %+ ") then

1770 suffix = prefix .. " * (" .. subparsers[path] .. ")"
4771 else

4772 suffix = prefix .. " * " .. subparsers[path]

4773 end

A774 if subparsers[parent_path] ~= nil then

4775 subparsers[parent_path] = subparsers[parent_path]
4776 oM+ " L suffix

4777 else

4778 subparsers [parent_path] = suffix

ATT9 end

1780 else

4781 print(

4782 "M.categories." .. category .. "[" .. length .. "] ="
4783 .. (subparsers[path] or "fail")

1784 )

1785 end

1786 end)

4787 end

4788 end

4789 end) ()

3.1.1.6 Canonical Ordering Classes

Low-level parsers of UTF-8-encoded Unicode characters from different character
classes [17, Section 3.11] are organized in table unicode_data.ccc based on the
number of bytes they occupy after conversion to UTF-8.

First, let’s read the file UnicodeData.txt.
4790 ; (function()
4791 local file = assert(io.open("UnicodeData.txt", "r"),
1792 [[Could not open file "UnicodeData.txt"]])
In order to minimize the size and speed of the parser, we will first construct prefix
trees of UTF-8 encodings for all codepoints of a given Unicode combining class and
code length.
1793 local prefix_trees = {}
1794 for char_length = 1, 4 do

1795 prefix_trees[char_length] = {_type = "intermediate"}
4796 end

4797 for line in file:lines() do

4798 local codepoint, combining_class

1799 = line:match ("~ (%x+); [7;]*;%a*; (%d+)")

4800 combining_class = tonumber (combining class)

1801 if combining_class == 0 then

4802 goto continue

187



4803 end

1804 local code = utf8.char(tonumber(codepoint, 16))
1805 local node = prefix_trees[#code]

1806 for i = 1, #code do

4807 local byte = code:sub(i, i)

4808 if i < #code then

4809 if node[byte] == nil then

1810 node[byte] = {_type = "intermediate"}

1811 end

1812 node = node[byte]

4813 else

4814 table.insert(node, {byte, combining_class, _type = "leaf"})
1815 end

1816 end

1817 ::continue::

4818 end

4819  assert(file:close())

Next, we will construct parsers out of the prefix trees.
4820  print("M.ccc = {}")
1821 for length, prefix_tree in pairs(prefix_trees) do

1822 local subparsers = {}

1823 depth_first_search(prefix_tree, "", function(node, path)
4824 if node._type == "leaf" then

4825 local byte, combining_class = table.unpack(node)

1826 local suffix = serialize_byte_parser(byte)

1827 .. " % Cc(" .. tostring(combining_class) .. ")"
4828 if subparsers[path] ~= nil then

4829 subparsers [path] = subparsers[path] .. " + " .. suffix
4830 else

1831 subparsers [path] = suffix

1832 end

1833 end

4834 end, function(_, path)

4835 if #path > O then

4836 local byte = path:sub(#path, #path)

1837 local parent_path = path:sub(1l, #path-1)

1838 local prefix = serialize_byte_parser(byte)

1839 local suffix

4840 if subparsers[path]:find(" %+ ") then

4841 suffix = prefix .. " * (" .. subparsers[path] .. ")"
1842 else

4843 suffix = prefix .. " * " .. subparsers[path]

1844 end

4845 if subparsers[parent_path] ~= nil then

4846 subparsers [parent_path] = subparsers[parent_path]
4847 Lo+ L suffix

1848 else

188



4849 subparsers [parent_path] = suffix

1850 end

1851 else

1852 print(

4853 "M.ccc[" .. length .. "] = " .. (subparsers[path] or "fail")
4854 )

4855 end

1856 end)

4857 end

1858 end) ()

4859 print ("-- luacheck: pop")
4860 print("return M")

3.1.2 Utility Functions

This section documents the utility functions back in the file markdown-parser.lua
used by the plain TEX writer and the markdown reader. These functions are
encapsulated in the util object. The functions were originally located in the
lunamark/util.lua file in the Lunamark Lua module.

1861 local util = {}

The util.err method prints an error message msg and exits. If exit_code is
provided, it specifies the exit code. Otherwise, the exit code will be 1.

4862 function util.err(msg, exit_code)

4863  io.stderr:write("markdown.lua: " .. msg .. "\n")
1864  os.exit(exit_code or 1)
1865 end

The util.cache method used dir, string, salt, and suffix to determine a
pathname. If a file with such a pathname does not exists, it gets created with
transform(string) as its content and the result of transform(string) is returned
as the second return value in case it’s useful to the caller. Regardless, the pathname
is always returned as the first return value.

1866 function util.cache(dir, string, salt, transform, suffix)

1867  local digest = md5.sumhexa(string .. (salt or ""))

4868  local name = util.pathname(dir, digest .. suffix)

4869 local file = io.open(name, "r")

4870 local result = nil

1871 if file == nil then -- If no cache entry exists, create a new one.
4872 file = assert(io.open(name, "w"),

4873 [[Could not open file "]] .. name .. [[" for writing]l])
4874 result = string

4875 if transform ~= nil then

A876 result = transform(result)

1877 end

1878 assert(file:write(result))

189



4879 assert(file:close())

4880 end
1881 return name, result
4882 end

The util.cache_verbatim method strips whitespaces from the end of string and
calls util.cache with dir, string, no salt or transformations, and the .verbatim
suffix.

4883 function util.cache_verbatim(dir, string)

1884 local name = util.cache(dir, string, nil, nil, ".verbatim")
4885  return name
4886 end

The util.table_copy method creates a shallow copy of a table t and its metatable.
4887 function util.table_copy(t)

4888  local u = { }

1889  for k, v in pairs(t) do ulk] = v end

1890 return setmetatable(u, getmetatable(t))

1891 end

The util.encode_json_string method encodes a string s in JSON.
1892 function util.encode_json_string(s)

4893 s = s:gsub([[\1], [I\\1D)

4894 s = s:gsub([["]1], C[\"1D)

4895  return [["]1] .. s .. [["]]

1896 end

The util.expand_tabs_in_line expands tabs in string s. If tabstop is specified,
it is used as the tab stop width. Otherwise, the tab stop width of 4 characters is
used. The method is a copy of the tab expansion algorithm from Ierusalimschy [18,
Chapter 21].

4897 function util.expand_tabs_in_line(s, tabstop)
4898  local tab = tabstop or 4

4899  local corr = 0

1900 return (s:gsub("()\t", function(p)

1901 local sp = tab - (p - 1 + corr) % tab
4902 corr = corr - 1 + sp

4903 return string.rep(" ", sp)

4904 end))

4905 end

The util.walk method walks a rope t, applying a function f to each leaf element
in order. A rope is an array whose elements may be ropes, strings, numbers, or
functions. If a leaf element is a function, call it and get the return value before
proceeding.

1906 function util.walk(t, f)

4907 local typ = type(t)

4908 if typ == "string" then

190



4909 f(t)

1910  elseif typ == "table" then
1911 local i =1

4912 local n

4913 n = t[i]

4914 while n do

4915 util.walk(n, f)

1916 i=41+1

4917 n = t[i]

1918 end

4919  elseif typ == "function" then
4920 local ok, val = pcall(t)
1921 if ok then

1922 util.walk(val,f)

4923 end

4924 else

4925 f (tostring(t))

4926 end

1927 end

The util.flatten method flattens an array ary that does not contain cycles and
returns the result.

4928 function util.flatten(ary)

4929  local new = {}

4930 for _,v in ipairs(ary) do
1931 if type(v) == "table" then
4932 for _,w in ipairs(util.flatten(v)) do
4933 new[#new + 1] = w

4934 end

4935 else

1936 new[#new + 1] = v

1937 end

4938 end

4939  return new

4940 end

The util.rope_to_string method converts a rope rope to a string and returns it.
For the definition of a rope, see the definition of the util.walk method.

1941 function util.rope_to_string(rope)

4942 local buffer = {}

4943  util.walk(rope, function(x) buffer[#buffer + 1] = x end)

4944  return table.concat (buffer)

4945 end

The util.rope_last method retrieves the last item in a rope. For the definition of
a rope, see the definition of the util.walk method.

4946 function util.rope_last(rope)
4947 if #rope == 0 then

191



4948 return nil

1949  else

1950 local 1 = rope[#ropel

4951 if type(l) == "table" then
4952 return util.rope_last (1)
4953 else

4954 return 1

1955 end

4956 end

1957 end

Given an array ary and a string x, the util.intersperse method returns an array
new, such that ary[i] == new[2*(i-1)+1] and new[2*i] == x for all 1 < i <
#ary.

1958 function util.intersperse(ary, x)

4959  local new = {}

4960  local 1 = #ary

4961 for i,v in ipairs(ary) do

1962 local n = #new
4963 new[n + 1] = v
4964 if i ~= 1 then
4965 new[n + 2] = x
4966 end

1967 end

4968 return new

4969 end

Given an array ary and a function f, the util.map method returns an array new,
such that new[i] == f(ary[i]) for all 1 < i < #ary.

4970 function util.map(ary, f)

1971 local new = {}

1972 for i,v in ipairs(ary) do

4973 new[i] = £(v)

4974 end
4975 return new
4976 end

Given a table char_escapes mapping escapable characters to escaped strings and
optionally a table string_escapes mapping escapable strings to escaped strings,
the util.escaper method returns an escaper function that escapes all occurrences
of escapable strings and characters (in this order).

The method uses LPeg, which is faster than the Lua string.gsub built-in method.
4977 function util.escaper(char_escapes, string_escapes)
Build a string of escapable characters.

4978 local char_escapes_list = ""
4979 for i,_ in pairs(char_escapes) do
1980 char_escapes_list = char_escapes_list .. i

192



4981 end
Create an LPeg capture escapable that produces the escaped string corresponding
to the matched escapable character.

1982  local escapable = S(char_escapes_list) / char_escapes

If string_escapes is provided, turn escapable into the

Z P(k) / v+ escapable

(k,v)Estring_escapes

capture that replaces any occurrence of the string k with the string v for each
(k,v) € string_escapes. Note that the pattern summation is not commutative
and its operands are inspected in the summation order during the matching. As a
corrolary, the strings always take precedence over the characters.

4983 if string_escapes then

4984 for k,v in pairs(string_escapes) do
1985 escapable = P(k) / v + escapable
4986 end

4987 end

Create an LPeg capture escape_string that captures anything escapable does and
matches any other unmatched characters.

1988 local escape_string = Cs((escapable + any)~0)

Return a function that matches the input string s against the escape_string
capture.

4989  return function(s)

4990 return lpeg.match(escape_string, s)

1991 end

4992 end

The util.pathname method produces a pathname out of a directory name dir and
a filename file and returns it.

1993 function util.pathname(dir, file)

1994 if #dir == 0 then

4995 return file

4996 else

4997 return dir .. "/" .. file
4998 end

1999 end

The util.salt method produces cryptographic salt out of a table of options options.

000 function util.salt(options)

001 local opt_string = {}

002  for k, _ in pairs(defaultOptions) do
003 local v = options[k]

004 if type(v) == "table" then

005 for _, i in ipairs(v) do

5
5
5
5
5}
5

193



5006 opt_string[#opt_string+1l] =k .. "=" .. tostring(i)
5007 end

The cacheDir option is disregarded.

008 elseif k ~= "cacheDir" then

009 opt_string[#opt_string+l] = k .. "=" .. tostring(v)
010 end

( end

)

)

)

)11

)12 table.sort(opt_string)

)13 local salt = table.concat(opt_string, ",")
)

)

)

(

014 ... "," .. metadata.version
015 return salt

5016 end

The util.warning method produces a warning s that is unrelated to any specific
markdown text being processed. For warnings that are specific to a markdown text,
use writer->warning function.

ot

017 util.warning = (function()
)18 local function warning(s)

ot

5019 io.stderr:write("Warning: " .. s .. "\n")
5020 end

5021  for _, message in ipairs(early_warnings) do
5022 warning (message)

5023 end

5024  return warning
5025 end) )

The util.casefold method performs a full case-folding of a UTF-8-encoded Unicode
string s based on the low-level parsers in unicode_data.casefold_mapping, defined
in Section 3.1.1.4. Unlike the low-level parsers, the high-level function is invariant to
the number of bytes the Unicode characters occupy after conversion to UTF-8.

5026 util.casefold = (function()

5027  local fail, any = P(false), P(1)

5028  local eof = -any

First, define a parser that will case-fold a character.

fold_character
6 = fold_character
7 + C(any)

5029 local fold_character = fail

5030 for n = 1, 4 do

5031 fold_character

5032 = fold_character

5033 + unicode_data.casefold_mapping[n]
5034 end

5035

503

503

Next, define a parser that will case-fold a string.

194



oo

local fold_string = Ct(fold_character”0) * eof

return function(s, form)
local result = table.concat(lpeg.match(fold_string, s))
assert(result ~= nil)

(1 N, B,
- s W W

For NFD and NFKD normalization forms, normalize the case-folded string and then
repeat the fold-and-normalize operation.

5042 if form == "nfd" or form == "nfkd" then

5043 result = util.normalize(result, form)

5044 result = table.concat(lpeg.match(fold_string, result))
5045 assert(result ~= nil)

5046 result = util.normalize(result, form)

5047 end

5048 return result

5049 end

5050 end) ()

The util.canonically_order method performs a Unicode canonical ordering of a
string UTF-8-encoded Unicode s based on the low-level parsers in unicode_data.ccc,
defined in Section 3.1.1.6. Unlike the low-level parsers, the high-level function is
invariant to the number of bytes the Unicode characters occupy after conversion to
UTF-8.

51 util.canonically_order = (function()

52 local fail, any = P(false), P(1)

53  local eof = -any

54  local cont = R("\128\191")

D

ot Ot Ot Ut

local utf8_character

= R("\0\127")

R("\194\223") * cont

R("\224\239") * cont * cont
R("\240\244") * cont * cont * cont

Ot ot O
o J O O
+ + 0

[SAIe, S e B |

t
+

First, define a parser that will determine the combining class of a character.

5060  local classify_character = fail
5061 for n = 1, 4 do

5062 classify_character

5063 = classify_character

5064 + unicode_data.ccc[n]

5065 end

5066  classify_character

5067 = classify_character

5068 + utf8_character * Cc(0)

Next, define a parser that will determine the combining classes of all characters in a
string.

5069  local classify_string = Ct(classify_character”0) * eof

When the function is called, first check whether the string is trivially ordered. If it
is, return it without any changes.

195



return function(s)
local s_len = utf8.len(s)
if s == false or s_len <= 1 then

ot ot ot ot ot
S99 3393
N N

return s
end

Otherwise, determine the combining classes of all characters in the string. If the
string cannot be decoded with UTF-8, return it unchanged.

5075 local classes = lpeg.match(classify_string, s)
5076 if classes == nil then

5077 return s

5078 end

5079 assert (#classes == s_len)

Again, check whether the string is trivially ordered. If it is, return it without any
changes. Otherwise, construct a list of ranges of non-starter characters that must be
ordered.

5080 local non_starter_ranges = {}

5081 local first_non_starter, last_non_starter = nil, nil
5082 for i = 1, #classes do

5083 if first_non_starter == nil then

5084 if classes[i] ~= 0 then

5085 first_non_starter, last_non_starter = i, i
5086 end

5087 else

5088 if classes[i] == 0 then

5089 table.insert(

5090 non_starter_ranges,

5091 {first_non_starter, last_non_starter}
5092 )

5093 first_non_starter, last_non_starter = nil, nil
5094 else

5095 last_non_starter = i

5096 end

5097 end

5098 end

5099 if first_non_starter ~= nil then

5100 table.insert(

5101 non_starter_ranges,

5102 {first_non_starter, last_non_starter}

5103 )

5104 end

5105 if #non_starter_ranges == 0 then

5106 return s

5107 end

5108 local max_range_length = 0O

5109 for _, range in ipairs(non_starter_ranges) do
5110 local range_start, range_end = table.unpack(range)

196



5111 local range_length = range_end - range_start + 1

5112 if range_length > max_range_length then
5113 max_range_length = range_length

5114 end

5115 end

5116 if max_range_length <= 1 then

5117 return s

5118 end

Then, construct a buffer of all characters in the string.

5119 local buffer = {}

5120 for _, code in utf8.codes(s) do
5121 local char = utf8.char(code)
5122 table.insert (buffer, char)
5123 end

5124 assert (#buffer == s_len)

Next, perform a local bubble sort over the ranges of non-starter characters.

5125 for _, range in ipairs(non_starter_ranges) do

5126 local range_start, range_end = table.unpack(range)
5127 local range_length = range_end - range_start + 1
5128 for _ = 1, range_length - 1 do

5129 local swapped = false

5130 for i = range_start, range_end - 1 do

5131 local j=1i+1

5132 if classes[i] > classes[j] then

5133 classes[i], classes[j] = classes[j], classes[i]
5134 buffer[i], buffer[j] = buffer[jl, buffer[i]
5135 swapped = true

5136 end

5137 end

5138 if not swapped then

5139 break

5140 end

5141 end

5142 end

Finally, concatenate the buffer and return an ordered string.

5143 return table.concat (buffer, "")

5144 end

5145 end) ()

The util.decompose method performs either the canonical or the compatibility
decomposition of a UTF-8-encoded Unicode string s based on the low-level parsers
in unicode_data.decomposition_mapping, defined in sections 3.1.1.1 and 3.1.1.2.
Unlike the low-level parsers, the high-level function is invariant to the number of
bytes the Unicode characters occupy after conversion to UTF-8.

5146 util.decompose = (function()

197



5147 local fail, any = P(false), P(1)
5148  local eof = -any
5149  local decomposition_types = {"canonical", "compatibility"}

First, define parsers that will decompose a character.

5150  local decompose_character = {}

5151 for _, decomposition_type in ipairs(decomposition_types) do
5152 decompose_character [decomposition_type] = fail

5153 for n = 1, 4 do

5154 decompose_character [decomposition_type]

5155 = decompose_character [decomposition_typel

5156 + unicode_data.decomposition_mapping[decomposition_type] [n]
5157 end

5158 decompose_character [decomposition_typel

5159 = decompose_character [decomposition_typel

5160 + C(any)

5161 end

5162 local hangul = unicode_data.decomposition_mapping.hangul
5163  decompose_character.hangul = {}

5164  for syllable_type, _ in pairs(hangul) do

5165 decompose_character.hangul [syllable_type] = fail

5166 forn =1, 4 do

5167 decompose_character.hangul [syllable_typel

5168 = decompose_character.hangul [syllable_type]

5169 + hangul [syllable_type] [n]

5170 end

5171 decompose_character.hangul [syllable_typel

5172 = decompose_character.hangul [syllable_typel

5173 + C(any)

5174 end

Next, define a parser that will decompose a string.

5175  local decompose_string = {}

5176 for _, decomposition_type in ipairs(decomposition_types) do
5177 decompose_string[decomposition_type]

5178 = Ct(decompose_character [decomposition_type] “0) * eof
5179 end

5180  decompose_string.hangul = {}

5181  for syllable_type, _ in pairs(hangul) do

5182 decompose_string.hangul [syllable_typel

5183 = Ct(decompose_character.hangul [syllable_type] “0) * eof
5184  end

5185  local function _decompose(s, parser)

5186 assert(s ~= nil)

5187 local result = table.concat(lpeg.match(parser, s), "")
5188 assert(result ~= nil)

5189 return result

5190  end

198



5191  return function(s, decomposition_type)

5192 assert (

5193 decomposition_type == "canonical"

5194 or decomposition_type == "compatibility"

5195 )

5196 local prev_s

5197 local next_s = s

5198 repeat

5199 prev_s = next_s

5200 local function decompose(...) next_s = _decompose(next_s, ...) end
5201 decompose (decompose_string.canonical)

5202 if decomposition_type == "compatibility" then
5203 decompose (decompose_string.compatibility)
5204 end

5205 decompose (decompose_string.hangul .LVT)

5206 decompose (decompose_string.hangul.LV)

5207 until prev_s == next_s

5208 return util.canonically_order(next_s)

5209 end

5210 end) ()

The util.compose method performs the canonical composition of a UTF-8-
encoded canonically ordered Unicode string s based on the low-level parsers in
unicode_data.composition_mapping, defined in Section 3.1.1.3, and definitions
from the Hangul syllable (de)composition algorithm, defined in Section 3.1.1.2. Un-
like the low-level parsers, this high-level function is invariant to the number of bytes
the Unicode characters occupy after conversion to UTF-8.

5211 util.compose = (function()
5212 local fail, any = P(false), P(1)

5213  local eof = -any

5214  local cont = R("\128\191")

5215 local utf8_character

5216 = R("\0\127")

5217 + R("\194\223") * cont

5218 + R("\224\239") * cont * cont

5219 + R("\240\244") * cont * cont * cont

First, define a parser that will determine the combining class of a character.

5220  local classify_character = fail
5221 for n = 1, 4 do

5222 classify_character

5223 = classify_character

5224 + unicode_data.ccc[n]

5225 end

5226  classify_character

5227 = classify_character

5228 + utf8_character * Cc(0)

199



Next, define a parser that will determine the combining classes of all characters in a
string.

5229  local classify_string = Ct(classify_character”0) * eof

First, define parsers that will compose a pair of UTF-8-encoded Unicode characters
into their primary composite.

5230  local compose_characters = fail

5231 form = 1, 4 do

5232 local starter = #unicode_data.composition_mapping.starters [m]
5233 local both = fail

5234 for n = 1, 4 do

5235 both = (

5236 both

5237 + #unicode_data.composition_mapping.both[m] [n]

5238 * unicode_data.composition_mapping.both[m] [n]

5239 )

5240 end

5241 compose_characters = compose_characters + starter * both
5242 end

When the function is called, first check whether the string is trivially ordered. If it
is, return it without any changes.

5243 return function(s)

5244 local s_len = utf8.len(s)

5245 if s == false or s_len <= 1 then
5246 return s

5247 end

Otherwise, determine the combining classes of all characters in the string. If the
string cannot be decoded with UTF-8, return it unchanged.

5248 local classes = lpeg.match(classify_string, s)
5249 if classes == nil then

5250 return s

5251 end

5252 assert (#classes == s_len)

Otherwise, construct a buffer of all characters in the string.

5253 local buffer = {3}

5254 for _, code in utf8.codes(s) do
5255 local char = utf8.char(code)
5256 table.insert(buffer, char)
5257 end

5258 assert (#fbuffer == s_len)

Finally, implement the composition algorithm.
First, find the first starter character in the string.

ot

59 local starter =1
60 while starter <= s_len and classes[starter] ~= 0 do

2
2

ot

200



5261 starter = starter + 1
5262 end
5263 local candidate_combining_mark = starter + 1

Next, apply the composition rules until we reach the end of the string.

Do

| while candidate_combining mark <= s_len do
265 local L = buffer[starter]

5
5

5266 local C = buffer[candidate_combining_mark]

5267 local P = lpeg.match(compose_characters, L .. C)

5268 if P ~= nil then

5269 buffer[starter] = P

5270 buffer[candidate_combining mark] = ""

5271 else

5272 if classes[candidate_combining_mark] == 0 then

5273 starter = candidate_combining_mark

5274 end

5275 candidate_combining _mark = candidate_combining _mark + 1
5276 end

5277 assert(starter <= s_len)

5278 end

Next, iterate over the string once more and compose Hangul syllables.

5279 for i =1, s_len - 1 do

5280 local last, ch = buffer[i], buffer[i + 1]

5281 if last ~= "" and ch ~= "" then

5282 local composite = unicode_data.hangul_compose(last, ch)
5283 if composite ~= nil then

5284 buffer[i] = ""

5285 buffer[i + 1] = composite

5286 end

5287 end

5288 end

Finally, concatenate the buffer and return an ordered string.

5289 return table.concat(buffer, "")
5290 end
5291 end) ()

The util.normalize method normalizes a UTF-8-encoded canonically ordered
Unicode string s using the normalization form form.

5292 function util.normalize(s, form)

5293 if form == "nfd" then

5294 return util.decompose(s, "canonical")

5295 elseif form == "nfkd" then

5296 return util.decompose(s, "compatibility")

5297  elseif form == "nfc" then

5298 return util.compose(util.decompose(s, "canonical"))
5299 elseif form == "nfkc" then

5300 return util.compose(util.decompose(s, "compatibility"))

201



5301 else

5302 error (string.format ('Unexpected normal form "%s"', form))
5303 end

5304 end

The util.find file and util.find_files method find the first or all locations of
a file, respectively, according to either the resolvers API [1, Section 11.5] from the
ConTEXt format or the Kpathsea library.

5305 function util.find_file(filename)

5306 if resolvers ~= nil then

5307 return resolvers.findfile(filename)
5308 else

5309 return kpse.find_file(filename)

5310 end

5311 end

5312 function util.find_files(filename)

5313 if resolvers ~= nil then

5314 return resolvers.findfiles(filename)
5315 else

5316 return {kpse.lookup(filename, {all=true})}
5317 end

5318 end

3.1.3 HTML Entities

This section documents the HTML entities recognized by the markdown reader. These
functions are encapsulated in the entities object. The functions were originally
located in the lunamark/entities.lua file in the Lunamark Lua module.

5319 local entities = {}

5320

5321 local character_entities = {

5322 ["Tab"] = 9,

5323 ["NewLine"] = 10,
["excl"] = 33,
25 ["QUOT"] = 34,
26 ["quot"] = 34,

N

["num"] = 35’

5324

53

53

5327

5328 ["dollar"] = 36,
5329  ["percnt"] = 37,
5330 ["AMP"] =

5331 ["amp"] = 38,
5332 ["apos"] = 39,
5333 ["1par"] = 40,
5334 ["rpar"] = 41,
5335 ["ast"] =

5336 ["midast"] = 42,
5337  ["plus"] =

202



5338 ["comma"] = 44,
5339  ["period"] =
5340 ["sol"] =

5341 ["colon"] = 58,

5342 ["semi"] = 59,

5343 ["LT"] = 60

5344 ["1t"] = 60,

5345 ["nv1t"] = {60, 8402},
5346 ["bne"] = {61, 8421},

5347 ["equals"] 61,

5348 ["GT"] =

5349 ["gt"] =

350 ["nvgt"] = {62, 8402},
351 ["quest"] =
5352 ["commat"] =
353 ["lbrack"]

)

5

5 4,
35
354 ["1sqb"] =

5

D

D

D

)

=6
91,
355 ["bSOl"]

93,

91
92
356 ["rbrack"] =
93

II‘—‘II

53

53

53

53

53

53

53

53

5357 ["rsqgb"]
5358 ["Hat"] = 94,

5359 ["UnderBar"] = 95,

5360 ["lowbar"] = 95,

5361 ["DiacriticalGrave"] = 96,
5362 ["grave"] = 96,

5363 ["fjlig"] = {102, 106},
5364 ["lbrace"] = 123,

5365 ["lcub"] = 123,

5366 ["VerticallLine"] = 124,
5367 ["verbar"] = 124,

5368 ["vert"] = 124,

5369 ["rbrace"] = 125,

53 ["rcub"] = 125,

53 ["NonBreakingSpace"] = 160,
53 ["nbsp"] = 160,

53 ["iexcl"] = 161,

53 ["cent"] = 162,

53 ["pound"] = 163,

53 ["curren"] = 164,

53 ["yen"] = 165,

53 ["brvbar"] = 166,

53 ["sect"] = 167,

5380 ["Dot"] = 168,

5381 ["DoubleDot"] = 168,

5382 ["die"] = 168,

5383 ["uml"] = 168,

5384 ["COPY"] = 169,

L W N = O

o

RS IS IS IS IS IS IS IS IS |

203



5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401

- = = =

gr ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ut Ot O Ot ot Ot Ot ot Ot Ot ot Ot Ot ot Ot Ot

["copy"] 169,
["ordf"] 170,
["laquo"] = 171,
["not"] = 172,
["shy"] = 173,
["REG"] = 174,
["circledR"] = 174,
["reg"] = 174,
["macr"] = 175,
["strns"] = 175,
["deg"] = 176,
["PlusMinus"] = 177,
["plusmn"] = 177,
[("pm"] = 177,
["sup2"] = 178,
["sup3"] = 179,
["DiacriticalAcute"]
["acute"] = 180,
["micro"] 181,
["para"] = 182,
["CenterDot"] = 183,
["centerdot"] = 183,
["middot"] = 183,
["Cedilla"] = 184,
["cedil"] = 184,
["supl"] = 185,
["ordm"] = 186,
["raquo"] = 187,
["frac14"] = 188,
["frac12"] = 189,
["half"] = 189,

["frac34"] = 190,
["iquest"] = 191,
["Agrave"] = 192,
["Aacute"] = 193,

["Acirc"] = 194,
["Atilde"] = 195,
["Auml"] = 196,

["Aring"] = 197,

["angst"] = 197,
["AElig"] = 198,
["Ccedil"] = 199,
["Egrave"] = 200,
["Eacute"] = 201,

["Ecirc"] = 202,
["Euml"] = 203,
["Igrave"] = 204,

180,

204



["Tacute"] = 205,
["Icirc"] = 206,
["ITuml"] = 207,

["ETH"] = 208,

["Ntilde"] = 209,
["Ograve"] 210,
["Oacute"] 211,
["Ocirc"] = 212,
["0tilde"] = 213,
["Ouml"] = 214,

["times"] = 215,

["Oslash"] = 216,
["Ugrave"] = 217,
["Uacute"] = 218,

["Ucirc"] = 219,
["Uuml"] = 220,

["Yacute"] = 221,
["THORN"] = 222,
["szlig"] = 223,
["agrave"] 224,
["aacute"] 225,
["acirc"] = 226,
["atilde"] = 227,
["auml"] = 228,

["aring"] = 229,
["aelig"] = 230,

["ccedil"] = 231,
["egrave"] = 232,
["eacute"] = 233,

["ecirc"] = 234,
["euml"] = 235,
["igrave"] = 236,
["iacute"] 237,
["icirc"] = 238,
["iuml"] = 239,
["eth"] = 240,
["ntilde"] = 241,
["ograve"] 242,
["oacute"] 243,
["ocirc"] = 244,
["otilde"] = 245,
["ouml"] = 246,
["div"] = 247,
["divide"] = 247,

["oslash"] = 248,
["ugrave"] = 249,
["uacute"] = 250,

205



5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496

5497

(G NN L)

P iy
[«

ot ot O Ot Ot

-3

["ucirc"] = 251,
["uuml"] = 252,
["yacute"] = 253,
["thorn"] = 254,
["yuml"] = 255,

["Amacr"] = 256,
["amacr"] = 257,
["Abreve"] 258,
["abreve"] 259,
["Aogon"] = 260,
["aogon"] = 261,

["Cacute"] = 262,
["cacute"] = 263,
["Ccirc"] = 264,
["ccirc"] = 265,
["Cdot"] = 266,

["cdot"] = 267,

["Ccaron"] = 268,
["ccaron"] = 269,
["Dcaron"] = 270,
["dcaron"] = 271,
["Dstrok"] = 272,
["dstrok"] = 273,
["Emacr"] = 274,
["emacr"] = 275,
["Edot"] = 278,

["edot"] = 279,

["Eogon"] = 280,
["eogon"] = 281,
["Ecaron"] = 282,
["ecaron"] = 283,

["Gecirc"] = 284,
["gcirc"] = 285,
["Gbreve"] 286,
["gbreve"] 287,
["Gdot"] = 288,

["gdot"] = 289,

["Gcedil"] = 290,

["Hcirc"] = 292,
["hcirc"] = 293,
["Hstrok"] = 294,
["hstrok"] = 295,
["Itilde"] = 296,
["itilde"] = 297,
["Imacr"] = 298,
["imacr"] = 299,
["Iogon"] = 302,

206



ot Ot Ot Ot Ut (

ot Ot Ut Ut Ut Ut (¢

[S2 SNS2 BN BN B |

w

ot Ot Ot Ot Ot

S

ot ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot ot Ot Ot ot Ot Ot ot Ot Ot Ot Ot ot ot Ot ot Ot Ot Ot ot Ot ot Ot Ot ot Ot Ot ot Ot Ot ot Ot Ot

["iogon"] = 303,
["Idot"] = 304,

["imath"] = 305,
["inodot"] = 305,
["IJlig"] = 306,

["ijlig"] = 307,
["Jcirc"] = 308,
["jcirc"] = 309,
["Kcedil"] = 310,

["kcedil"] = 311,
["kgreen"] = 312,
["Lacute"] = 313,
["lacute"] = 314,
["Lcedil"] = 315,
["1lcedil"] = 316,
["Lcaron"] = 317,
["lcaron"] = 318,
["Lmidot"] = 319,
["Imidot"] = 320,
["Lstrok"] = 321,
["1strok"] = 322,
["Nacute"] = 323,
["nacute"] = 324,
["Ncedil"] = 325,
["ncedil"] = 326,
["Ncaron"] = 327,
["ncaron"] = 328,
["napos"] = 329,
["ENG"] = 330,

["eng"] = 331,

["Omacr"] = 332,
["omacr"] = 333,
["Odblac"] = 336,
["odblac"] = 337,
["OElig"] = 338,
["oelig"] = 339,
["Racute"] = 340,
["racute"] = 341,
["Rcedil"] = 342,
["rcedil"] = 343,
["Rcaron"] = 344,
["rcaron"] = 345,
["Sacute"] = 346,
["sacute"] = 347,
["Scirc"] = 348,
["scirc"] = 349,
["Scedil"] = 350,

207



["scedil"] = 351,
["Scaron"] = 352,
["scaron"] = 353,
["Tcedil"] = 354,
["tcedil"] = 355,
["Tcaron"] = 356,
["tcaron"] = 357,
["Tstrok"] = 358,
["tstrok"] = 359,
["Utilde"] = 360,
["utilde"] = 361,
["Umacr"] = 362,
["umacr"] = 363,
["Ubreve"] 364,
["ubreve"] 365,
["Uring"] = 366,
["uring"] = 367,

["Udblac"] = 368,
["udblac"] = 369,
["Uogon"] = 370,
["uogon"] = 371,
["Wcirc"] = 372,
["wcirc"] = 373,
["Ycirc"] = 374,
["ycirc"] = 375,

["Yuml"] = 376,
["Zacute"] = 377,
["zacute"] = 378,
["Zdot"] = 379,
["zdot"] = 380,
["Zcaron"] = 381,
["zcaron"] = 382,
["fnof"] = 402,
["imped"] = 437,
["gacute"] = 501,
["jmath"] = 567,
["circ"] = 710,

["Hacek"] = 711,
["caron"] = 711,
["Breve"] = 728,
["breve"] = 728,

["DiacriticalDot"] = 729,
["dot"] = 729,

["ring"] = 730,

["ogon"] = 731,
["DiacriticalTilde"] = 732,
["tilde"] = 732,

208



5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649

["DiacriticalDoubleAcute"] = 733,

["dblac"] = 733,
["DownBreve"] = 785,
["Alpha"] = 913,
["Beta"] = 914,
["Gamma"] = 915,
["Delta"] = 916,
["Epsilon"] = 917,
["Zeta"] = 918,
["Eta"] = 919,
["Theta"] = 920,
["Iota"] = 921,
["Kappa"] = 922,
["Lambda"] = 923,
["Mu"] = 924,
["Nu"] 925,
["Xi"] = 926,
["Omicron"] = 927,
["Pi"] = 928,
["Rho"] = 929,
["Sigma"] = 931,
["Tau"] = 932,
["Upsilon"] = 933,
["Phi"] = 934,
["Chi"] 935,
["Psi"] = 936,
["Omega"] = 937,
["ohm"] = 937,
["alpha"] = 945,
["beta"] = 946,
["gamma"] = 947,
["delta"] = 948,
["epsi"] = 949,
["epsilon"] = 949,
["zeta"] = 950,
["eta"] = 951,
["theta"] = 952,
["iota"] = 953,
["kappa"] = 954,
["lambda"] = 955,
["mu"] = 956,
["nu"] 957,
["xi"] = 958,
["omicron"] = 959,
["pi"] = 960,
["rho"] = 961,
["sigmaf"] = 962,

209



5667
5668

5669

ot
O Ot W N = O

(=]
oo

T8 99393333

0

0%

vt Ot Ot Ot Ot Ot Ot Ot Ot Ot Ut U
& >

695

696

["sigmav"] = 962,
["varsigma"] = 962,
["sigma"] = 963,
["tau"] = 964,
["upsi"] = 965,
["upsilon"] = 965,
["phi"] = 966,
["chi"] = 967,
["psi"] = 968,
["omega"] = 969,
["thetasym"] = 977,
["thetav"] = 977,
["vartheta"] = 977,
["Upsi"] = 978,
["upsih"] = 978,
["phiv"] = 981,

["straightphi"] = 981,

["varphi"] = 981,
["piv"] = 982,
["varpi"] = 982,
["Gammad"] = 988,
["digamma"] = 989,
["gammad"] 989,
["kappav"] = 1008,

["varkappa"] = 1008,

["rhov"] = 1009,
["varrho"] = 1009,
["epsiv"] = 1013,
["straightepsilon"]

["varepsilon"] = 1013,
["backepsilon"] = 1014,

["bepsi"] = 1014,

["I0cy"] = 1025,
["DJcy"] = 1026,
["GJcy"] = 1027,

["Jukcy"] = 1028,
["DScy"] = 1029,
["Iukcy"] = 1030,
["YIcy"] = 1031,
["Jsercy"] = 1032,
["LJcy"] = 1033,
["NJcy"] = 1034,
["TSHcy"] = 1035,
["KJcy"] = 1036,
["Ubrcy"] = 1038,
["DZcy"] = 1039,
["Acy"] = 1040,

210



ot Ot Ot Ot Ot Ot Ot Ot O Ot Ot Ot Ot Ot Ot Ot O Ot ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot ot Ot Ot Ot Ot Ot ot Ot Ot ot Ot Ot ot OOt ot ot Ot

["Bcy"] = 1041,
["Vey"] = 1042,
["Gey"] = 1043,
["Dcy"] = 1044,
["IEcy"] = 1045,
["ZHcy"] = 1046,
["Zcy"] = 1047,
["Icy"] = 1048,
["Jcy"] = 1049,
["Kcy"] = 1050,
["Lcy"] = 1051,
["Mcy"] = 1052,
["Ncy"] = 1053,
["Ocy"] = 1054,
["Pcy"] = 1055,
["Rcy"] = 1056,
["Scy"] = 1057,
["Tcy"] = 1058,
["Ucy"] = 1059,
["Fcy"] = 1060,
["KHcy"] = 1061,
["TScy"] = 1062,
["CHcy"] = 1063,

["SHcy"] = 1064,
["SHCHcy"] = 1065,
["HARDcy"] = 1066,
["Ycy"] = 1067,
["SOFTcy"] = 1068,
["Ecy"] = 1069,
["YUcy"] = 1070,
["YAcy"] = 1071,
["acy"] = 1072,
["bey"] 1073,
["vey"] = 1074,
["gcy"] = 1075,
["dcy"] = 1076,
["iecy"] = 1077,
["zhcy"] = 1078,
["zcy"] = 1079,
["icy"] = 1080,
["jcy"]l = 1081,
["kcy"] = 1082,
["1lcy"] = 1083,

["mcy"] = 1084,
["ncy"] = 1085,
["ocy"] = 1086,
["pcy"]l = 1087,

211



803

v v ot ot v v v O O v O O Ot Ot O O O O v v O O Ot Ot Ot O O O O v O O O Ot Ot Ot O O Ot Ot Ot O O Ot Ot Ot Ot

["rcy"] = 1088,
["scy"] = 1089,
["tcy"] = 1090,
["ucy"]l = 1091,
["fcy"] = 1092,
["khcy"] = 1093,

["tscy"] = 1094,
["chcy"] = 1095,
["shcy"] = 1096,
["shchey"] = 1097,
["hardcy"] = 1098,
["ycy"] = 1099,
["softcy"] = 1100,
["ecy"] = 1101,
["yucy"] = 1102,

["yacy"] = 1103,
["iocy"] = 1105,
["djcy"] = 1106,
["gjcy"] = 1107,

["jukcy"] = 1108,
["dscy"] = 1109,
["iukcy"] = 1110,
["yicy"] = 1111,
["jsercy"] = 1112,
["1jcy"] = 1113,
["njcy"] = 1114,
["tshcy"] = 1115,
["kjcy"]l = 11186,

["ubrcy"] = 1118,
["dzcy"] = 1119,
["ensp"] = 8194,

["emsp"] = 8195,

["emspl13"] = 8196,
["emsp14"] = 8197,
["numsp"] = 8199,
["puncsp"] = 8200,

["ThinSpace"] = 8201,

["thinsp"] = 8201,

["VeryThinSpace"] = 8202,

["hairsp"] = 8202,

["NegativeMediumSpace"] = 8203,
["NegativeThickSpace"] = 8203,
["NegativeThinSpace"] = 8203,
["NegativeVeryThinSpace"] = 8203,
["ZeroWidthSpace"] = 8203,

["zwnj"] = 8204,
["zwj"] = 8205,



5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853

5854

["1rm"] = 8206,

["rim"] = 8207,

["dash"] = 8208,

["hyphen"] = 8208,
["ndash"] = 8211,

["mdash"] = 8212,
["horbar"] = 8213,
["Verbar"] = 8214,

["Vert"] = 8214,
["OpenCurlyQuote"] = 8216,
["1squo"] = 8216,
["CloseCurlyQuote"] = 8217,
["rsquo"] = 8217,
["rsquor"] = 8217,
["1squor"] = 8218,
["sbquo"] = 8218,
["OpenCurlyDoubleQuote"] = 8220,
["1ldquo"] = 8220,
["CloseCurlyDoubleQuote"] = 8221,
["rdquo"] = 8221,
["rdquor"] = 8221,
["bdquo"] = 8222,

["ldquor"] = 8222,
["dagger"] = 8224,
["Dagger"] = 8225,

["ddagger"] = 8225,
["bull"] = 8226,
["bullet"] = 8226,
["nldr"] = 8229,
["hellip"] = 8230,
["mldr"] = 8230,
["permil"] = 8240,
["pertenk"] = 8241,
["prime"] = 8242,
["Prime"] = 8243,
["tprime"] = 8244,
["backprime"] = 8245,

IIOOI

["bprime"] = 8245,
["lsaquo"] = 8249,
["rsaquo"] = 8250,

["OverBar"] = 8254,
["oline"] = 8254,
["caret"] = 8257,
["hybull"] = 8259,
["frasl"] = 8260,
["bsemi"] = 8271,
["gqprime"] = 8279,

213



5855 ["MediumSpace"] = 8287,

5856 ["ThickSpace"] = {8287, 8202},
5857 ["NoBreak"] = 8288,

5 ["ApplyFunction"] = 8289,

5859 ["af"] = 8289,
5860 ["InvisibleTimes"]
5861 ["it"] = 8290,
5862 ["InvisibleComma"]
5

5

5

5

5

5

5

%
0%

8290,

8291,
5863 ["ic"] = 8291,

5864 ["euro"] = 8364,

5865 ["TripleDot"] = 8411,
5866 ["tdot"] = 8411,

5867 ["DotDot"] = 8412,

5868 ["Copf"] = 8450,

5869 ["complexes"] = 8450,
5870 ["incare"] = 8453,

5871 ["gscr"] = 8458,

5872 ["HilbertSpace"] = 8459,
5873 ["Hscr"] = 8459,

5874 ["hamilt"] = 8459,

5875 ["Hfr"] = 8460,

5876 ["Poincareplane"] = 8460,
5877 ["Hopf"] = 8461,

5878 ["quaternions"] = 8461,
5879 ["planckh"] = 8462,
5880  ["hbar"] = 8463,

5881 ["hslash"] = 8463,

5882 ["planck"] = 8463,

5883 ["plankv"] = 8463,

5884 ["Iscr"] = 8464,

5885 ["imagline"] = 8464,
5886 ["Ifr"] = 8465,

5887 ["Im"] = 8465,

5888  ["image"] = 8465,

5889  ["imagpart"] = 8465,
5890  ["Laplacetrf"] = 8466,
5891 ["Lscr"] = 8466,

5892 ["lagran"] = 8466,

5893 ["ell"] = 8467,

5894  ["Nopf"] = 8469,

5895 ["naturals"] = 8469,
5896  ["numero"] = 8470,

5897  ["copysr"] = 8471,

5898 ["weierp"] = 8472,

5899 ["wp"] = 8472,

5900 ["Popf"] = 8473,

5901 ["primes"] = 8473,

214



907

5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948

["Qopf"] = 8474,
["rationals"] = 8474,
["Rscr"] = 8475,
["realine"] = 8475,
["Re"] = 8476,
["Rfr"] = 8476,
["real"] = 8476,
["realpart"] = 8476,
["Ropf"] = 8477,
["reals"] = 8477,
["rx"] = 8478,
["TRADE"] = 8482,
["trade"] 8482,
["Zopf"] = 8484,
["integers"] = 8484,
["mho"] = 8487,
["Zfr"] = 8488,
["zeetrf"] = 8488,
["iiota"] = 8489,
["Bernoullis"] = 8492,
["Bscr"] = 8492,
["bernou"] = 8492,
["Cayleys"] = 8493,
["Cfr"] = 8493,
["escr"] = 8495,
["Escr"] = 8496,
["expectation"] = 8496,
["Fouriertrf"] = 8497,
["Fscr"] = 8497,
["Mellintrf"] = 8499,
["Mscr"] = 8499,
["phmmat"] = 8499,
["order"] = 8500,
["orderof"] = 8500,
["oscr"] = 8500,
["alefsym"] = 8501,
["aleph"] = 8501,
["beth"] = 8502,
["gimel"] = 8503,
["daleth"] = 8504,

["CapitalDifferentialD"] = 8517,

[("DD"] = 8517,
["DifferentialD"] = 8518,
["dd"] = 8518,

["ExponentialE"] = 8519,
["ee"] = 8519,
["exponentiale"] = 8519,

215



5949 ["ImaginaryI"] = 8520,
5950 ["ii"] = 8520,

5951 ["frac13"] = 8531,

5952 ["frac23"] = 8532,

5953 ["fraclb"] = 8533,

5954  ["frac25"] = 8534,

5955 ["frac35"] = 8535,

5956 ["frac4b5"] = 8536,

5957 ["fracl6"] = 8537,

5958  ["fracb6"] = 8538,

5959 ["frac18"] = 8539,

5960 ["frac38"] = 8540,

5961 ["fracb8"] = 8541,

5962 ["frac78"] = 8542,

5963 ["LeftArrow"] = 8592,

5964 ["ShortLeftArrow"] = 8592,
5965  ["larr"] = 8592,

5966 ["leftarrow"] = 8592,

5967 ["slarr"] = 8592,

5968 ["ShortUpArrow"] = 8593,
5969  ["UpArrow"] = 8593,

5970 ["uarr"] = 8593,

5971 ["uparrow"] = 8593,

5972 ["RightArrow"] = 8594,
5973 ["ShortRightArrow"] = 8594,
5974 ["rarr"] = 8594,

5975 ["rightarrow"] = 8594,
5976 ["srarr"] = 8594,

5977 ["DownArrow"] = 8595,

5978 ["ShortDownArrow"] = 8595,
5979 ["darr"] = 8595,

5980 ["downarrow"] = 8595,

5981 ["LeftRightArrow"] = 8596,
5982 ["harr"] = 8596,

5983 ["leftrightarrow"] = 8596,
5984 ["UpDownArrow"] = 8597,
5985 ["updownarrow"] = 8597,
5986 ["varr"] = 8597,

5987  ["UpperLeftArrow"] = 8598,
5988 ["nwarr"] = 8598,

5989 ["nwarrow"] = 8598,

5990  ["UpperRightArrow"] = 8599,
5991 ["nearr"] = 8599,

5992 ["nearrow"] = 8599,

5993  ["LowerRightArrow"] = 8600,

5994 ["searr"] = 8600,
5995 ["searrow"] = 8600,

216



5996 ["LowerLeftArrow"] = 8601,
5997 ["swarr"] = 8601,

5998 ["swarrow"] = 8601,

5999 ["nlarr"] = 8602,

6000 ["nleftarrow"] = 8602,

6001 ["nrarr"] = 8603,

6002  ["nrightarrow"] = 8603,

6003 ["nrarrw"] = {8605, 824},
6004 ["rarrw"] = 8605,

6005 ["rightsquigarrow"] = 8605,
6006 ["Larr"] = 8606,

6007 ["twoheadleftarrow"] = 8606,
6008 ["Uarr"] = 8607,

6009 ["Rarr"] = 8608,

0 ["twoheadrightarrow"] = 8608,

|
6011 ["Darr"] = 8609,
6012 ["larrtl"] = 8610,
6013 ["leftarrowtail"] = 8610,
6014 ["rarrtl"] = 8611,
6015 ["rightarrowtail"] = 8611,
6016 ["LeftTeeArrow"] = 8612,
6017  ["mapstoleft"] = 8612,
6018  ["UpTeeArrow"] = 8613,
5

19 ["mapstoup"] = 8613,

6020  ["RightTeeArrow"] = 8614,

1 ["map"] = 8614,

2 ["mapsto"] = 8614,

3 ["DownTeeArrow"] = 8615,

1 ["mapstodown"] = 8615,

5 ["hookleftarrow"] = 8617,

6026 ["larrhk"] = 8617,

6027 ["hookrightarrow"] = 8618,

6028  ["rarrhk"] = 8618,

6029 ["larrlp"] = 8619,

30 ["looparrowleft"] = 8619,
1 ["looparrowright"] = 8620,

32 ["rarrlp"] = 8620,

3 ["harrw"] = 8621,

34 ["leftrightsquigarrow"] = 8621,
5 ["nharr"] = 8622,

6 ["nleftrightarrow"] = 8622,

37 ["Lsh"] = 8624,

3 ["1sh"] = 8624,

9 ["Rsh"] 8625,

0 ["rsh"] 8625,

1 ["1dsh"] = 8626,

> ["rdsh"] = 8627,

217



["crarr"] = 8629,
["cularr"] = 8630,
["curvearrowleft"] = 8630,
["curarr"] = 8631,
["curvearrowright"]
["circlearrowleft"]
["olarr"] = 8634,
["circlearrowright"] = 8635,
["orarr"] = 8635,
["LeftVector"] = 8636,
["leftharpoonup"] = 8636,
["lharu"] = 8636,
["DownLeftVector"] = 8637,
["leftharpoondown"] = 8637,
["lhard"] = 8637,
["RightUpVector"] = 8638,
["uharr"] = 8638,
["upharpoonright"] = 8638,
["LeftUpVector"] = 8639,
["uharl"] = 8639,
["upharpoonleft"] = 8639,
["RightVector"] = 8640,
["rharu"] = 8640,
["rightharpoonup"] = 8640,
["DownRightVector"] = 8641,
["rhard"] = 8641,
["rightharpoondown"] = 8641,
["RightDownVector"] = 8642,
["dharr"] = 8642,
["downharpoonright"]
["LeftDownVector"] =
["dharl"] = 8643,
["downharpoonleft"] = 8643,
["RightArrowLeftArrow"] = 8644,
["rightleftarrows"] = 8644,
["rlarr"] = 8644,
["UpArrowDownArrow"] = 8645,
["udarr"] = 8645,
["LeftArrowRightArrow"] = 8646,
["leftrightarrows"] = 8646,
["lrarr"] = 8646,
["leftleftarrows"] = 8647,
["1larr"] = 8647,
["upuparrows"] = 8648,
["uuarr"] = 8648,
["rightrightarrows"] = 8649,
["rrarr"] = 8649,

8631,
8634,

= 8642,
8643,

218



090 ["ddarr"] = 8650,

6091 ["downdownarrows"] = 8650,
5092 ["ReverseEquilibrium"] = 8651,
6093 ["leftrightharpoons"] = 8651,
6094 ["lrhar"] = 8651,

6095 ["Equilibrium"] = 8652,

6096  ["rightleftharpoons"] = 8652,
6097 ["rlhar"] = 8652,

6098 ["nLeftarrow"] = 8653,

6099 ["nlArr"] = 8653,

6100 ["nLeftrightarrow"] = 8654,
6101 ["nhArr"] = 8654,

6102  ["nRightarrow"] = 8655,

6103 ["nrArr"] = 8655,

6104 ["DoubleLeftArrow"] = 8656,
6105 ["Leftarrow"] = 8656,

6106 ["1Arr"] = 8656,

6107 ["DoubleUpArrow"] = 8657,
6108 ["Uparrow"] = 8657,

6109  ["uArr"] = 8657,

6110 ["DoubleRightArrow"] = 8658,
6111 ["Implies"] = 8658,

6112  ["Rightarrow"] = 8658,

6113 ["rArr"] = 8658,

6114 ["DoubleDownArrow"] = 8659,
6115 ["Downarrow"] = 8659,

6116 ["dArr"] = 8659,

6117  ["DoubleLeftRightArrow"] = 8660,
6118 ["Leftrightarrow"] = 8660,
6119 ["hArr"] = 8660,

6120 ["iff"] = 8660,

6121 ["DoubleUpDownArrow"] = 8661,
6122 ["Updownarrow"] = 8661,

6123 ["vArr"] = 8661,

6124 ["nwArr"] = 8662,

6125 ["neArr"] = 8663,
6126 ["seArr"] = 8664,
6127 ["swArr"] = 8665,

6128 ["Lleftarrouw"] = 8666,
6129 ["1lAarr"] = 8666,

6130 ["Rrightarrow"] = 8667,
6131 ["rAarr"] = 8667,

6132 ["zigrarr"] = 8669,

6133 ["LeftArrowBar"] = 8676,
6134 ["larrb"] = 8676,

6135 ["RightArrowBar"] = 8677,
6136 ["rarrb"] = 8677,

219



6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183

["DownArrowUpArrow"] = 8693,
["duarr"] = 8693,
["loarr"] 8701,
["roarr"] 8702,
["hoarr"] = 8703,
["ForAll"] = 8704,
["forall"] = 8704,
["comp"] = 8705,
["complement"] = 8705,
["PartialD"] = 8706,
["npart"] = {8706, 824},
["part"] = 8706,
["Exists"] = 8707,
["exist"] = 8707,
["NotExists"] = 8708,
["nexist"] = 8708,
["nexists"] = 8708,
["empty"] = 8709,
["emptyset"] = 8709,
["emptyv"] = 8709,
["varnothing"] = 8709,
["Del"] = 8711,
["nabla"] = 8711,
["Element"] = 8712,
["in"] = 8712,
["isin"] = 8712,
["isinv"] = 8712,
["NotElement"] = 8713,
["notin"] = 8713,
["notinva"] = 8713,
["ReverseElement"] = 8715,
["SuchThat"] = 8715,
["ni"] = 8715,

["niv"] = 8715,

["NotReverseElement"] = 8716,

["notni"] = 8716,
["notniva"] = 8716,
["Product"] = 8719,
["prod"] = 8719,
["Coproduct"] = 8720,
["coprod"] = 8720,
["Sum"] = 8721,
["sum"] = 8721,
["minus"] = 8722,
["MinusPlus"] = 8723,
["mnplus"] = 8723,
["mp"] = 8723,

220



6184  ["dotplus"] = 8724,

6185  ["plusdo"] = 8724,

6186 ["Backslash"] = 8726,
6187 ["setminus"] = 8726,

6188 ["setmn"] = 8726,

6189 ["smallsetminus"] = 8726,
6190 ["ssetmn"] = 8726,

6191 ["lowast"] = 8727,

6192 ["SmallCircle"] = 8728,
6193 ["compfn"] = 8728,

6194  ["Sqrt"] = 8730,

6195 ["radic"] = 8730,

6196 ["Proportional"] = 8733,
6197  ["prop"] = 8733,

6198 ["propto"] = 8733,

6199  ["varpropto"] = 8733,
6200 ["vprop"] = 8733,

6201 ["infin"] 8734,

6202 ["angrt"] = 8735,

6203 ["ang"] = 8736,

6204 ["angle"] = 8736,

6205  ["nang"] = {8736, 8402},
6206  ["angmsd"] = 8737,

6207 ["measuredangle"] = 8737,
6208  ["angsph"] = 8738,

6209 ["VerticalBar"] = 8739,
6210 ["mid"] = 8739,

6211 ["shortmid"] = 8739,

6212 ["smid"] = 8739,

6213 ["NotVerticalBar"] = 8740,
6214 ["nmid"] = 8740,

6215 ["nshortmid"] = 8740,
6216 ["nsmid"] = 8740,

6217 ["DoubleVerticalBar"] = 8741,
6218 ["par"] = 8741,

6219 ["parallel"] = 8741,

6220 ["shortparallel"] = 8741,
6221 ["spar"] = 8741,

6222 ["NotDoubleVerticalBar"] = 8742,
6223 ["npar"] = 8742,

6224  ["nparallel"] = 8742,
6225 ["nshortparallel"] = 8742,
6226 ["nspar"] = 8742,

6227 ["and"] = 8743,

6228 ["wedge"] = 8743,

6229 ["or"] = 8744,

6230  ["vee"] = 8744,

221



6231 ["cap"] = 8745,

6232 ["caps"] = {8745, 65024},

6233 ["cup"] = 8746,

6234 ["cups"] = {8746, 65024},

6235  ["Integral"] = 8747,

6236 ["int"] = 8747,

6237 ["Int"] = 8748,

6238 ["iiint"] = 8749,

6239 ["tint"] = 8749,

6240  ["ContourIntegral"] = 8750,

6241 ["conint"] = 8750,

6242 ["oint"] = 8750,

6243 ["Conint"] = 8751,

6244  ["DoubleContourIntegral"] = 8751,

6245 ["Cconint"] = 8752,

6246 ["cwint"] = 8753,

6247  ["ClockwiseContourIntegral"] = 8754,

6248 ["cwconint"] = 8754,

6249 ["CounterClockwiseContourIntegral"] = 8755,
6250 ["awconint"] = 8755,

6251 ["Therefore"] = 8756,

6252 ["there4"] = 8756,

6253 ["therefore"] = 8756,

6254 ["Because"] = 8757,

6255 ["becaus"] = 8757,

6256 ["because"]

6257  ["ratio"] =
6258 ["Colon"] = 8759,

6259 ["Proportion"] = 8759,
6260 ["dotminus"] = 8760,
6261 ["minusd"] = 8760,

6262 ["mDDot"] = 8762,

6263 ["homtht"] = 8763,

6264 ["Tilde"] 8764,

6265 ["nvsim"] = {8764, 8402},
6266 ["sim"] = 8764,

6267  ["thicksim"] = 8764,
6268 ["thksim"] = 8764,

6269 ["backsim"] = 8765,
6270 ["bsim"] = 8765,

6271 ["race"] = {8765, 817},
6272 ["ac"] = 8766,

6273 ["acE"] = {8766, 819},
6274  ["mstpos"] = 8766,

6275 ["acd"] = 8767,

6276 ["VerticalTilde"] = 8768,
6277 ["wr"] = 8768,

222



6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324

["wreath"] = 8768,
["NotTilde"] = 8769,
["nsim"] = 8769,
["EqualTilde"] = 8770,
["NotEqualTilde"] = {8770, 824},
["egsim"] = 8770,

["esim"] = 8770,

["nesim"] = {8770, 824},
["TildeEqual"] = 8771,
["sime"] = 8771,

["simeq"] = 8771,
["NotTildeEqual"] = 8772,
["nsime"] = 8772,
["nsimeq"] = 8772,
["TildeFullEqual"] = 8773,
["cong"] = 8773,

["simne"] = 8774,
["NotTildeFullEqual"] = 8775,
["ncong"] = 8775,
["TildeTilde"] = 8776,
["ap"] = 8776,

["approx"] = 8776,
["asymp"] = 8776,
["thickapprox"] = 8776,
["thkap"] = 8776,
["NotTildeTilde"] = 8777,
["nap"] = 8777,
["napprox"] = 8777,
["ape"] = 8778,
["approxeq"] = 8778,
["apid"] = 8779,

["napid"] = {8779, 824},
["backcong"] = 8780,
["bcong"] = 8780,
["CupCap"] = 8781,
["asympeq"] = 8781,
["nvap"] = {8781, 8402},
["Bumpeq"] = 8782,
["HumpDownHump"] = 8782,
["NotHumpDownHump"] = {8782, 824},
["bump"] = 8782,

["nbump"] = {8782, 824},
["HumpEqual"] = 8783,
["NotHumpEqual"] = {8783, 824},
["bumpe"] = 8783,
["bumpeq"] = 8783,
["nbumpe"] = {8783, 824},

223



6325 ["DotEqual"] = 8784,

6326  ["doteq"] = 8784,

6327  ["esdot"] = 8784,

6328 ["nedot"] = {8784, 824},
6329  ["doteqdot"] = 8785,

6330  ["eDot"] = 8785,

6331 ["efDot"] = 8786,

6332  ["fallingdotseq"] = 8786,
6333 ["erDot"] = 8787,

6334  ["risingdotseq"] = 8787,
6335  ["Assign"] = 8788,

6336 ["colone"] = 8788,

6337 ["coloneq"] = 8788,

6338 ["ecolon"] = 8789,

6339 ["eqcolon"] = 8789,

6340  ["ecir"] = 8790,

6341 ["eqcirc"] = 8790,

6342 ["circeq"] = 8791,

6343 ["cire"] = 8791,

6344  ["wedgeq"] = 8793,

6345  ["veeeq"] = 8794,

6346 ["triangleq"] = 8796,
6347 ["trie"] = 8796,

6348 ["equest"] = 8799,

6349 ["questeq"] = 8799,

6350 ["NotEqual"] = 8800,

6351 ["ne"] = 8800,

6352 ["Congruent"] = 8801,
6353 ["bnequiv"] = {8801, 8421},
6354 ["equiv"] = 8801,

6355 ["NotCongruent"] = 8802,
6356  ["nequiv"] = 8802,

6357  ["le"] = 8804,

6358  ["leq"] = 8804,

6359 ["nvle"] = {8804, 8402},
6360 ["GreaterEqual"] = 8805,
6361 ["ge"] = 8805,

6362 ["geq"] = 8805,

6363  ["nvge"] = {8805, 8402},
6364  ["LessFullEqual"] = 8806,
6365 ["1E"] = 8806,

6366 ["leqq"] = 8806,

6367 ["nlE"] = {8806, 824},
6368 ["nleqq"] = {8806, 824},
6369 ["GreaterFullEqual"] = 8807,
6370 ["NotGreaterFullEqual"] = {8807, 824},
6371 ["gE"] = 8807,

224



6372 ["geqq"] = 8807,

6373 ["ngE"] = {8807, 824},

6374 ["ngeqq"] = {8807, 824},

6375 ["1nE"] = 8808,

6376 ["lneqq"] = 8808,

6377 ["lvertneqq"] = {8808, 65024},
6378 ["1vnE"] = {8808, 65024},

6379 ["gnE"] = 8809,

6380  ["gneqq"] = 8809,

6381 ["gvertneqq"] = {8809, 65024},
6382 ["gvnE"] = {8809, 65024},

6383 ["Lt"] = 8810,

6384 ["NestedLessLess"] = 8810,
6385 ["NotLessLess"] = {8810, 824},
6386 [("11"] = 8810,

6337 ["nLt"] = {8810, 8402},

6388 ["nLtv"] = {8810, 824},

6389 ["Gt"] = 8811,

6390 ["NestedGreaterGreater"] = 8811,
6391 ["NotGreaterGreater"] = {8811, 824},
6392 ["gg"] = 8811,

6393 ["nGt"] = {8811, 8402},

6394 ["nGtv"] = {8811, 824},

6395 ["between"] = 8812,

6396 ["twixt"] = 8812,

6397  ["NotCupCap"] = 8813,

6398 ["NotLess"] = 8814,

6399 ["nless"] = 8814,

6400 ["n1t"] = 8814,

6401 ["NotGreater"] = 8815,

6402 ["ngt"] = 8815,

6403  ["ngtr"] = 8815,

6404  ["NotLessEqual"] = 8816,

6405 ["nle"] = 8816,

6406 ["nleq"] = 8816,

6407  ["NotGreaterEqual"] = 8817,
6408 ["nge"] = 8817,

6409 ["ngeq"] = 8817,

6410 ["LessTilde"] = 8818,

6411 ["lesssim"] = 8818,

6412 ["1sim"] = 8818,

6413 ["GreaterTilde"] = 8819,

6414  ["gsim"] = 8819,

6415  ["gtrsim"] = 8819,

6416 ["NotLessTilde"] = 8820,

6417 ["nlsim"] = 8820,

6418 ["NotGreaterTilde"] = 8821,

225



6419 ["ngsim"] = 8821,

6420 ["LessGreater"] = 8822,
6421 ["lessgtr"] = 8822,
6422  ["1g"] = 8822,

6423 ["GreaterLess"] = 8823,
6424 ["gl"] = 8823,

6425  ["gtrless"] = 8823,
6426 ["NotLessGreater"]
6427 ["ntlg"] = 8824,
6428 ["NotGreaterLess"] = 8825,
6429 ["ntgl"] = 8825,

6430 ["Precedes"] = 8826,

6431 ["pr"] = 8826,

6432 ["prec"] = 8826,

6433 ["Succeeds"] = 8827,

6434 ["sc"] = 8827,

6435 ["succ"] = 8827,

8824,

6436 ["PrecedesSlantEqual"] = 8828,
6437 ["prcue"] = 8828,

6438 ["preccurlyeq"] = 8828,

6439 ["SucceedsSlantEqual"] = 8829,

6440 ["sccue"] = 8829,

6441 ["succcurlyeq"] = 8829,

6442 ["PrecedesTilde"] = 8830,
6443 ["precsim"] = 8830,

6444 ["prsim"] = 8830,

6445 ["NotSucceedsTilde"] = {8831, 824},
6446 ["SucceedsTilde"] = 8831,
6447 ["scsim"] = 8831,

6448 ["succsim"] = 8831,

6449 ["NotPrecedes"] = 8832,

6450  ["mpr"] = 8832,

6451 ["nprec"] = 8832,

6452 ["NotSucceeds"] = 8833,

6453 ["nsc"] = 8833,

6454 ["nsucc"] = 8833,

6455  ["NotSubset"] = {8834, 8402},
6456  ["nsubset"] = {8834, 8402},
6457 ["sub"] = 8834,

6458 ["subset"] = 8834,

6459 ["vnsub"] = {8834, 8402},
6460 ["NotSuperset"] = {8835, 8402},
6461 ["Superset"] = 8835,

6462 ["nsupset"] = {8835, 8402},
6463 ["sup"] = 8835,

6464 ["supset"] = 8835,

6465 ["vnsup"] = {8835, 8402},

226



6466 ["nsub"] = 8836,

6467  ["nsup"] = 8837,

6468 ["SubsetEqual"] = 8838,

6469 ["sube"] = 8838,

6470  ["subseteq"] = 8838,

6471 ["SupersetEqual"] = 8839,

6472 ["supe"] = 8839,

6473 ["supseteq"] = 8839,

6474  ["NotSubsetEqual"] = 8840,

6475  ["nsube"] = 8840,

6476 ["nsubseteq"] = 8840,

6477 ["NotSupersetEqual"] = 8841,
6478 ["nsupe"] = 8841,

6479 ["nsupseteq"] = 8841,

6480 ["subne"] = 8842,

6481 ["subsetneq"] = 8842,

6482 ["varsubsetneq"] = {8842, 65024},
6483 ["vsubne"] = {8842, 65024},
6484 ["supne"] = 8843,

6485 ["supsetneq"] = 8843,

6486 ["varsupsetneq"] = {8843, 65024},
6487  ["vsupne"] = {8843, 65024},
6488  ["cupdot"] = 8845,

6489 ["UnionPlus"] = 8846,

6490  ["uplus"] = 8846,

6491 ["NotSquareSubset"] = {8847, 824},
6492 ["SquareSubset"] = 8847,

6493  ["sqsub"] = 8847,

6494 ["sqsubset"] = 8847,

6495 ["NotSquareSuperset"] = {8848, 824},
6496 ["SquareSuperset"] = 8848,

6497  ["sqsup"] = 8848,

6498  ["sqsupset"] = 8848,

6499  ["SquareSubsetEqual"] = 8849,
6500 ["sqsube"] = 8849,

6501 ["sgsubseteq"] = 8849,

6502 ["SquareSupersetEqual"] = 8850,
6503 ["sqsupe"] = 8850,

6504  ["sqsupseteq"] = 8850,

6505 ["SquareIntersection"] = 8851,
6506  ["sqcap"] = 8851,

6507  ["sqcaps"] = {8851, 65024},
6508 ["SquareUnion"] = 8852,

6509 ["sqcup"] = 8852,

6510 ["sqcups"] = {8852, 65024},
6511 ["CirclePlus"] = 8853,

6512 ["oplus"] = 8853,

227



6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524

6540
6541
6542
6543
6544
6545
6546
6547
6548

["CircleMinus"] = 8854,
["ominus"] = 8854,
["CircleTimes"] = 8855,
["otimes"] = 8855,
["osol"] = 8856,
["CircleDot"] = 8857,
["odot"] = 8857,
["circledcirc"] = 8858,
["ocir"] = 8858,
["circledast"] = 8859,
["oast"] = 8859,
["circleddash"] = 8861,
["odash"] = 8861,
["boxplus"] = 8862,
["plusb"] = 8862,
["boxminus"] = 8863,
["minusb"] = 8863,
["boxtimes"] = 8864,
["timesb"] = 8864,
["dotsquare"] = 8865,
["sdotb"] = 8865,
["RightTee"] = 8866,
["vdash"] = 8866,
["LeftTee"] = 8867,
["dashv"] = 8867,
["DownTee"] = 8868,
["top"] = 8868,

["UpTee"] = 8869,

["bot"] = 8869,

["bottom"] = 8869,
["perp"] = 8869,
["models"] = 8871,
["DoubleRightTee"] = 8872,
["vDash"] = 8872,
["Vdash"] = 8873,
["Vvdash"] = 8874,
["VDash"] = 8875,

["nvdash"] = 8876,
["nvDash"] = 8877,
["nVdash"] = 8878,
["nVDash"] = 8879,
["prurel"] = 8880,

["LeftTriangle"] = 8882,
["vartriangleleft"] = 8882,
["vltri"] = 8882,
["RightTriangle"] = 8883,
["vartriangleright"] = 8883,

228



6560
6561
6562
6563
6564
6565
6566
6567
6568
6569

6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606

["vrtri"] = 8883,
["LeftTriangleEqual"] = 8884,
["1trie"] = 8884,
["nvltrie"] = {8884, 8402},
["trianglelefteq"] = 8884,
["RightTriangleEqual"] = 8885,
["nvrtrie"] = {8885, 8402},
["rtrie"] = 8885,
["trianglerighteq"] = 8885,
["origof"] = 8886,

["imof"] = 8887,
["multimap"] = 8888,
["mumap"] = 8888,
["hercon"] 8889,
["intcal"] = 8890,
["intercal"] = 8890,
["veebar"] = 8891,
["barvee"] 8893,
["angrtvb"] = 8894,
["1rtri"] = 8895,

["Wedge"] = 8896,
["bigwedge"] = 8896,
["xwedge"] = 8896,

["Vee"] = 8897,

["bigvee"] = 8897,

["xvee"] = 8897,
["Intersection"] = 8898,
["bigcap"] = 8898,

["xcap"] = 8898,

["Union"] = 8899,
["bigcup"] = 8899,

["xcup"] = 8899,
["Diamond"] = 8900,
["diam"] = 8900,
["diamond"] = 8900,
["sdot"] = 8901,

["Star"] = 8902,

["sstarf"] = 8902,
["divideontimes"] = 8903,
["divonx"] = 8903,
["bowtie"] 8904,
["1times"] 8905,
["rtimes"] = 8906,
["leftthreetimes"] = 8907,
["1three"] = 8907,
["rightthreetimes"] = 8908,
["rthree"] = 8908,

229



6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652

6653

["backsimeq"] = 8909,
["bsime"] = 8909,
["curlyvee"] = 8910,
["cuvee"] = 8910,
["curlywedge"] = 8911,
["cuwed"] = 8911,

["Sub"] = 8912,
["Subset"] = 8912,
["Sup"] = 8913,
["Supset"] = 8913,
["Cap"] = 8914,

["Cup"] = 8915,

["fork"] = 8916,
["pitchfork"] = 8916,
["epar"] = 8917,
["lessdot"] = 8918,
["1ltdot"] = 8918,
["gtdot"] = 8919,
["gtrdot"] = 8919,

["L1"] = 8920,

["nL1"] = {8920, 824},
["Gg"] = 8921,

["ggg"] = 8921,

['nGg"] = {8921, 824},
["LessEqualGreater"] = 8922,
["leg"] = 8922,

["lesg"] = {8922, 65024},
["lesseqgtr"] = 8922,
["GreaterEqualless"] = 8923,
["gel"] = 8923,

["gesl"] = {8923, 65024},
["gtreqless"] = 8923,
["cuepr"] = 8926,
["curlyeqprec"] = 8926,
["cuesc"] = 8927,
["curlyeqsucc"] = 8927,

["NotPrecedesSlantEqual"] = 8928,
["nprcue"] = 8928,
["NotSucceedsSlantEqual"] = 8929,

["nsccue"] = 8929,
["NotSquareSubsetEqual"] = 8930,
["nsqgsube"] = 8930,
["NotSquareSupersetEqual"] = 8931,
["nsqsupe"] = 8931,

["lnsim"] = 8934,

["gnsim"] = 8935,

["precnsim"] = 8936,

230



6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700

["prnsim"] 8936,
["scnsim"] = 8937,
["succnsim"] = 8937,
["NotLeftTriangle"] = 8938,
["nltri"] = 8938,
["ntriangleleft"] = 8938,
["NotRightTriangle"] = 8939,
["nrtri"] = 8939,
["ntriangleright"] = 8939,
["NotLeftTriangleEqual"] = 8940,
["nltrie"] = 8940,
["ntrianglelefteq"] = 8940,
["NotRightTriangleEqual"] = 8941,
["nrtrie"] = 8941,
["ntrianglerighteq"] = 8941,
["vellip"] = 8942,

["ctdot"] = 8943,

["utdot"] 8944,

["dtdot"] 8945,

["disin"] = 8946,

["isinsv"] = 8947,

["isins"] = 8948,
["isindot"] = 8949,
["notindot"] = {8949, 824},
["notinvc"] = 8950,
["notinvb"] = 8951,
["isinE"] = 8953,

["notinE"] = {8953, 824},
["nisd"] = 8954,

["xnis"] = 8955,

["nis"] = 8956,

["notnivc"] = 8957,
["notnivb"] = 8958,

["barwed"] = 8965,
["barwedge"] = 8965,
["Barwed"] = 8966,

["doublebarwedge"] = 8966,
["LeftCeiling"] = 8968,
["1lceil"] = 8968,
["RightCeiling"] = 8969,
["rceil"] = 8969,
["LeftFloor"] = 8970,
["1floor"] = 8970,
["RightFloor"] = 8971,
["rfloor"] = 8971,
["drcrop"] = 8972,
["dlcrop"] = 8973,

231



6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731

["urcrop"] = 8974,

["ulcrop"] = 8975,
["bnot"] 8976,
["profline"] = 8978,

["profsurf"] = 8979,
["telrec"] = 8981,
["target"] = 8982,
["ulcorn"] = 8988,
["ulcorner"] = 8988,
["urcorn"] = 8989,
["urcorner"] = 8989,
["dlcorn"] = 8990,
["llcorner"] = 8990,
["drcorn"] = 8991,
["lrcorner"] = 8991,
["frown"] = 8994,
["sfrown"] = 8994,
["smile"] = 8995,

["ssmile"] = 8995,
["cylcty"] = 9005,
["profalar"] = 9006,
["topbot"] = 9014,

["ovbar"] = 9021,
["solbar"] = 9023,
["angzarr"] = 9084,
["Imoust"] = 9136,
["1Imoustache"] = 9136,
["rmoust"] = 9137,
["rmoustache"] = 9137,
["OverBracket"] = 9140,
["tbrk"] = 9140,
["UnderBracket"] = 9141,
["bbrk"] = 9141,
["bbrktbrk"] = 9142,
["OverParenthesis"] = 9180,
["UnderParenthesis"] = 9181,
["OverBrace"] = 9182,
["UnderBrace"] = 9183,
["trpezium"] = 9186,
["elinters"] = 9191,
["blank"] = 9251,
["circledS"] = 9416,
["oS"] = 9416,
["HorizontalLine"] = 9472,
["boxh"] = 9472,

["boxv"] = 9474,

["boxdr"] = 9484,

232



6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794

["boxdl"] = 9488,
["boxur"] = 9492,
["boxul"] = 9496,
["boxvr"] = 9500,
["boxvl"] = 9508,
["boxhd"] = 9516,
["boxhu"] = 9524,
["boxvh"] = 9532,

["boxH"] = 9552,
["boxV"] = 9553,

["boxdR"] = 9554,
["boxDr"] = 9555,
["boxDR"] = 9556,
["boxdL"] = 9557,
["boxD1"] = 9558,
["boxDL"] = 9559,
["boxuR"] = 9560,
["boxUr"] = 9561,
["boxUR"] = 9562,
["boxuL"] = 9563,
["boxUl"] = 9564,
["boxUL"] = 9565,
["boxvR"] = 9566,
["boxVr"] = 9567,
["boxVR"] = 9568,
["boxvL"] = 9569,
["boxV1"] = 9570,
["boxVL"] = 9571,
["boxHd"] = 9572,
["boxhD"] = 9573,
["boxHD"] = 9574,
["boxHu"] = 9575,
["boxhU"] = 9576,
["boxHU"] = 9577,
["boxvH"] = 9578,
["boxVh"] = 9579,
["boxVH"] = 9580,
["uhblk"] = 9600,
["1hblk"] = 9604,
["block"] = 9608,

["blk14"] = 9617,
["blk12"] = 9618,
["blk34"] 9619,
["Square"] = 9633,
["squ"] = 9633,

["square"] = 9633,

["FilledVerySmallSquare"] = 9642,

233



6795 ["blacksquare"] = 9642,

6796 ["squarf"] = 9642,

6797 ["squf"] = 9642,

6798 ["EmptyVerySmallSquare"] = 9643,
6799 ["rect"] = 9645,
6800 ["marker"] = 9646,
6801 ["fltns"] = 9649,
6802  ["bigtriangleup"]
6803 ["xutri"] = 9651,
6804 ["blacktriangle"] = 9652,

6805  ["utrif"] = 9652,

6806 ["triangle"] = 9653,

6807 ["utri"] = 9653,

6808 ["blacktriangleright"] = 9656,
6809 ["rtrif"] = 9656,
6810 ["rtri"] = 9657,
6811 ["triangleright"] =
6812 ["bigtriangledown"]
6813 ["xdtri"] = 9661,
6814 ["blacktriangledown"] = 9662,
6815 ["dtrif"] = 9662,

6816 ["dtri"] = 9663,

6817  ["triangledown"] = 9663,

6818 ["blacktriangleleft"] = 9666,
6819 ["1trif"] = 9666,

6820 ["1tri"] = 9667,

6821 ["triangleleft"] = 9667,

6822 ["loz"] = 9674,

6823 ["lozenge"] = 9674,

6824 ["cir"] = 9675,

6825 ["tridot"] = 9708,

6826  ["bigcirc"] = 9711,

6827 ["xcirc"] = 9711,

6828 ["ultri"] 9720,

6829 ["urtri"] 9721,

6830 ["11tri"] = 9722,

6831 ["EmptySmallSquare"] = 9723,
6832 ["FilledSmallSquare"] = 9724,
6833  ["bigstar"] = 9733,

6834 ["starf"] = 9733,

6835  ["star"] = 9734,

6836  ["phone"] = 9742,

6837  ["female"] = 9792,

6838 ["male"] = 9794,

6839 ["spades"] = 9824,

6840 ["spadesuit"] = 9824,

6841 ["clubs"] = 9827,

9651,

9657,
= 9661,

234



6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887

6888

["clubsuit"] = 9827,
["hearts"] = 9829,
["heartsuit"] = 9829,
["diamondsuit"] = 9830,
["diams"] = 9830,
["sung"] = 9834,
["flat"] = 9837,
["natur"] = 9838,
["natural"] = 9838,
["sharp"] = 9839,
["check"] = 10003,
["checkmark"] = 10003,
["cross"] = 10007,
["malt"] = 10016,
["maltese"] = 10016,
["sext"] = 10038,
["VerticalSeparator"]
["1bbrk"] = 10098,
["rbbrk"] = 10099,
["bsolhsub"] = 10184,
["suphsol"] = 10185,
["LeftDoubleBracket"]
["lobrk"] = 10214,
["RightDoubleBracket"] = 10215,
["robrk"] = 10215,
["LeftAngleBracket"] = 10216,
["lang"] = 10216,

["langle"] = 10216,
["RightAngleBracket"] = 10217,
["rang"] = 10217,

["rangle"] = 10217,

["Lang"] = 10218,

["Rang"] 10219,

["loang"] = 10220,

["roang"] = 10221,
["LongLeftArrow"] = 10229,
["longleftarrow"] = 10229,
["xlarr"] = 10229,
["LongRightArrow"]
["longrightarrow"]
["xrarr"] = 10230,
["LongLeftRightArrow"] 10231,
["longleftrightarrow"] = 10231,
["xharr"] = 10231,
["DoubleLongLeftArrow"] = 10232,
["Longleftarrow"] = 10232,
["x1Arr"] = 10232,

10072,

10214,

10230,
10230,

235



6889  ["DoubleLongRightArrow"] = 10233,
6890  ["Longrightarrow"] = 10233,
6891 ["xrArr"] = 10233,

6892 ["DoubleLongleftRightArrow"] = 10234,
6893 ["Longleftrightarrow"] = 10234,
6894  ["xhArr"] = 10234,

6895  ["longmapsto"] = 10236,

6896 ["xmap"] = 10236,

6897  ["dzigrarr"] = 10239,

6898  ["mvlArr"] = 10498,

6899 ["nvrArr"] = 10499,

6900 ["nvHarr"] = 10500,

6901 ["Map"] = 10501,

6902 ["1barr"] = 10508,

6903 ["bkarow"] = 10509,

6904  ["rbarr"] = 10509,

6905 ["1Barr"] = 10510,

6906 ["dbkarow"] = 10511,

6907 ["rBarr"] = 10511,

6908 ["RBarr"] = 10512,

6909 ["drbkarow"] = 10512,

6910 ["DDotrahd"] = 10513,

6911 ["UpArrowBar"] = 10514,

6912 ["DownArrowBar"] = 10515,

6913 ["Rarrtl"] = 10518,

6914 ["latail"] = 10521,
6915 ["ratail"] = 10522,
6916 ["1Atail"] = 10523,
6917 ["rAtail"] = 10524,
6918 ["larrfs"] = 10525,
6919 ["rarrfs"] = 10526,
6920 ["larrbfs"] = 10527,
6921 ["rarrbfs"] = 10528,
6922 ["nwarhk"] = 10531,

6923 ["nearhk"] = 10532,
6924 ["hksearow"] = 10533,
6925 ["searhk"] = 10533,
6926 ["hkswarow"] = 10534,
6927 ["swarhk"] = 10534,
6928 ["nwnear"] 10535,
6929 ["nesear"] = 10536,
6930  ["toea"] = 10536,

6931 ["seswar"] = 10537,
6932 ["tosa"] = 10537,
6933 ["swnwar"] = 10538,
6934 ["nrarrc"] = {10547, 824},
6935 ["rarrc"] = 10547,

236



6936 ["cudarrr"] = 10549,
6937 ["1ldca"] 10550,

6938 ["rdca"] = 10551,

6939 ["cudarrl"] = 10552,
6940  ["larrpl"] = 10553,
6941 ["curarrm"] 10556,
6942  ["cularrp"] 10557,
6943 ["rarrpl"] = 10565,
6944 ["harrcir"] = 10568,

6945 ["Uarrocir"] = 10569,
6946 ["lurdshar"] = 10570,
6947 ["ldrushar"] = 10571,

6948 ["LeftRightVector"] = 10574,
6949 ["RightUpDownVector"] = 10575,
6950  ["DownLeftRightVector"] = 10576,
6951 ["LeftUpDownVector"] = 10577,
6952 ["LeftVectorBar"] = 10578,

6953  ["RightVectorBar"] = 10579,
6954 ["RightUpVectorBar"] = 10580,
6955 ["RightDownVectorBar"] = 10581,
6956 ["DownLeftVectorBar"] = 10582,
6957  ["DownRightVectorBar"] = 10583,
6958  ["LeftUpVectorBar"] = 10584,
6959 ["LeftDownVectorBar"] = 10585,
6960 ["LeftTeeVector"] = 10586,

6961 ["RightTeeVector"] = 10587,
6962  ["RightUpTeeVector"] = 10588,
6963  ["RightDownTeeVector"] = 10589,
6964 ["DownLeftTeeVector"] = 10590,
6965  ["DownRightTeeVector"] = 10591,
6966  ["LeftUpTeeVector"] = 10592,
6967 ["LeftDownTeeVector"] = 10593,

6968 ["1Har"] = 10594,
6969 ["uHar"] = 10595,
6970 ["rHar"] = 10596,

6971 ["dHar"] = 10597,
6972 ["luruhar"] = 10598,

6973 ["1ldrdhar"] = 10599,
6974 ["ruluhar"] = 10600,
6975 ["rdldhar"] = 10601,
6976 ["lharul"] = 10602,
6977 ["11lhard"] = 10603,
6978 ["rharul"] = 10604,
6979 ["1rhard"] = 10605,

6980  ["UpEquilibrium"] = 10606,
6981 ["udhar"] = 10606,
6982 ["ReverseUpEquilibrium"] = 10607,

237



6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009

["duhar"] = 10607,

["RoundImplies"] = 10608,

["erarr"] = 10609,

["simrarr"] = 10610,
["larrsim"] = 10611,
["rarrsim"] = 10612,

["rarrap"] = 10613,
["1tlarr"] = 10614,
["gtrarr"] = 10616,
["subrarr"] = 10617,
["suplarr"] = 10619,
["1fisht"] = 10620,
["rfisht"] = 10621,
["ufisht"] = 10622,
["dfisht"] = 10623,
["lopar"] = 10629,

["ropar"] = 10630,
["1brke"] = 10635,
["rbrke"] = 10636,
["1brkslu"] = 10637,
["rbrksld"] = 10638,
["1brksld"] = 10639,
["rbrkslu"] = 10640,
["langd"] = 10641,
["rangd"] = 10642,

["lparlt"] = 10643,
["rpargt"] = 10644,
["gtlPar"] = 10645,
["1trPar"] = 10646,

["vzigzag"] = 10650,
["vangrt"] = 10652,
["angrtvbd"] = 10653,
["ange"] = 10660,
["range"] = 10661,
["dwangle"] = 10662,
["uwangle"] 10663,
["angmsdaa"] = 10664,
["angmsdab"] = 10665,
["angmsdac"] = 10666,
["angmsdad"] = 10667,
["angmsdae"] = 10668,
["angmsdaf"] = 10669,
["angmsdag"] = 10670,
["angmsdah"] = 10671,

["bemptyv"] = 10672,
["demptyv"] = 10673,
["cemptyv"] = 10674,

238



T = W N =

b B B B R B S B B B L B S N M A B B S B B S B B R B B L B A A B S N B S B B S B B S B B R B B |

I3 393333

["raemptyv"] = 10675,
["laemptyv"] = 10676,
["ohbar"] = 10677,
["omid"] = 10678,
["opar"] = 10679,
["operp"] = 10681,
["olcross"] = 10683,
["odsold"] = 10684,
["olcir"] = 10686,
["ofcir"] = 10687,
["olt"] = 10688,

["ogt"] 10689,
["cirscir"] = 10690,
["cirE"] = 10691,
["solb"] = 10692,
["bsolb"] = 10693,
["boxbox"] = 10697,
["trisb"] = 10701,
["rtriltri"] = 10702,
["LeftTriangleBar"] = 10703,
["NotLeftTriangleBar"] = {10703, 824},
["NotRightTriangleBar"] = {10704, 824},
["RightTriangleBar"] = 10704,
["iinfin"] = 10716,
["infintie"] = 10717,
["nvinfin"] = 10718,
["eparsl"] = 10723,
["smeparsl"] = 10724,
["eqvparsl"] 10725,
["blacklozenge"] = 10731,
["lozf"] = 10731,
["RuleDelayed"] = 10740,
["dsol"] = 10742,
["bigodot"] = 10752,
["xodot"] = 10752,
["bigoplus"] = 10753,
["xoplus"] = 10753,
["bigotimes"] = 10754,
["xotime"] = 10754,
["biguplus"] = 10756,
["xuplus"] = 10756,
["bigsqcup"] = 10758,
["xsqcup"] = 10758,
["iiiint"] = 10764,
["qint"] = 10764,
["fpartint"] = 10765,
["cirfnint"] = 10768,

239



ESEEES RN BEES PN IEES SIS PN JRES BEES JEES SRS EES BEES BEPS BEES SRS RS BEES BEES BEES BEES RPN BEES SIS BEES SEEN BN BECN BEES BEES BEEN SIS BEES BEEN BEES BEEN SIS BEES SIS BEES BEEN BEEN BIEN BEES BN JREN

["awint"] = 10769,

["rppolint"] = 10770,
["scpolint"] = 10771,
["npolint"] = 10772,
["pointint"] = 10773,
["quatint"] = 10774,
["intlarhk"] = 10775,
["pluscir"] = 10786,
["plusacir"] = 10787,
["simplus"] = 10788,
["plusdu"] = 10789,

["plussim"] 10790,
["plustwo"] 10791,
["mcomma"] = 10793,

["minusdu"] = 10794,

["loplus"] = 10797,
["roplus"] = 10798,
["Cross"] = 10799,
["timesd"] = 10800,
["timesbar"] = 10801,
["smashp"] = 10803,
["lotimes"] = 10804,
["rotimes"] = 10805,

["otimesas"] = 10806,
["Otimes"] = 10807,
["odiv"] = 10808,
["triplus"] = 10809,
["triminus"] = 10810,
["tritime"] 10811,
["intprod"] 10812,
["iprod"] = 10812,
["amalg"] = 10815,
["capdot"] = 10816,
["ncup"] = 10818,
["ncap"] = 10819,
["capand"] = 10820,
["cupor"] = 10821,
["cupcap"] = 10822,
["capcup"] = 10823,
["cupbrcap"] = 10824,
["capbrcup"] = 10825,
["cupcup"] = 10826,
["capcap"] = 10827,
["ccups"] = 10828,
["ccaps"] = 10829,
["ccupssm"] = 10832,
["And"] = 10835,

240



= W D= O O 00O O

t

R R R R R W W W W W W W W W W NN NN NN
=~ W NN = O O oD

at

= O © 0w g O

Ot s W N

D

o

Y v Ot Ot Ot Ot Ot Ot Ot Ot Ut R s

N Y Y T T )

["Or"] = 10836,
["andand"] = 10837,
["oror"] = 10838,
["orslope"] = 10839,
["andslope"] = 10840,
["andv"] = 10842,
["orv"] = 10843,
["andd"] = 10844,
["ord"] = 10845,
["wedbar"] = 10847,
["sdote"] = 10854,
["simdot"] = 10858,
["congdot"] = 10861,
["ncongdot"] = {10861, 824},
["easter"] = 10862,
["apacir"] = 10863,
["apE"] = 10864,
["napE"] = {10864, 824},
["eplus"] = 10865,
["pluse"] = 10866,
["Esim"] = 10867,
["Colone"] = 10868,
["Equal"] = 10869,
["ddotseq"] = 10871,

["eDDot"] = 10871,
["equivDD"] = 10872,
["1tcir"] = 10873,

["gtcir"] = 10874,

["1tquest"] = 10875,

["gtquest"] 10876,
["LessSlantEqual"] = 10877,
["NotLessSlantEqual"] = {10877, 824},
["legslant"] = 10877,

["les"] = 10877,

["nlegslant"] = {10877, 824},
["nles"] = {10877, 824},
["GreaterSlantEqual"] = 10878,
["NotGreaterSlantEqual"] = {10878, 824},
["gegslant"] = 10878,

["ges"] = 10878,

["ngegslant"] = {10878, 824},
["nges"] = {10878, 824},

["lesdot"] = 10879,

["gesdot"] = 10880,

["lesdoto"] = 10881,

["gesdoto"] = 10882,

["lesdotor"] = 10883,

241



7171 ["gesdotol"] = 10884,
7172 ["1lap"] = 10885,

7173 ["lessapprox"] = 10885,
7174 ["gap"] = 10886,

7175  ["gtrapprox"] = 10886,
7176 ["1ne"] = 10887,

7177 ["lneq"] = 10887,

7178 ["gne"] = 10888,

7179 ["gneq"] = 10888,

7180 ["1lnap"] = 10889,

7181 ["1lnapprox"] = 10889,
7182 ["gnap"] = 10890,

7183 ["gnapprox"] = 10890,
7184 ["1Eg"] = 10891,

7185  ["lesseqqgtr"] = 10891,
7186 ["gE1"] = 10892,

7187 ["gtreqqless"] = 10892,
7188 ["1sime"] = 10893,

7189 ["gsime"] = 10894,

7190  ["1simg"] = 10895,

7191 ["gsiml"] = 10896,

7192 ["1gE"] = 10897,

7193 ["glE"] = 10898,

7194  ["lesges"] = 10899,

7195  ["gesles"] = 10900,

7196 ["els"] = 10901,

7197  ["egslantless"] = 10901,
7198 ["egs"] = 10902,

7199 ["egslantgtr"] = 10902,
7200 ["elsdot"] = 10903,
["egsdot"] = 10904,
["el"] = 10905,

["eg"] = 10906,

["siml"] = 10909,
["simg"] = 10910,

206 ["simlE"] = 10911,
["simgE"] = 10912,
["LessLess"] = 10913,
["NotNestedLessLess"] = {10913, 824},
["GreaterGreater"] = 10914,
["NotNestedGreaterGreater"] = {10914, 824},
["glj"] = 10916,

["gla"] = 10917,
["1tcc"] = 10918,
["gtcc"] = 10919,
["lescc"] = 10920,
["gescc"] = 10921,

28R =

ot

~N 3 N 3 ]

= = = = =R =2 O O O
Y UL R W N = O © 00

NN NN NN NN DD D NN KN KN N N NN
= L O

R R R R R R e

BN

242



=W NN = O O

ot Ot Ot Ot Ot Ut

y Ot

["smt"] = 10922,

["lat"] = 10923,

["smte"] = 10924,

["smtes"] = {10924, 65024},
["late"] = 10925,

["lates"] = {10925, 65024},
["bumpE"] = 10926,
["NotPrecedesEqual"] = {10927, 824},
["PrecedesEqual"] = 10927,
["npre"] = {10927, 824},
["npreceq"] = {10927, 824},
["pre"] = 10927,

["preceq"] = 10927,
["NotSucceedsEqual"] = {10928, 824},
["SucceedsEqual"] = 10928,
["nsce"] = {10928, 824},
["nsucceq"] = {10928, 824},
["sce"] = 10928,

["succeq"] = 10928,

["prE"] = 10931,

["scE"] = 10932,
["precneqq"] = 10933,
["prnE"] = 10933,

["scnE"] = 10934,
["succneqq"] = 10934,
["prap"] = 10935,
["precapprox"] = 10935,
["scap"] = 10936,
["succapprox"] = 10936,
["precnapprox"] = 10937,
["prnap"] = 10937,
["scnap"] = 10938,
["succnapprox"] = 10938,
["Pr"] = 10939,

["Sc"] = 10940,

["subdot"] = 10941,
["supdot"] = 10942,
["subplus"] = 10943,
["supplus"] = 10944,
["submult"] = 10945,
["supmult"] = 10946,
["subedot"] = 10947,
["supedot"] = 10948,
["nsubE"] = {10949, 824},
["nsubseteqq"] = {10949, 824},
["subE"] = 10949,
["subseteqq"] = 10949,

243



["nsupE"] = {10950, 824},
["nsupseteqq"] = {10950, 824},
["supE"] = 10950,
["supseteqq"] = 10950,
["subsim"] = 10951,
["supsim"] = 10952,
["subnE"] = 10955,
["subsetneqq"] = 10955,
["varsubsetneqq"] = {10955, 65024},
["vsubnE"] = {10955, 65024},
["supnE"] = 10956,
["supsetneqq"] = 10956,
["varsupsetneqq"] = {10956, 65024},
["vsupnE"] = {10956, 65024},
["csub"] = 10959,

["csup"] = 10960,

["csube"] = 10961,

["csupe"] = 10962,
["subsup"] = 10963,
["supsub"] = 10964,
["subsub"] = 10965,
["supsup"] = 10966,
["suphsub"] 10967,
["supdsub"] 10968,
["forkv"] = 10969,
["topfork"] = 10970,
["mlcp"] = 10971,

["Dashv"] = 10980,
["DoubleLeftTee"] = 10980,
["Vdashl"] = 10982,

["Barv"] = 10983,

["vBar"] = 10984,

["vBarv"] = 10985,

["Vbar"] = 10987,

["Not"] = 10988,

["bNot"] = 10989,

["rnmid"] = 10990,

["cirmid"] = 10991,
["midcir"] = 10992,
["topcir"] = 10993,

["nhpar"] = 10994,
["parsim"] = 10995,
["nparsl"] = {11005, 8421},

["parsl"] = 11005,
["fflig"] = 64256,
["filig"] = 64257,
["f11ig"] = 64258,

244



ot Ot gt Ot Ot Ut Ot ot Ut

oo

= W N =

wt

3

["ffilig"] = 64259,
["ff11ig"] = 64260,
["Ascr"] = 119964,
["Cscr"] = 119966,
["Dscr"] = 119967,
["Gscr"] = 119970,
["Jscr"] = 119973,
["Kscr"] = 119974,
["Nscr"] = 119977,
["Oscr"] = 119978,
["Pscr"] = 119979,
["Qscr"] = 119980,
["Sscr"] = 119982,
["Tscr"] = 119983,
["Uscr"] = 119984,
["Vscr"] = 119985,
["Wscr"] = 119986,
["Xscr"] = 119987,
["Yscr"] = 119988,
["Zscr"] = 119989,
["ascr"] = 119990,
["bscr"] = 119991,
["cscr"] = 119992,
["dscr"] = 119993,
["fscr"] = 119995,
["hscr"] = 119997,
["iscr"] = 119998,
["jscr"] = 119999,
["kscr"] = 120000,
["1scr"] = 120001,
["mscr"] = 120002,
["nscr"] = 120003,
["pscr"] = 120005,
["gscr"] = 120006,
["rscr"] = 120007,
["sscr"] = 120008,
["tscr"] = 120009,
["uscr"] = 120010,
["vscr"] = 120011,
["wscr"] = 120012,
["xscr"] = 120013,
["yscr"] = 120014,
["zscr"] = 120015,
["Afr"] = 120068,
["Bfr"] = 120069,
["Dfr"] = 120071,
["Efr"] = 120072,

245



7359 ["Ffr"] = 120073,
7360 ["Gfr"] = 120074,
7361 ["Jfr"] = 120077,
7362 ["Kfr"] = 120078,
7363 ["Lfr"] = 120079,
7364 ["Mfr"] = 120080,
7365 ["Nfr"] = 120081,
7366 ["Ofr"] = 120082,
7367 ["Pfr"] = 120083,
68 ["Qfr"] = 120084,
69 ["Sfr"] = 120086,

70 ["Tfr"] = 120087,
71 ["Ufr"] = 120088,
72 ["VEr"] = 120089,
73 ["Wfr"] = 120090,
74 ["Xfr"] = 120091,
75 ["Yfr"] = 120092,
76 ["afr"] = 120094,
7 ["bfr"] = 120095,
78 ["cfr"] = 120096,

9 ["dfr"] = 120097,
80 ["efr"] = 120098,
81 ["ffr"] = 120099,
82 ["gfr"] = 120100,
3 ["hfr"] = 120101,
| ["ifr"] = 120102,
85 ["jfr"] = 120103,
86 ["kfr"] = 120104,
87 ["1fr"] = 120105,
88 ["mfr"] = 120106,
89 ["nfr"] = 120107,
90 ["ofr"] = 120108,
91 ["pfr"] = 120109,
92 ["qfr"] = 120110,
93 ["rfr"] = 120111,
94 ["sfr"] = 120112,
95 ["tfr"] = 120113,
96 ["ufr"] = 120114,
97 ["vfr"] = 120115,
98 ["wfr"] = 120116,
99 ["xfr"] = 120117,
00 ["yfr"] = 120118,
401 ["zfr"] = 120119,

IS S S s v e e B A S S A A S A A A S A A A A A A A A S B B A

402 ["Aopf"] = 120120,
103 ["Bopf"] = 120121,
104 ["Dopf"] = 120123,
105 ["Eopf"] = 120124,

246



7406 ["Fopf"] = 120125,
7407 ["Gopf"] = 120126,
7408 ["Topf"] = 120128,
7409 ["Jopf"] = 120129,
7410 ["Kopf"] = 120130,
7411 ["Lopf"] = 120131,
7412 ["Mopf"] = 120132,
7413 ["Oopf"] = 120134,
7414 ["Sopf"] = 120138,
7415 ["Topf"] = 120139,
7416 ["Uopf"] = 120140,
7417 ["Vopf"] = 120141,
7418 ["Wopf"] = 120142,
7419 ["Xopf"] = 120143,
7420 ["Yopf"] = 120144,
7421 ["aopf"] = 120146,
7422 ["bopf"] = 120147,
7423 ["copf"] = 120148,
7424 ["dopf"] = 120149,
7425 ["eopf"] = 120150,
7426 ["fopf"] = 120151,
7127 ["gopf"] = 120152,
7428 ["hopf"] = 120153,
7429 ["iopf"] = 120154,
7430 ["jopf"] = 120155,
7431 ["kopf"] = 120156,
7432 ["lopf"] = 120157,
7433 ["mopf"] = 120158,
7434 ["nopf"] = 120159,
7435 ["oopf"] = 120160,
7436 ["popf"] = 120161,
7437 ["qopf"] = 120162,
7438 ["ropf"] = 120163,
7439 ["sopf"] = 120164,
7440 ["topf"] = 120165,
7441 ["uwopf"] = 120166,
7442 ["vopf"] = 120167,
7443 ["wopf"] = 120168,
7444 ["xopf"] = 120169,
7445 ["yopf"] = 120170,
7446 ["zopf"] = 120171,
7447 }

Given a string s of decimal digits, the entities.dec_entity returns the correspond-
ing UTF8-encoded Unicode codepoint.

7448 function entities.dec_entity(s)
7449  local n = tonumber(s)

247



7450 if n == nil then

7451 return "&#" .. s .. ";" -- fallback for unknown entities
7452 end

7453  return utf8.char(n)

7454 end

Given a string s of hexadecimal digits, the entities.hex_entity returns the corre-
sponding UTF8-encoded Unicode codepoint.

7455
7456
7457
7458
7459
7460

function entities.hex_entity(s)

local n = tonumber ("0x"..s)
if n == nil then
return "&#x" .. s .. ";" -- fallback for unknown entities
end
return utf8.char(n)

7461 end

Given a captured character x and a string s of hexadecimal digits, the
entities.hex_entity_with_x_char returns the corresponding UTF8-encoded Uni-
code codepoint or fallback with the x character.

7462 function entities.hex_entity_with_x_char(x, s)

7463  local n = tonumber("0x"..s)

7464 if n == nil then

7465 return "&#" .. x .. s .. ";" -- fallback for unknown entities
7466 end

7467  return utf8.char(n)

7468 end

Given a character entity name s (like ouml), the entities.char_entity returns
the corresponding UTF8-encoded Unicode codepoint.

7469 function entities.char_entity(s)

7470 local code_points = character_entities([s]

7471 if code_points == nil then

TAT2 return "&" .. s .. ";"

TAT3 end

7474 if type(code_points) ~= 'table' then

7475 code_points = {code_points}

7476 end

7477 local char_table = {}

7478 for _, code_point in ipairs(code_points) do
7479 table.insert(char_table, utf8.char(code_point))
7480 end

7481 return table.concat(char_table)

7482 end

3.1.4 Plain TEX Writer

This section documents the writer object, which implements the routines for
producing the TEX output. The object is an amalgamate of the generic, TEX,

248



IXTEX writer objects that were located in the lunamark/writer/generic.lua,
lunamark/writer/tex.lua, and lunamark/writer/latex.lua files in the Luna-
mark Lua module.

Although not specified in the Lua interface (see Section 2.1), the writer object is
exported, so that the curious user could easily tinker with the methods of the objects
produced by the writer.new method described below. The user should be aware,
however, that the implementation may change in a future revision.

7483 M.writer = {}

The writer.new method creates and returns a new TEX writer object associated with
the Lua interface options (see Section 2.1.3) options. When options are unspecified,
it is assumed that an empty table was passed to the method.

The objects produced by the writer.new method expose instance methods
and variables of their own. As a convention, I will refer to these {(member)s as
writer->(member). All member variables are immutable unless explicitly stated
otherwise.

7484 local parsers

7485 function M.writer.new(options)

7486  local self = {}

Make options available as writer->options, so that it is accessible from extensions.
7487  self.options = options

Define writer->flatten_inlines, which indicates whether or not the writer should
produce raw text rather than text in the output format for inline elements. The
writer->flatten_inlines member variable is mutable.

7488 self.flatten_inlines = false

3.1.4.1 Slicing
Parse the slice option and define writer->slice_begin, writer->slice_end,
and writer->is_writing. The writer->is_writing member variable is mutable.

7489  local slice_specifiers = {}

7490  for specifier in options.slice:gmatch("[~%s]+") do

7491 table.insert(slice_specifiers, specifier)

7492 end

7493

7494 if #slice_specifiers == 2 then

7495 self.slice_begin, self.slice_end = table.unpack(slice_specifiers)
7496 local slice_begin_type = self.slice_begin:sub(1l, 1)

7497 if slice_begin_type ~= """ and slice_begin_type ~= "$" then
7498 self.slice_begin = """ .. self.slice_begin

7499 end

7500 local slice_end_type = self.slice_end:sub(l, 1)

7501 if slice_end_type ~= "7" and slice_end_type ~= "$" then
7502 self.slice_end = "$" .. self.slice_end

249



03 end

(<

7504 elseif #slice_specifiers == 1 then

7505 self.slice_begin = """ .. slice_specifiers[1]
7506 self.slice_end = "$" .. slice_specifiers[1]
7507 end

7508

7509  self.slice_begin_type = self.slice_begin:sub(1l, 1)

7510  self.slice_begin_identifier = self.slice_begin:sub(2) or ""
7511  self.slice_end_type = self.slice_end:sub(1l, 1)

7512  self.slice_end_identifier = self.slice_end:sub(2) or ""

7513

7514 if self.slice_begin == """ and self.slice_end ~= """ then
7515 self.is_writing = true

7516 else

7517 self.is_writing = false

7518 end

3.1.4.2 Basic Formatter Variables and Functions
Define writer->space as the output format of a space character.
7519  self.space = " "
Define writer->nbsp as the output format of a non-breaking space character.
7520  self.nbsp = "\\markdownRendererNbsp{}"

Define writer->plain as a function that will transform an input plain text block s
to the output format.

7521 function self.plain(s)
7522 return s
7523  end

Define writer->paragraph as a function that will transform an input paragraph s
to the output format.

524  function self.paragraph(s)
2

7

7525 if not self.is_writing then return "" end
7526 return s

7527 end

Define writer->interblocksep as the output format of a block element separator.

[\
oo

self.interblocksep_text = "\\markdownRendererInterblockSeparator\n{}"
function self.interblocksep()

if not self.is_writing then return "" end

return self.interblocksep_text
end

® 2

P IS IS TP N

ot Ut Ut Ut Ut
SR

Define writer->paragraphsep as the output format of a paragraph separator. Users
can use more than one blank line to delimit two blocks to indicate the end of a series
of blocks that make up a paragraph. This produces a paragraph separator instead of
an interblock separator.

250



3 self.paragraphsep_text = "\\markdownRendererParagraphSeparator\n{}"
1 function self.paragraphsep()
5 if not self.is_writing then return "" end
return self.paragraphsep_text
end

1

ot
W W w w w

N N

ot
3

Define writer->undosep as a function that will remove the output produced by an
immediately preceding block element / paragraph separator.

7538  self.undosep_text = "\\markdownRendererUndoSeparator\n{}"
7539  function self.undosep()

7540 if not self.is_writing then return "" end

7541 return self.undosep_text

7542 end

Define writer->soft_line_break as the output format of a soft line break.

self.soft_line_break = function()
if self.flatten_inlines then return "\n" end
return "\\markdownRendererSoftLineBreak\n{}"
end

ot ot Ut
el
Tt o W

b A e B |

ot
=

Define writer->hard_line_break as the output format of a hard line break.

7547  self.hard_line_break = function()

7548 if self.flatten_inlines then return "\n" end
7549 return "\\markdownRendererHardLineBreak\n{}"
7550 end

Define writer->ellipsis as the output format of an ellipsis.
7551  self.ellipsis = "\\markdownRendererEllipsis{}"

Define writer->thematic_break as the output format of a thematic break.

[\

function self.thematic_break()

755

7553 if not self.is_writing then return "" end
7554 return "\\markdownRendererThematicBreak{}"
7555  end

3.1.4.3 Escaping Special Characters
Define tables writer->escaped_uri_chars and writer->escaped_minimal_strings
containing the mapping from special plain characters and character strings that
always need to be escaped.
556 self.escaped_uri_chars = {
57 ["{"] = "\\markdownRendererLeftBrace{}",
58 ["}"] = "\\markdownRendererRightBrace{}",
D

{

(O

75

7559 ["\\"] = "\\markdownRendererBackslash{}",
7560 ["\g"] =" ",

7561 ["\n"] =" ",

7562}

7563 self.escaped_minimal_strings = {

7564 ["~~"] = "\\markdownRendererCircumflex"

251



7565 .. "\\markdownRendererCircumflex ",

7566 ["X"] = "\\markdownRendererTickedBox{}",

7567 [""] = "\\markdownRendererHalfTickedBox{}",
7568 ["o"] = "\\markdownRendererUntickedBox{}",

69 [entities.hex_entity('FFFD')]

0 = "\\markdownRendererReplacementCharacter{}",

Define table writer->escaped_strings containing the mapping from character
strings that need to be escaped in typeset content.

7572 self.escaped_strings = util.table_copy(self.escaped_minimal_strings)
7573  self.escaped_strings[entities.hex_entity('00A0')] = self.nbsp

Define a table writer->escaped_chars containing the mapping from special plain
TEX characters (including the active pipe character (|) of ConTEXt) that need to be
escaped in typeset content.

4 self.escaped_chars = {

5 ["{"] = "\\markdownRendererLeftBrace{}",
6 [u}u]
7 ["%"] = "\\markdownRendererPercentSign{}",

"\\markdownRendererRightBrace{}",

)

5

578 ["\\"] = "\\markdownRendererBackslash{}",
579 ["#"] = "\\markdownRendererHash{}",

580 ["$"] = "\\markdownRendererDollarSign{}",
7581 ["&"] = "\\markdownRendererAmpersand{}",
7582 ["_"] = "\\markdownRendererUnderscore{}",
7583 ["""] = "\\markdownRendererCircumflex{}",
7584 ["~"] = "\\markdownRendererTilde{}",
7585 ["1"] = "\\markdownRendererPipe{}",
7586 [entities.hex_entity('0000')]
7587 = "\\markdownRendererReplacementCharacter{}",
7588  }

Use the writer->escaped_chars, writer->escaped_uri_chars, and writer->escaped_minimal _
tables to create the escape_typographic_text, escape_programmatic_text, and
escape_minimal local escaper functions.

7589  local function create_escaper(char_escapes, string_escapes)
7590 local escape = util.escaper(char_escapes, string_escapes)
7591 return function(s)

7592 if self.flatten_inlines then return s end

7593 return escape(s)

7594 end

7595 end

7596 local escape_typographic_text = create_escaper (

7597 self.escaped_chars, self.escaped_strings)

7598 local escape_programmatic_text = create_escaper(

7599 self.escaped_uri_chars, self.escaped_minimal_strings)
7600 local escape_minimal = create_escaper (

7601 {}, self.escaped_minimal_strings)

252



Define the following semantic aliases for the escaper functions:

e writer->escape transforms a text string that should always be made printable.

e writer->string transforms a text string that should be made printable only
when the hybrid Lua option is disabled. When hybrid is enabled, the text
string should be kept as-is.

e writer->math transforms a math span.

e writer->identifier transforms an input programmatic identifier.

e writer->uri transforms an input URI.

e writer->infostring transforms a fence code infostring.

7602 self.escape = escape_typographic_text
7603 self.math = escape_minimal

7604 if options.hybrid then

7605 self.identifier = escape_minimal
7606 self.string = escape_minimal
7607 self.uri = escape_minimal

7608 self.infostring = escape_minimal
7609  else

7610 self.identifier = escape_programmatic_text
7611 self.string = escape_typographic_text

7612 self.uri = escape_programmatic_text
7613 self.infostring = escape_programmatic_text
7614  end

3.1.4.4 Formatters of Warnings and Errors
Define writer->warning as a function that will transform an input warning t
with optional more warning text m to the output format.
7615  function self.warning(t, m)
7616 return {"\\markdownRendererWarning{", self.escape(t), "}",
7617 escape_minimal(t), "}{", self.escape(m or ""), "}{",
7618 escape_minimal(m or ""), "}"}
7619 end
Define writer->error as a function that will transform an input error text t with
optional more error text m to the output format.

7620 function self.error(t, m)

7621 return {"\\markdownRendererError{", self.escape(t), "}{",
7622 escape_minimal(t), "}", self.escape(m or ""), "}",
7623 escape_minimal(m or ""), "}"}

7624 end

3.1.4.5 Formatter of Code Spans
Define writer->code as a function that will transform an input inline code span
s with optional attributes attributes to the output format.

253



7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640

function self.code(s, attributes)

if self.flatten_inlines then return s end
local buf = {}
if attributes ~= nil then
table.insert (buf,
"\\markdownRendererCodeSpanAttributeContextBegin\n")
table.insert(buf, self.attributes(attributes))
end
table.insert (buf,
{"\\markdownRendererCodeSpan{", self.escape(s), "}"})
if attributes ~= nil then
table.insert (buf,
"\\markdownRendererCodeSpanAttributeContextEnd{}")
end
return buf

end

3.1.4.6 Formatter of Hyperlinks

Define writer->1link as a function that will transform an input hyperlink to the
output format, where lab corresponds to the label, src to URI, tit to the title of
the link, and attributes to optional attributes.

7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657

7658

function self.link(lab, src, tit, attributes)

if self.flatten_inlines then return lab end
local buf = {}
if attributes ~= nil then
table.insert (buf,
"\\markdownRendererLinkAttributeContextBegin\n")
table.insert(buf, self.attributes(attributes))
end
table.insert(buf, {"\\markdownRendererLink{",lab,"}",
"{",self.escape(src),"}",
"{",self.uri(src),"}",
"{",self.string(tit or ""),"}"})
if attributes ~= nil then
table.insert (buf,
"\\markdownRendererLinkAttributeContextEnd{}")
end
return buf

end

3.1.4.7 Formatter of Images

Define writer->image as a function that will transform an input image to the
output format, where lab corresponds to the label, src to the URL, tit to the title
of the image, and attributes to optional attributes.

7659

function self.image(lab, src, tit, attributes)

254



7660 if self.flatten_inlines then return lab end

7661 local buf = {3}

7662 if attributes ~= nil then

7663 table.insert (buf,

7664 "\\markdownRendererImageAttributeContextBegin\n")
7665 table.insert(buf, self.attributes(attributes))

7666 end

7667 table.insert(buf, {"\\markdownRendererImage{",lab,"}",

7668 "{",self.string(src),"}",

7669 "{",self.uri(src),"}",

7670 "{",self.string(tit or ""),"}"})

7671 if attributes ~= nil then

7672 table.insert (buf,

7673 "\\markdownRendererImageAttributeContextEnd{}")
7674 end

7675 return buf

7676 end

3.1.4.8 Formatters of Lists

Define writer->bulletlist as a function that will transform an input bulleted
list to the output format, where items is an array of the list items and tight specifies,
whether the list is tight or not.
7677 function self.bulletlist(items,tight)

7678 if not self.is_writing then return "" end

7679 local buffer = {}

7680 for _,item in ipairs(items) do

7681 if item ~= "" then

7682 buffer [#buffer + 1] = self.bulletitem(item)
7683 end

7684 end

7685 local contents = util.intersperse(buffer,"\n")
7686 if tight and options.tightlLists then

7687 return {"\\markdownRendererUlBeginTight\n",contents,
7688 "\n\\markdownRendererUlEndTight "}

7689 else

7690 return {"\\markdownRendererUlBegin\n",contents,
7691 "\n\\markdownRendererUlEnd "}

7692 end

7693 end

Define writer->bulletitem as a function that will transform an input bulleted list
item to the output format, where s is the text of the list item.

7694  function self.bulletitem(s)

7695 return {"\\markdownRendererUlItem ",s,

7696 "\\markdownRendererUlItemEnd "}
7697 end

255



Define writer->orderedlist as a function that will transform an input ordered list
to the output format, where items is an array of the list items and tight specifies,
whether the list is tight or not. If the optional parameter startnum is present, it is
the number of the first list item.

7698 function self.orderedlist(items,tight,startnum)

7699 if not self.is_writing then return "" end

7700 local buffer = {2}

7701 local num = startnum

7702 for _,item in ipairs(items) do

7703 if item ~= "" then

7704 buffer [#buffer + 1] = self.ordereditem(item,num)
7705 end

7706 if num ~= nil and item ~= "" then

7707 num = num + 1

7708 end

7709 end

7710 local contents = util.intersperse(buffer,"\n")

7711 if tight and options.tightLists then

7712 return {"\\markdownRendererOlBeginTight\n",contents,
7713 "\n\\markdownRendererO1EndTight "}

7714 else

7715 return {"\\markdownRendererOlBegin\n",contents,
7716 "\n\\markdownRenderer01End "}

v end

7718 end

Define writer->ordereditem as a function that will transform an input ordered
list item to the output format, where s is the text of the list item. If the optional
parameter num is present, it is the number of the list item.

7719  function self.ordereditem(s,num)

7720 if num ~= nil then

7721 return {"\\markdownRendererOlItemWithNumber{",num,"}",s,
7722 "\\markdownRendererOlItemEnd "}

7723 else

7724 return {"\\markdownRendererOlItem ",s,

7725 "\\markdownRendererOlItemEnd "}

7726 end

7727 end

3.1.4.9 Formatters of HTML Tags, Elements, and Comments

Define writer->inline html_ comment as a function that will transform the con-
tents of an inline HTML comment, to the output format, where contents are the
contents of the HTML comment.
7728  function self.inline_html_comment (contents)

7729 if self.flatten_inlines then return contents end
7730 return {"\\markdownRendererInlineHtmlComment{",contents,"}"}

256



7731 end

Define writer->inline_html_tag as a function that will transform the contents of
an opening, closing, or empty inline HTML tag to the output format, where contents
are the contents of the HTML tag.

32  function self.inline_html_tag(contents)

if self.flatten_inlines then return contents end

3

33

34 return {"\\markdownRendererInlineHtmlTag{",
35 self.string(contents),"}"}

3

- -J -J -~ ~J
o S S B S

6 end

Define writer->block_html element as a function that will transform the contents
of a block HTML element to the output format, where s are the contents of the HTML
element.
function self.block_html_element(s)
if not self.is_writing then return "" end
local name = util.cache(options.cacheDir, s, nil, nil, ".verbatim")
return {"\\markdownRendererInputBlockHtmlElement{",name,"}"}
end

J

oo

-~ 1 ~ = I
~N NN

AR W W W

3.1.4.10 Formatter of Emphasis
Define writer->emphasis as a function that will transform an emphasized span s
of input text to the output format.

42 function self.emphasis(s)

774

7743 if self.flatten_inlines then return s end
7744 return {"\\markdownRendererEmphasis{",s,"}"}
7745 end

3.1.4.11 Formatter of Strong Emphasis
Define writer->strong as a function that will transform a strongly emphasized
span s of input text to the output format.

7746 function self.strong(s)

TTAT if self.flatten_inlines then return s end
7748 return {"\\markdownRendererStrongEmphasis{",s,"}"}
7749 end

3.1.4.12 Formatter of Tickboxes
Define writer->tickbox as a function that will transform a number f to the
output format.

7750 function self.tickbox(f)
if £ == 1.0 then

7751

7752 return "[x "

7753 elseif f == 0.0 then
7754 return "o "

7755 else

257



7756 return "[-] "
7757 end
775

3.1.4.13 Formatter of Blockquotes
Define writer->blockquote as a function that will transform an input block quote
s to the output format.

59  function self.blockquote(s)

[

7760 if not self.is_writing then return "" end

7761 return {"\\markdownRendererBlockQuoteBegin\n",s,
7762 "\\markdownRendererBlockQuoteEnd "}

7763 end

3.1.4.14 Formatter of Code Blocks
Define writer->verbatim as a function that will transform an input code block s
to the output format.

7764 function self.verbatim(s)

7765 if not self.is_writing then return "" end

7766 s = s:gsub("\n$", "")

7767 local name = util.cache_verbatim(options.cacheDir, s)
7768 return {"\\markdownRendererInputVerbatim{",name,"}"}
7769 end

3.1.4.15 Formatter of Documents
Define writer—->document as a function that will transform a document d to the
output format.

7770 function self.document(d)

7771 local buf = {"\\markdownRendererDocumentBegin\n"}

7772

7773 -- warn against the “hybrid”™ option

774 if options.hybrid then

7775 local text = "The “hybrid® option has been soft-deprecated."
7776 local more = "Consider using one of the following better options "
7T "for mixing TeX and markdown: ~contentBlocks™, "
7778 .. ""rawAttribute®, “texComments~, “texMathDollars™, "
7779 .. "“texMathSingleBackslash™, and "

7780 .. "“texMathDoubleBackslash™. "

7781 .. "For more information, see the user manual at "
7782 .. "<https://witiko.github.io/markdown/>."

7783 table.insert(buf, self.warning(text, more))

7784 end

7785

7786 —-- insert the text of the document

7787 table.insert (buf, d)

258



7788
7789 -- pop all attributes
7790 table.insert (buf, self.pop_attributes())

7791

7792 table.insert (buf, "\\markdownRendererDocumentEnd")
7793

7794 return buf

7795 end

3.1.4.16 Formatter of Attributes
Define writer->attributes as a function that will transform input attributes
attrs to the output format.
7796 local seen_identifiers = {}
7797 local key_value_regex = "(["= J+)%s*=ls*x(.*)"
7798 local function normalize_attributes(attributes, auto_identifiers)

7799 -- normalize attributes

7800 local normalized_attributes = {}

7801 local has_explicit_identifiers = false

7802 local key, value

7803 for _, attribute in ipairs(attributes or {}) do

7804 if attribute:sub(1, 1) == "#" then

7805 table.insert (normalized_attributes, attribute)
7806 has_explicit_identifiers = true

7807 seen_identifiers[attribute:sub(2)] = true

7808 elseif attribute:sub(l, 1) == "." then

7809 table.insert (normalized_attributes, attribute)
7810 else

7811 key, value = attribute:match(key_value_regex)
7812 if key:lower() == "id" then

7813 table.insert(normalized_attributes, "#" .. value)
7814 elseif key:lower() == "class" then

7815 local classes = {}

7816 for class in value:gmatch("%S+") do

7817 table.insert(classes, class)

7818 end

7819 table.sort (classes)

7820 for _, class in ipairs(classes) do

7821 table.insert (normalized_attributes, "." .. class)
7822 end

7823 else

7824 table.insert(normalized_attributes, attribute)
7825 end

7826 end

7827 end

7828

7829 -- if no explicit identifiers exist, add auto identifiers

259



7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875

7876

if not has_explicit_identifiers and auto_identifiers ~= nil then
local seen_auto_identifiers = {}
for _, auto_identifier in ipairs(auto_identifiers) do

if seen_auto_identifiers[auto_identifier] == nil then
seen_auto_identifiers[auto_identifier] = true
if seen_identifiers[auto_identifier] == nil then

seen_identifiers[auto_identifier] = true
table.insert(normalized_attributes,
"#" .. auto_identifier)
else
local auto_identifier_number = 1
while true do
local numbered_auto_identifier = auto_identifier .. "-"
auto_identifier_number
if seen_identifiers[numbered_auto_identifier] == nil then
seen_identifiers[numbered_auto_identifier] = true
table.insert(normalized_attributes,

"#" .. numbered_auto_identifier)
break
end
auto_identifier_number = auto_identifier_number + 1
end
end
end
end
end

-- sort and deduplicate normalized attributes
table.sort(normalized_attributes)
local seen_normalized_attributes = {}
local deduplicated_normalized_attributes = {}
for _, attribute in ipairs(normalized_attributes) do
if seen_normalized_attributes[attribute] == nil then
seen_normalized_attributes[attribute] = true
table.insert(deduplicated_normalized_attributes, attribute)
end
end

return deduplicated_normalized_attributes
end

function self.attributes(attributes, should_normalize_attributes)
local normalized_attributes

if should_normalize_attributes == false then
normalized_attributes = attributes
else

normalized_attributes = normalize_attributes(attributes)

260



7877 end

7878

7879 local buf = {}

7880 local key, value

7881 for _, attribute in ipairs(normalized_attributes) do

7882 if attribute:sub(l, 1) == "#" then

7883 table.insert(buf, {"\\markdownRendererAttributeIdentifier{",
7884 attribute:sub(2), "}"})

7885 elseif attribute:sub(l, 1) == "." then

7886 table.insert (buf, {"\\markdownRendererAttributeClassName{",
7887 attribute:sub(2), "}"})

7888 else

7889 key, value = attribute:match(key_value_regex)

7890 table.insert (buf, {"\\markdownRendererAttributeKeyValue{",
7891 key, "H", value, "}"})

7892 end

7893 end

7894

7895 return buf

7896 end

3.1.4.17 Tracking Active Attributes
Define writer—->active_attributes as a stack of block-level attributes that are
currently active. The writer->active_attributes member variable is mutable.

7897  self.active_attributes = {}

Define writer->attribute_type_levels as a hash table that maps attribute types
to the number of attributes of said type in writer->active_attributes.

7898  self.attribute_type_levels = {}

7899  setmetatable(self.attribute_type_levels,

7900 { __index = function() return O end })

Define writer->push_attributes and writer->pop_attributes as functions that
will add a new set of active block-level attributes or remove the most current attributes
from writer->active_attributes

7901 local function apply_attributes()

7902 local buf = {}

7903 for i = 1, #self.active_attributes do

7904 local start_output = self.active_attributes[i] [3]
7905 if start_output ~= nil then

7906 table.insert(buf, start_output)

7907 end

7908 end

7909 return buf

7910 end

7911

7912  local function tear_down_attributes()

261



7913 local buf = {}

7914 for i = #self.active_attributes, 1, -1 do

7915 local end_output = self.active_attributes[i] [4]
7916 if end_output ~= nil then

7917 table.insert (buf, end_output)

7918 end

7919 end

7920 return buf
7921 end

The writer->push_attributes method adds attributes of type attribute_type
to writer->active_attributes. The start_output string is used to construct a
rope that will be returned by this function, together with output produced as a result
of slicing (see slice). The end_output string is stored together with attributes
and is used to construct the return value of the writer->pop_attributes method.
7922  function self.push_attributes(attribute_type, attributes,

7923 start_output, end_output)
7924 local attribute_type_level

7925 = self.attribute_type_levels[attribute_type]

7926 self.attribute_type_levels[attribute_typel

7927 = attribute_type_level + 1

7928

7929 -- index attributes in a hash table for easy lookup
7930 attributes = attributes or {}

7931 for i = 1, #attributes do

7932 attributes[attributes[i]] = true

7933 end

7934

7935 local buf = {}

7936 -- handle slicing

7937 if attributes["#" .. self.slice_end_identifier] ~= nil and
7938 self.slice_end_type == """ then

7939 if self.is_writing then

7940 table.insert (buf, self.undosep())

7941 table.insert(buf, tear_down_attributes())

7942 end

7943 self.is_writing = false

7944 end

7945 if attributes["#" .. self.slice_begin_identifier] ~= nil and
7946 self.slice_begin_type == """ then

7947 table.insert(buf, apply_attributes())

7948 self.is_writing = true

7949 end

7950 if self.is_writing and start_output ~= nil then
7951 table.insert(buf, start_output)

7952 end

7953 table.insert(self.active_attributes,

262



7954 {attribute_type, attributes,

7955 start_output, end_outputl})

7956 return buf

7957 end

7958

The writer->pop_attributes method removes the most current of active
block-level attributes from writer->active_attributes until attributes of type
attribute_type have been removed. The method returns a rope constructed from
the end_output string specified in the calls of writer->push_attributes that
produced the most current attributes, and also from output produced as a result of
slicing (see slice).

7959  function self.pop_attributes(attribute_type)

7960 local buf = {}

7961 -- pop attributes until we find attributes of correct type

7962 -— or until no attributes remain

7963 local current_attribute_type = false

7964 while current_attribute_type ~= attribute_type and

7965 #self.active_attributes > 0 do

7966 local attributes, _, end_output

7967 current_attribute_type, attributes, _, end_output = table.unpack(
7968 self.active_attributes[#self.active_attributes])

7969 local attribute_type_level
7970 = self.attribute_type_levels[current_attribute_typel
7971 self.attribute_type_levels[current_attribute_typel

7972 = attribute_type_level - 1

7973 if self.is_writing and end_output ~= nil then

7974 table.insert(buf, end_output)

7975 end

7976 table.remove(self.active_attributes, #self.active_attributes)
7977 -- handle slicing

7978 if attributes["#" .. self.slice_end_identifier] ~= nil
7979 and self.slice_end_type == "$" then

7980 if self.is_writing then

7981 table.insert(buf, self.undosep())

7982 table.insert (buf, tear_down_attributes())

7983 end

7984 self.is_writing = false

7985 end

7986 if attributes["#" .. self.slice_begin_identifier] ~= nil and
7987 self.slice_begin_type == "$" then

7988 self.is_writing = true

7989 table.insert(buf, apply_attributes())

7990 end

7991 end

7992 return buf

7993 end

263



3.1.4.18 Automatically Generated lIdentifiers for Headings
Create an auto identifier string by stripping and converting characters from string
S.

7994  local function create_auto_identifier(s)

7995 local buffer = {}

7996 local prev_space = false

7997 local letter_found = false

7998 local normalized_s = s

7999 if not options.unicodeNormalization

8000 or options.unicodeNormalizationForm ~= "nfc" then
8001 normalized_s = util.normalize(normalized_s, "nfc")
8002 end

8003

8004 for _, code in utf8.codes(normalized_s) do
8005 local char = utf8.char(code)

8006

8007 -- Remove everything up to the first letter.
8008 if not letter_found then

8009 local is_letter = lpeg.match(

8010 parsers.unicode.following_alpha,

8011 char

8012 )

8013 if is_letter then

8014 letter_found = true

8015 else

8016 goto continue

8017 end

8018 end

8019

8020 -- Remove all non-alphanumeric characters, except underscores,
8021 -- hyphens, and periods.

8022 if not lpeg.match(

8023 ( parsers.underscore

8024 + parsers.dash

8025 + parsers.period

8026 + parsers.unicode.following_word

8027 + parsers.unicode.following_whitespace ),
8028 char

8029 ) then

8030 goto continue

8031 end

8032

8033 -- Replace all spaces and newlines with hyphens.
8034 if lpeg.match(

8035 ( parsers.newline

8036 + parsers.unicode.following_whitespace ),
8037 char

264



8042
8043
8044
8045
8046
8047

) then
ChaI‘ = n_n
if prev_space then
goto continue
else
prev_space = true
end
else
-- Case-fold all alphabetic characters.
local form = nil
if options.unicodeNormalization then
form = options.unicodeNormalizationForm
end
char = util.casefold(char, form)
prev_space = false
end

table.insert(buffer, char)

::continue::
end

if prev_space then
table.remove (buffer)
end

local identifier = #buffer == 0 and "section"
or table.concat(buffer, "")
return identifier

end

Create an GitHub-flavored auto identifier string by stripping and converting charac-
ters from string s.

8068

local function create_gfm_auto_identifier(s)

local buffer = {}
local prev_space = false
local letter_found = false
local normalized_s = s
if not options.unicodeNormalization
or options.unicodeNormalizationForm ~= "nfc" then
normalized_s = util.normalize(normalized_s, "nfc")
end

for _, code in utf8.codes(normalized_s) do
local char = utf8.char(code)

-- Remove everything up to the first non-space.

265



8082 if not letter_found then

8083 local is_letter = not lpeg.match(

8084 parsers.unicode.following_whitespace,
8085 char

8086 )

8087 if is_letter then

8088 letter_found = true

8089 else

8090 goto continue

8091 end

8092 end

8093

8094 -- Remove all non-alphanumeric characters, except underscores
8095 -— and hyphens.

8096 if not lpeg.match(

8097 ( parsers.underscore

8098 + parsers.dash

8099 + parsers.unicode.following_word

8100 + parsers.unicode.following_whitespace ),
8101 char

8102 ) then

8103 prev_space = false

8104 goto continue

8105 end

8106

8107 -- Replace all spaces and newlines with hyphens.
8108 if lpeg.match(

8109 ( parsers.newline

8110 + parsers.unicode.following_whitespace ),
8111 char

8112 ) then

8113 char = "-"

8114 if prev_space then

8115 goto continue

8116 else

8117 prev_space = true

8118 end

8119 else

8120 —-- Case-fold all alphabetic characters.
8121 local form = nil

8122 if options.unicodeNormalization then

8123 form = options.unicodeNormalizationForm
8124 end

8125 char = util.casefold(char, form)

8126 prev_space = false

8127 end

8128

266



8129 table.insert (buffer, char)

8130

8131 ::continue::

8132 end

8133

8134 if prev_space then

8135 table.remove (buffer)

8136 end

8137

8138 local identifier = #buffer == 0 and "section"
8139 or table.concat(buffer, "")
8140 return identifier

8141 end

3.1.4.19 Formatter of Headings
Define writer->heading as a function that will transform an input heading s at
level 1level with attributes attributes to the output format.

8142  self.secbegin_text = "\\markdownRendererSectionBegin\n"
8143 self.secend_text = "\n\\markdownRendererSectionEnd "

8144  function self.heading(s, level, attributes)

8145 local buf = {}

8146 local flat_text, inlines = table.unpack(s)

8147

8148 —-- push empty attributes for implied sections

8149 while self.attribute_type_levels["heading"] < level - 1 do
8150 table.insert (buf,

8151 self.push_attributes("heading",

8152 nil,

8153 self.secbegin_text,
8154 self.secend_text))
8155 end

8156

8157 -- pop attributes for sections that have ended

8158 while self.attribute_type_levels["heading"] >= level do
8159 table.insert(buf, self.pop_attributes("heading"))

8160 end

8161

8162 —-- construct attributes for the new section

8163 local auto_identifiers = {}

8164 if self.options.autoldentifiers then

8165 table.insert(auto_identifiers, create_auto_identifier(flat_text))
8166 end

8167 if self.options.gfmAutoIdentifiers then

8168 table.insert(auto_identifiers,

8169 create_gfm_auto_identifier(flat_text))
8170 end

267



8171 local normalized_attributes = normalize_attributes(attributes,

8172 auto_identifiers)
8173

8174 -- push attributes for the new section

8175 local start_output = {3}

8176 local end_output = {}

8177 table.insert(start_output, self.secbegin_text)

8178 table.insert(end_output, self.secend_text)

8179

8180 table.insert(buf, self.push_attributes("heading",

8181 normalized_attributes,
8182 start_output,

8183 end_output))

8184 assert(self.attribute_type_levels["heading"] == level)

8185

8186 -- render the heading and its attributes

8187 if self.is_writing and #normalized_attributes > O then

8188 table.insert (buf,

8189 "\\markdownRendererHeaderAttributeContextBegin\n")
8190 table.insert(buf, self.attributes(normalized_attributes, false))
8191 end

8192

8193 local cmd

8194 level = level + options.shiftHeadings

8195 if level <= 1 then

8196 cmd = "\\markdownRendererHeadingOne"

8197 elseif level == 2 then

8198 cmd = "\\markdownRendererHeadingTwo"

8199 elseif level == 3 then

8200 cmd = "\\markdownRendererHeadingThree"

8201 elseif level == 4 then

8202 cmd = "\\markdownRendererHeadingFour"

8203 elseif level == 5 then

8204 cmd = "\\markdownRendererHeadingFive"

8205 elseif level >= 6 then

8206 cmd = "\\markdownRendererHeadingSix"

8207 else

8208 cmd = ""

8209 end

8210 if self.is_writing then

8211 table.insert(buf, {cmd, "{", inlines, "3}"})

8212 end

8213

8214 if self.is_writing and #normalized_attributes > O then

8215 table.insert(buf, "\\markdownRendererHeaderAttributeContextEnd{}")
8216 end

8217

268



8218 return buf
8219 end

3.1.4.20 Managing State and Deferred Writer Calls
Define writer->get_state as a function that returns the current state of the
writer, where the state of a writer are its mutable member variables.

8220  function self.get_state()

8221 return {

8222 is_writing=self.is_writing,

8223 flatten_inlines=self.flatten_inlines,

8224 active_attributes={table.unpack(self.active_attributes)},
8225 }

8226 end

Define writer->set_state as a function that restores the input state s and returns
the previous state of the writer.

8227  function self.set_state(s)

8228 local previous_state = self.get_state()
8229 for key, value in pairs(s) do

8230 self [key] = value

8231 end

8232 return previous_state

8233 end

Define writer->defer_call as a function that will encapsulate the input func-
tion £, so that f is called with the state of the writer at the time of calling
writer->defer_call.

8234  function self.defer_call(f)

8235 local previous_state = self.get_state()
8236 return function(...)

8237 local state = self.set_state(previous_state)
8238 local return_value = f(...)

8239 self.set_state(state)

8240 return return_value

8241 end

8242 end

8243

8244 return self

8245 end

3.1.5 Parsers

The parsers hash table stores PEG patterns that are static and can be reused between
different reader objects.

8246 parsers = {}

269



3.1.5.1 Basic Parsers

8247 parsers.percent = P("%")

8248 parsers.at = P("@")

8249 parsers.comma =P(",")

8250 parsers.asterisk = P("x")

8251 parsers.dash = P("-")

8252 parsers.plus = P("+")

8253 parsers.underscore = P("_")

8254 parsers.period =P("."

8255 parsers.hash = P("#")

8256 parsers.dollar = P("$")

8257 parsers.ampersand = P("&")

8258 parsers.backtick =P("™")

8259 parsers.less = P("<")

8260 parsers.more = P(">")

8261 parsers.space =P( ")

8262 parsers.squote =P("'")

8263 parsers.dquote =P(C'"")

8264 parsers.lparent =P

8265 parsers.rparent =P(")

8266 parsers.lbracket = P("[")

8267 parsers.rbracket = P("1"M)

8268 parsers.lbrace = pP("{")

8269 parsers.rbrace = P("}")

8270 parsers.circumflex =P("™")

8271 parsers.slash = P("/")

8272 parsers.equal = P("=")

8273 parsers.colon = P(":")

8274 parsers.semicolon =P(;"

8275 parsers.exclamation =P("!")

8276 parsers.pipe =P("I")

8277 parsers.tilde = P("~")

8278 parsers.backslash = P("\\")

8279 parsers.tab = P("\t")

8280 parsers.newline = P("\n")

8281

8282 parsers.digit = R("09")

8283 parsers.hexdigit = R("09","af","AF")
8284 parsers.letter = R("AZ","az")
8285 parsers.alphanumeric = R("AZ","az","09")
8286 parsers.keyword = parsers.letter
8287 * (parsers.alphanumeric + parsers.dash) 0
8288

8289 parsers.doubleasterisks = P("*x*")

8290 parsers.doubleunderscores =P("__")

8201 parsers.doubletildes = P("~~")

8292 parsers.fourspaces = p(" ")

270



8293

8294 parsers.any = P(1)

8205 parsers.succeed = P(true)

8206 parsers.fail = P(false)

8297

8208 parsers.internal_punctuation = S(":;,.?")

8299 parsers.ascii_punctuation = S IN"#$Y&" Ox+,-./:;<=>70[\\]1"_~"{I}~")
8300

8301 parsers.escapable
8302 parsers.anyescaped

parsers.ascii_punctuation
parsers.backslash / ""

8303 * parsers.escapable

8304 + parsers.any

8305

8306 parsers.spacechar =S("\t ")

8307 parsers.spacing = S(" \n\r\t")

8308 parsers.nonspacechar = parsers.any - parsers.spacing
8309 parsers.optionalspace = parsers.spacechar”0

8310

8311 parsers.normalchar = parsers.any - (V("SpecialChar")
8312 + parsers.spacing)
8313 parsers.eof = —parsers.any

8314 parsers.nonindentspace = parsers.space -3 * - parsers.spacechar
8315 parsers.indent = parsers.space -3 * parsers.tab
8316 + parsers.fourspaces / ""

8317 parsers.linechar = P(1 - parsers.newline)

8318

8319 parsers.blankline = parsers.optionalspace

8320 * parsers.newline / "\n"

8321 parsers.blanklines = parsers.blankline”0

8322 parsers.skipblanklines = ( parsers.optionalspace

8323 * parsers.newline)”0

8324 parsers.indentedline = parsers.indent /"

8325 * C( parsers.linechar”1

8326 * parsers.newline”™-1)

8327 parsers.optionallyindentedline = parsers.indent”™-1 /""

8328 * C( parsers.linechar”1

8329 * parsers.newline”™-1)

8330 parsers.sp = parsers.spacing”0

8331 parsers.spnl = parsers.optionalspace

8332 * ( parsers.newline

8333 * parsers.optionalspace) -1

8334 parsers.line = parsers.linechar”0 * parsers.newline
8335 parsers.nonemptyline = parsers.line - parsers.blankline

8336

3.1.5.2 Parsers for Unicode Character Classes and Categories

271



We define high-level parsers in table parsers.unicode based on the low-level
parsers in unicode_data.categories, defined in Section 3.1.1.5. Unlike the low-
level parsers, the high-level parsers are invariant to the number of bytes the Unicode
characters occupy after conversion to UTF-8.

8337 parsers.unicode = {}

8338 parsers.unicode.preceding_punctuation = parsers.fail
8339 parsers.unicode.following_punctuation = parsers.fail
8340 parsers.unicode.following_alpha = parsers.fail

8341 parsers.unicode.following_numeric = parsers.fail
8342 parsers.unicode.following_word = parsers.fail

8343 parsers.unicode.preceding_whitespace = parsers.fail
8344 parsers.unicode.following_whitespace = parsers.fail
8345 for n = 1, 4 do

For punctuation, accept any characters from Unicode categories P (punctuation) and
S (symbol), as mandated by the CommonMark standard3°.

8346 local punctuation_of_length_n

8347 = unicode_data.categories.P[n]

8348 + unicode_data.categories.S[n]

8349  parsers.unicode.preceding_punctuation
8350 = parsers.unicode.preceding_punctuation
8351 + B(punctuation_of_length_n)

8352  parsers.unicode.following_punctuation
8353 = parsers.unicode.following_punctuation
8354 + #punctuation_of_length_n

For alphabetical characters, accept any characters from Unicode category L (letter),
similar to the character class ‘Unicode.

8355 local alpha_of_length_n = unicode_data.categories.L[n]

8356  parsers.unicode.following_alpha
8357 = parsers.unicode.following_alpha
8358 + alpha_of_length_n

For numeric characters, accept any characters from Unicode category N (number),
similar to the character class ‘Unicode.

8359 local numeric_of_length_n = unicode_data.categories.N[n]
8360  parsers.unicode.following_numeric

8361 = parsers.unicode.following_numeric

8362 + numeric_of_length_n

For word characters, accept any characters from Unicode categories L (letter), N
(number), and Pc (connector punctuation), similar to the character class *

8363 local word_of_length_n

8364 = alpha_of_length_n
8365 + numeric_of_length n
8366 + unicode_data.categories.Pc[n]

36See https://spec.commonmark.org/0.31.2/#unicode-punctuation-character.

272


https://spec.commonmark.org/0.31.2/#unicode-punctuation-character

8367  parsers.unicode.following_word

8368 = parsers.unicode.following_word

8369 + word_of_length n

For space characters, accept any characters from Unicode category Z (separator), as
well as the ASCII control characters 9 (horizontal tab) through 13 (carriage return),
similar to the character class ‘Lua library Selene Unicode.

8370 local whitespace_of_length_n = unicode_data.categories.Z[n]
8371 if n == 1 then

8372 whitespace_of_length_n

8373 = whitespace_of_length_n

8374 + R("\t\r")

8375 end

8376 ~ parsers.unicode.preceding_whitespace
8377 = parsers.unicode.preceding_whitespace
8378 + B(whitespace_of_length_n)

8379  parsers.unicode.following_whitespace
8380 = parsers.unicode.following_whitespace
8381 + #whitespace_of_length_n

8382 end

3.1.5.3 Parsers Used for Indentation

8383

8384 parsers.leader = parsers.space -3

8385

Check if a trail exists and is non-empty in the indent table indent_table.

8386 local function has_trail(indent_table)

8387 return indent_table ~= nil and
8388 indent_table.trail ~= nil and
8389 next(indent_table.trail) ~= nil
8390 end

8391

Check if indent table indent_table has any indents.

8392 local function has_indents(indent_table)

8393 return indent_table ~= nil and

8394 indent_table.indents ~= nil and
8395 next (indent_table.indents) ~= nil
8396 end

8397
Add a trail trail_info to the indent table indent_table.

8398 local function add_trail(indent_table, trail_info)

8399 indent_table.trail = trail_info
8400 return indent_table

8401 end

8402

273



Remove a trail trail_info from the indent table indent_table.

8403
8404

local function remove_trail(indent_table)
indent_table.trail = nil

8405 return indent_table
8406 end
8407

Update the indent table indent_table by adding or removing a new indent add.

8408 local function update_indent_table(indent_table, new_indent, add)
8409 indent_table = remove_trail(indent_table)

8410

8411  if not has_indents(indent_table) then

8412 indent_table.indents = {}

8413 end

8414

8415

8416 if add then

8417 indent_table.indents[#indent_table.indents + 1] = new_indent
8418 else

8419 if indent_table.indents[#indent_table.indents] .name

8420 == new_indent.name then

8421 indent_table.indents[#indent_table.indents] = nil

8422 end

8423 end

8424

8425 return indent_table

8426 end

8427

Remove an indent by its name name.

8428 local function remove_indent (name)

8429 local remove_indent_level =

8430 function(s, i, indent_table) -- luacheck: ignore s i

8431 indent_table = update_indent_table(indent_table, {name=namel,
8432 false)

8433 return true, indent_table

8434 end

8435

8436 return Cg(Cmt(Cb("indent_info"), remove_indent_level), "indent_info")
8437 end

8438

Process the spacing of a string of spaces and tabs spacing with preceding indent
width from the start of the line indent and strip up to left_strip_length spaces.
Return the remainder remainder and whether there is enough spaces to produce a
code is_code. Return how many spaces were stripped, as well as if the minimum

was met is_minimum and what remainder it left minimum_remainder.

8439 local function process_starter_spacing(indent, spacing,

274



8440 minimum, left_strip_length)
8441  left_strip_length = left_strip_length or 0

8442

8443 local count = 0

8444  local tab_value = 4 - (indent) % 4

8445

8446 local code_started, minimum_found = false, false

8447 local code_start, minimum_remainder = "", ""

8448

8449  local left_total_stripped = O

8450 local full_remainder = ""

8451

8452 if spacing ~= nil then

8453 for i = 1, #spacing do

8454 local character = spacing:sub(i, i)

8455

8456 if character == "\t" then

8457 count = count + tab_value

8458 tab_value = 4

8459 elseif character == " " then

8460 count = count + 1

8461 tab_value = 4 - (1 - tab_value) % 4

8462 end

8463

8464 if (left_strip_length ~= 0) then

8465 local possible_to_strip = math.min(count, left_strip_length)
8466 count = count - possible_to_strip

8467 left_strip_length = left_strip_length - possible_to_strip
8468 left_total_stripped = left_total_stripped + possible_to_strip
8469 else

8470 full remainder = full _remainder .. character

8471 end

8472

8473 if (minimum_found) then

8474 minimum_remainder = minimum_remainder .. character
8475 elseif (count >= minimum) then

8476 minimum_found = true

8477 minimum_remainder = minimum_remainder

8478 .. string.rep(" ", count - minimum)
8479 end

8480

8481 if (code_started) then

8482 code_start = code_start .. character

8483 elseif (count >= minimum + 4) then

8484 code_started = true

8485 code_start = code_start

8486 .. string.rep(" ", count - (minimum + 4))

275



8487 end

8488 end

8489 end

8490

8491 local remainder

8492 if (code_started) then
8493 remainder = code_start

8494 else

8495 remainder = string.rep(" ", count - minimum)
8496 end

8497

8498 local is_minimum = count >= minimum

8499  return {

8500 is_code = code_started,

8501 remainder = remainder,

8502 left_total_stripped = left_total_stripped,
8503 is minimum = is_minimum,

8504 minimum_remainder = minimum_remainder,
8505 total_length = count,

8506 full _remainder = full remainder

8507  }

8508 end

8509
Count the total width of all indents in the indent table indent_table.

8510 local function count_indent_tab_level (indent_table)
8511 local count = 0
8512  if not has_indents(indent_table) then

8513 return count

8514 end

8515

8516 for i=1, #indent_table.indents do

8517 count = count + indent_table.indents[i].length
8518 end

8519 return count

8520 end

8521

Count the total width of a delimiter delimiter.

8522 local function total_delimiter_length(delimiter)
8523 local count = 0

8524  if type(delimiter) == "string" then return #delimiter end
8525  for _, value in pairs(delimiter) do

8526 count = count + total_delimiter_length(value)

8527  end

8528 return count

8529 end

8530

276



Process the container starter starter of a type indent_type. Adjust the width of
the indent if the delimiter is followed only by whitespaces is_blank.

oo

53
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570

31 local function process_starter_indent(_, _, indent_table, starter,

is_blank, indent_type, breakable)
local last_trail = starter[1]
local delimiter = starter[2]
local raw_new_trail = starter[3]

if indent_type == "bq" and not breakable then
indent_table.ignore_blockquote_blank = true
end

if has_trail(indent_table) then
local trail = indent_table.trail
if trail.is_code then
return false
end
last_trail = trail.remainder
else
local sp = process_starter_spacing(0, last_trail, 0, 0)

if sp.is_code then
return false
end
last_trail = sp.remainder
end

local preceding_indentation = count_indent_tab_level(indent_table) % 4
local last_trail_length = #last_trail
local delimiter_length = total_delimiter_length(delimiter)

local total_indent_level = preceding_indentation + last_trail_length
+ delimiter_length

local sp = {}
if not is_blank then
Sp = process_starter_spacing(total_indent_level, raw_new_trail,
0, 1)
end

local del_trail_length = sp.left_total_stripped
if is_blank then
del_trail_length = 1
elseif not sp.is_code then
del_trail_length = del_trail_length + #sp.remainder
end

277



8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590

local indent_length = last_trail_length + delimiter_length
+ del_trail_length
local new_indent_info = {name=indent_type, length=indent_length}

indent_table = update_indent_table(indent_table, new_indent_info,
true)
add_trail (indent_table,

{is_code=sp.is_code,
remainder=sp.remainder,
total_length=sp.total_length,
full_remainder=sp.full_remainder})

indent_table

return true, indent_table

end

Return the pattern corresponding with the indent name name.

8591 local function decode_pattern(name)

8592
8593
8594
8595
8596
8597
8598
8599
8600

local delimeter = parsers.succeed
if name == "bq" then

delimeter = parsers.more
end

return C(parsers.optionalspace) * C(delimeter)
* C(parsers.optionalspace) * Cp()

end

Find the first blank-only indent of the indent table indent_table followed by blank-
only indents.

8601 local function left_blank_starter(indent_table)

8602
8603

local blank_starter_index

8604  if not has_indents(indent_table) then
8605 return

8606 end

8607

8608 for i = #indent_table.indents,1,-1 do
8609 local value = indent_table.indents[i]
8610 if value.name == "1li" then

8611 blank_starter_index = i

8612 else

8613 break

8614 end

8615 end

8616

8617 return blank_starter_index

8618 end

278



8619

Apply the patterns decoded from the indents of the indent table indent_table
iteratively starting at position index of the string s. If the is_optional mode is
selected, match as many patterns as possible, else match all or fail. With the option
is_blank, the parsing behaves as optional after the position of a blank-only indent
has been surpassed.

8620 local function traverse_indent(s, i, indent_table, is_optional,

8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658

8659

local new_index = i

local preceding_indentation
local current_trail = {}

local blank starter = left_
if current_line_indents ==
current_line_indents = {}

end

for index = 1,#indent_table
local value = indent_tabl

local pattern =

-- match decoded pattern

local new_indent_info = 1
if new_indent_info == nil
local blankline_end =1

Ct(parsers.blankline
if is_optional or not i
or not blankline_end
return is_optional, n
current_line_i
end

return traverse_indent(

end

local raw_last_trail =
local delimiter = new_ind
local raw_new_trail = new
local next_index = new_in
local space_only = delimi

is_blank, current_line_indents)

=0

blank_starter (indent_table)

nil then

.indents do
e.indents[index]

decode_pattern(value.name)

peg.match(Ct(pattern), s, new_index)
then

peg.match(

* Cg(Cp(), "pos")), s, new_index)

ndent_table.ignore_blockquote_blank
then

ew_index, current_trail,

ndents

s, tonumber(blankline_end.pos),
indent_table, is_optional, is_blank,
current_line_indents)

new_indent_info[1]

ent_info[2]
_indent_info[3]
dent_info[4]

ter == "

279



8660 —-- check previous trail

8661 if not space_only and next(current_trail) == nil then

8662 local sp = process_starter_spacing(0, raw_last_trail, 0, 0)
8663 current_trail = {is_code=sp.is_code, remainder=sp.remainder,
8664 total_length=sp.total_length,

8665 full_remainder=sp.full_remainder}

8666 end

8667

8668 if next(current_trail) ~= nil then

8669 if not space_only and current_trail.is_code then

8670 return is_optional, new_index, current_trail,

8671 current_line_indents

8672 end

8673 if current_trail.internal remainder ~= nil then

8674 raw_last_trail = current_trail.internal remainder

8675 end

8676 end

8677

8678 local raw_last_trail_length = 0

8679 local delimiter_length = 0

8680

8681 if not space_only then

8682 delimiter_length = #delimiter

8683 raw_last_trail_length = #raw_last_trail

8684 end

8685

8686 local total_indent_level = preceding_indentation

8687 + raw_last_trail_length + delimiter_length
8688

8689 local spacing_to_process

8690 local minimum = O

8691 local left_strip_length = 0

8692

8693 if not space_only then

8694 spacing_to_process = raw_new_trail

8695 left_strip_length = 1

8696 else

8697 spacing_to_process = raw_last_trail

8698 minimum = value.length

8699 end

8700

8701 local sp = process_starter_spacing(total_indent_level,

8702 spacing_to_process, minimum,
8703 left_strip_length)

8704

8705 if space_only and not sp.is_minimum then

8706 return is_optional or (is_blank and blank_starter <= index),

280



8707 new_index, current_trail, current_line_indents
8708 end
8709

8710 local indent_length = raw_last_trail_length + delimiter_length
8711 + sp.left_total_stripped

8712

8713 -- update info for the next pattern

8714 if not space_only then

8715 preceding_indentation = preceding_indentation + indent_length
8716 else

8717 preceding_indentation = preceding_indentation + value.length
8718 end

8719

8720 current_trail = {is_code=sp.is_code, remainder=sp.remainder,
8721 internal_remainder=sp.minimum_remainder,

8722 total_length=sp.total_length,

8723 full_remainder=sp.full_remainder}

8724

8725 current_line_indents[#current_line_indents + 1] = new_indent_info
8726 new_index = next_index

8727 end

8728

8729 return true, new_index, current_trail, current_line_indents

8730 end

8731

Check if a code trail is expected.

8732 local function check_trail(expect_code, is_code)

8733 return (expect_code and is_code) or (not expect_code and not is_code)
8734 end

8735

Check if the current trail of the indent_table would produce code if it is expected
expect_code or it would not if it is not. If there is no trail, process and check the
current spacing spacing.

8736 local check_trail_joined =

8737 function(s, i, indent_table, -- luacheck: ignore s i
8738 spacing, expect_code, omit_remainder)
8739 local is_code

8740 local remainder

8741

8742 if has_trail(indent_table) then

8743 local trail = indent_table.trail

8744 is_code = trail.is_code

8745 if is_code then

8746 remainder = trail.remainder

8747 else

8748 remainder = trail.full_remainder

281



8749 end

8750 else

8751 local sp = process_starter_spacing(0, spacing, 0, 0)
8752 is_code = sp.is_code

8753 if is_code then

8754 remainder = sp.remainder

8755 else

8756 remainder = sp.full_remainder

8757 end

8758 end

8759

8760 local result = check_trail (expect_code, is_code)
8761 if omit_remainder then

8762 return result

8763 end

8764 return result, remainder

8765 end

8766

Check if the current trail of the indent_table is of length between min and max.
8767 local check_trail_length =

8768 function(s, i, indent_table, -- luacheck: ignore s i
8769 spacing, min, max)

8770 local trail

8771

8772 if has_trail (indent_table) then

8773 trail = indent_table.trail

8774 else

8775 trail = process_starter_spacing(0, spacing, 0, 0)
8776 end

8777

8778 local total_length = trail.total_length

8779 if total_length == nil then

8780 return false

8781 end

8782

8783 return min <= total_length and total_length <= max
8784 end

8785

Check the indentation of the continuation line, optionally with the mode is_optional
selected. Check blank line exclusively with is_blank.

8786 local function check_continuation_indentation(s, i, indent_table,

8787 is_optional, is_blank)
8788 if not has_indents(indent_table) then

8789 return true

8790 end

8791

282



8792 local passes, new_index, current_trail, current_line_indents =

8793 traverse_indent(s, i, indent_table, is_optional, is_blank)
8794

8795 if passes then

8796 indent_table.current_line_indents = current_line_indents
8797 indent_table = add_trail (indent_table, current_trail)

8798 return new_index, indent_table

8799 end

8800 return false

8801 end

8802

Get name of the last indent from the indent_table.

8303 local function get_last_indent_name(indent_table)
8804  if has_indents(indent_table) then

8805 return indent_table.indents[#indent_table.indents] .name
8806 end

8807 end

8808

Remove the remainder altogether if the last indent from the indent_table is blank-
only.

8809 local function remove_remainder_if blank(indent_table, remainder)

8810  if get_last_indent_name(indent_table) == "1i" then
8811 return ""

8812 end

8813 return remainder

8814 end

8815

Take the trail trail or create a new one from spacing and compare it with the
expected trail_type. On success return the index i and the remainder of the trail.
8816 local check_trail_type =

8817  function(s, i, -- luacheck: ignore s i

8818 trail, spacing, trail_type)

8819 if trail == nil then

8820 trail = process_starter_spacing(0, spacing, 0, 0)
8821 end

8822

8823 if trail_type == "non-code" then

8824 return check_trail(false, trail.is_code)
8825 end

8826 if trail_type == "code" then

8827 return check_trail(true, trail.is_code)
8828 end

8829 if trail_type == "full-code" then

8830 if (trail.is_code) then

8831 return i, trail.remainder

283



8832
8833
8834
8835
8836
8837
8838

8839

end

return i, ""
end
if trail_type == "full-any" then
return i, trail.internal_remainder
end

end

Stores or restores an is_freezing trail from indent table indent_table.

8840 local trail_freezing =

8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856

function(s, i, -- luacheck: ignore s i

indent_table, is_freezing)
if is_freezing then
if indent_table.is_trail_frozen then
indent_table.trail = indent_table.frozen_trail
else
indent_table.frozen_trail = indent_table.trail
indent_table.is_trail_frozen = true
end
else
indent_table.frozen_trail = nil
indent_table.is_trail_frozen = false
end
return true, indent_table

end

Check the indentation of the continuation line, optionally with the mode is_optional
selected. Check blank line specifically with is_blank. Additionally, also directly
check the new trail with a type trail_type.

8857 local check_continuation_indentation_and_trail =

8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8369
8870
8871
8872
8873

function (s, i, indent_table, is_optional, is_blank, trail_type,

reset_rem, omit_remainder)
if not has_indents(indent_table) then
local spacing, new_index = lpeg.match( C(parsers.spacechar~0)
* CpO), s, 1)
local result, remainder = check_trail_type(s, i,
indent_table.trail, spacing, trail_type)
if remainder == nil then
if result then
return new_index
end
return false
end
if result then
return new_index, remainder
end

284



8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910

The
8911

8912
8913
8914
8915
8916
8917
8918

8919

return false
end

local passes, new_index, current_trail = traverse_indent(s, i,
indent_table, is_optional, is_blank)

if passes then
local spacing
if current_trail == nil then
local newer_spacing, newer_index = lpeg.match(
C(parsers.spacechar™0) * Cp(), s, i)

current_trail = process_starter_spacing(0, newer_spacing, 0, 0)

new_index = newer_index
spacing = newer_spacing
else
spacing = current_trail.remainder
end
local result, remainder = check_trail_type(s, new_index,
current_trail, spacing, trail_type)
if remainder == nil or omit_remainder then
if result then
return new_index
end
return false
end

if is_blank and reset_rem then

remainder = remove_remainder_if_blank(indent_table, remainder)

end
if result then
return new_index, remainder

end
return false

end

return false

end

following patterns check whitespace indentation at the start of a block.

parsers.check_trail = Cmt( Cb("indent_info") * C(parsers.spacechar~0)

* Cc(false), check_trail_joined)

parsers.check_trail_no_rem = Cmt( Cb("indent_info")

* C(parsers.spacechar™0) * Cc(false)

* Cc(true), check_trail_joined)

parsers.check_code_trail = Cmt( Cb("indent_info")
* C(parsers.spacechar”0)

285



8920 * Cc(true), check_trail_joined)

8921

8922 parsers.check_trail_length_range = function(min, max)

8923  return Cmt( Cb("indent_info") * C(parsers.spacechar”0) * Cc(min)
8924 * Cc(max), check_trail_length)

8925 end

8926

8927 parsers.check_trail_length = function(n)

8928 return parsers.check_trail_length_range(n, n)

8929 end

8930

The following patterns handle trail backup, to prevent a failing pattern to modify it
before passing it to the next.

8931 parsers.freeze_trail = Cg( Cmt(Cb("indent_info")

8932 * Cc(true), trail_freezing), "indent_info")
8933

8934 parsers.unfreeze_trail = Cg(Cmt(Cb("indent_info") * Cc(false),

8935 trail_freezing), "indent_info")

8936

The following patterns check indentation in continuation lines as defined by the
container start.

8937 parsers.check_minimal_indent = Cmt(Cb("indent_info") * Cc(false),

8938 check_continuation_indentation)

8939

8940 parsers.check_optional_indent = Cmt(Cb("indent_info") * Cc(true),

8941 check_continuation_indentation)
8942

8943 parsers.check_minimal_blank_indent

8944 = Cmt( Cb("indent_info") * Cc(false)

8945 * Cc(true)

8946 , check_continuation_indentation)

8947

The following patterns check indentation in continuation lines as defined by the
container start. Additionally the subsequent trail is also directly checked.

8948

8949 parsers.check_minimal_indent_and_trail =

8950  Cmt( Cb("indent_info")

8951 * Cc(false) * Cc(false) * Cc("non-code") * Cc(true)
8952 , check_continuation_indentation_and_trail)

8953
8954 parsers.check_minimal_indent_and_code_trail =
8955  Cmt( Cb("indent_info")

8956 * Cc(false) * Cc(false) * Cc("code") * Cc(false)
8957 , check_continuation_indentation_and_trail)
8958

286



8959 parsers.check_minimal_blank_indent_and_full_code_trail =
8960  Cmt( Cb("indent_info")

8961 * Cc(false) * Cc(true) * Cc("full-code") * Cc(true)
8962 , check_continuation_indentation_and_trail)

8963

8964 parsers.check_minimal_indent_and_any_trail =

8965  Cmt( Cb("indent_info")

8966 * Cc(false) * Cc(false) * Cc("full-any") * Cc(true) * Cc(false)
8967 , check_continuation_indentation_and_trail)
8968

8969 parsers.check_minimal_blank_indent_and_any_trail =

8970  Cmt( Cb("indent_info")

8971 * Cc(false) * Cc(true) * Cc("full-any") * Cc(true) * Cc(false)
8972 , check_continuation_indentation_and_trail)

8973

8974 parsers.check_minimal_blank_indent_and_any_trail_no_rem
8975  Cmt( Cb("indent_info")

8976 * Cc(false) * Cc(true) * Cc("full-any") * Cc(true) * Cc(true)
8977 , check_continuation_indentation_and_trail)
8978

8979 parsers.check_optional_indent_and_any_trail =
8980  Cmt( Cb("indent_info")

8981 * Cc(true) * Cc(false) * Cc("full-any") * Cc(true) * Cc(false)
8982 , check_continuation_indentation_and_trail)
8983

8984 parsers.check_optional_blank_indent_and_any_trail =
8985  Cmt( Cb("indent_info")

8986 * Cc(true) * Cc(true) * Cc("full-any") * Cc(true) * Cc(false)
8987 , check_continuation_indentation_and_trail)
8988

The following patterns specify behaviour around newlines.

8989

8990 parsers.spnlc_noexc = parsers.optionalspace

8991 * ( parsers.newline

8992 * parsers.check_minimal_indent_and_any_trail)~-1
8993

8994 parsers.spnlc = parsers.optionalspace

8995 * (V("EndlineNoSub")) -1

8996

8997 parsers.spnlc_sep = parsers.optionalspace * V("EndlineNoSub")
8998 + parsers.spacechar”1

8999

9000 parsers.only_blank = parsers.spacechar”0

9001 *x (parsers.newline + parsers.eof)

9002

287



odd backslash

match [*)]
for %, capture \*%
for [*%)], capture \?**1{match)
reset k

match \
increment k

match [*\%)]
capture \>*(match)
reset k

even backslash

match %
capture \¥
reset k

match [ 2L \%]
capture (match)

leading tabs
and spaces

capture LLs

match [ 2]

match [ 2]

Figure 8: A pushdown automaton that recognizes TEX comments

288

match \



The parsers.commented_line”1 parser recognizes the regular language of TEX
comments, see an equivalent finite automaton in Figure 8.

9003 parsers.commented_line_letter = parsers.linechar

9004 + parsers.newline

9005 - parsers.backslash

9006 - parsers.percent

9007 parsers.commented_line = Cg(Cc(""), "backslashes")

9008 * ((#(parsers.commented_line_letter
(

09 - parsers.newline)

10 * Cb("backslashes")

11 * Cs(parsers.commented_line_letter

12 - parsers.newline)”1 -- initial

13 * Cg(Cc(""), "backslashes"))

14 + #( parsers.backslash

15 * (parsers.backslash + parsers.newline))
16 * Cg((parsers.backslash -- even backslash

17 * ( parsers.backslash

18 + #parsers.newline))”~1, "backslashes")

19 + (parsers.backslash

0 x (#parsers.percent

1 * Cb("backslashes")

2 / function(backslashes)

3 return string.rep("\\", #backslashes / 2)
1 end

5 * C(parsers.percent)

9026 + #parsers.commented_line_letter

027 * Cb("backslashes")

28 * Cc("\\")

29 * C(parsers.commented_line_letter))

30 * Cg(Cc(""), "backslashes")))~0

31 x (#parsers.percent

032 * Cb("backslashes")
33 / function(backslashes)

34 return string.rep("\\", #backslashes / 2)

35 end

36 * ((parsers.percent -- comment

37 * parsers.line

38 *x #parsers.blankline) -- blank line

39 / "\n"

10 + parsers.percent -- comment

11 * parsers.line

12 * parsers.optionalspace) -- leading spaces

43 + #(parsers.newline)

9044 * Cb("backslashes")

9045 * C(parsers.newline))

4
17 parsers.chunk = parsers.line * (parsers.optionallyindentedline

289



parsers

parsers

56 parsers

parsers

parsers
parsers

parsers

parsers.

attribute

+

*
*
*

* *

.attribute_value

.attribute_raw =

.attribute_key_char

.attribute_raw_char

+ +

+
+

- parsers.blankline)~0

parsers.unicode.following_alpha
parsers.unicode.following_numeric
S(u_ :_u)
parsers.unicode.following_alpha
parsers.unicode.following_numeric
S("—_")

.attribute_key = (parsers.attribute_key_char

- parsers.dash - parsers.digit)
* parsers.attribute_key_char~0

= (

~ ¥ ¥ M~ ¥ ¥

(parsers.dquote / "")
(parsers.anyescaped - parsers.dquote)”0
(parsers.dquote / ""))

(parsers.squote / "")
(parsers.anyescaped - parsers.squote) 0
(parsers.squote / ""))
parsers.anyescaped

parsers.dquote

parsers.rbrace

parsers.space) "0

.attribute_identifier = parsers.attribute_key_char”1
.attribute_classname = parsers.unicode.following_alpha

* parsers.attribute_key_char”0

parsers.attribute_raw_char”1

(parsers.dash * Cc(".unnumbered"))
C( parsers.hash

* parsers.attribute_identifier)
C( parsers.period

* parsers.attribute_classname)
Cs( parsers.attribute_key
parsers.optionalspace
parsers.equal
parsers.optionalspace
parsers.attribute_value)
parsers.attributes = parsers.lbrace
parsers.optionalspace
parsers.attribute
(parsers.spacechar™1

* parsers.attribute)”0
parsers.optionalspace
parsers.rbrace

*
*
*
*

parsers.raw_attribute = parsers.lbrace
* parsers.optionalspace
* parsers.equal

290



9095 * C(parsers.attribute_raw)
9096 * parsers.optionalspace
9097 * parsers.rbrace

9098

9099 -- block followed by O or more optionally

9100 -- indented blocks with first line indented.

9101 parsers.indented_blocks = function(bl)

9102  return Cs( bl

)
)

9103 * ( parsers.blankline”1

9104 * parsers.indent

9105 * -parsers.blankline

9106 * b1)~0

9107 * (parsers.blankline”1 + parsers.eof) )
9108 end

3.1.5.4 Parsers Used for HTML Entities

9109 local function repeat_between(pattern, min, max)
9110  return -pattern”(max + 1) * pattern™min

9111 end

9112

0113 parsers.hexentity

parsers.ampersand * parsers.hash * C(S("Xx"))

9114 * C(repeat_between(parsers.hexdigit, 1, 6))
9115 * parsers.semicolon

9116 parsers.decentity = parsers.ampersand * parsers.hash

9117 * C(repeat_between(parsers.digit, 1, 7))

9118 * parsers.semicolon

9119 parsers.tagentity = parsers.ampersand * C(parsers.alphanumeric~1)
9120 * parsers.semicolon

9121

9122 parsers.html_entities

9123 = parsers.hexentity / entities.hex_entity_with_x_char

9124  + parsers.decentity / entities.dec_entity
9125  + parsers.tagentity / entities.char_entity

3.1.5.5 Parsers Used for Markdown Lists

9126 parsers.bullet = function(bullet_char, interrupting)

9127 local allowed_end

9128 if interrupting then

9129 allowed_end = C(parsers.spacechar”1) * #parsers.linechar
9130 else

9131 allowed_end

C(parsers.spacechar™1)

9132 + #(parsers.newline + parsers.eof)
9133  end

9134  return parsers.check_trail

9135 * Ct(C(bullet_char) * Cc(""))

9136 * allowed_end

291



9137 end

9138

9139 local function tickbox(interior)

9140  return parsers.optionalspace * parsers.lbracket

9141 * interior * parsers.rbracket * parsers.spacechar”1
9142 end

9143

9144 parsers.ticked_box = tickbox(S("xX")) * Cc(1.0)

9145 parsers.halfticked_box = tickbox(S("./")) * Cc(0.5)

9146 parsers.unticked_box = tickbox(parsers.spacechar™1) * Cc(0.0)
9147

3.1.5.6 Parsers Used for Markdown Code Spans

9148 parsers.openticks = Cg(parsers.backtick™1, "ticks")
9149

9150 local function captures_equal_length(_,i,a,b)

9151 return #a == #b and i

9152 end

9153

9154 parsers.closeticks = Cmt(C(parsers.backtick™1)

9155 * Cb("ticks"), captures_equal_length)

9156
9157 parsers.intickschar = (parsers.any - S("\n\r "))

9158 + V("NoSoftLineBreakEndline")

9159 + (parsers.backtick™1 - parsers.closeticks)
9160

9161 local function process_inticks(s)

9162 s = s:gsub("\n", " ")

9163 s = s:gsub("~ (.x) $", "%1")

9164 return s

9165 end

9166

9167 parsers.inticks = parsers.openticks

9168 * C(parsers.space”0)

9169 * parsers.closeticks

9170 + parsers.openticks

9171 * Cs(Cs(parsers.intickschar™0) / process_inticks)
9172 * parsers.closeticks

9173

3.1.5.7 Parsers Used for HTML

9174 -- case-insensitive match (we assume s is lowercase)
9175 -- must be single byte encoding

9176 parsers.keyword_exact = function(s)

9177 local parser = P(0)

9178 for i=1,#s do

292



9179 local ¢ = s:sub(i,i)

9180 local m = ¢ .. upper(c)

9181 parser = parser * S(m)

9182 end

9183 return parser

9184 end

9185

9186 parsers.special_block_keyword =

9187 parsers.keyword_exact("pre") +

9188 parsers.keyword_exact ("script") +
9189 parsers.keyword_exact("style") +
9190 parsers.keyword_exact ("textarea")
9191

9192 parsers.block_keyword =

9193 parsers.keyword_exact("address") +
9194 parsers.keyword_exact("article") +
9195 parsers.keyword_exact("aside") +
9196 parsers.keyword_exact ("base") +
9197 parsers.keyword_exact ("basefont") +
9198 parsers.keyword_exact ("blockquote") +
9199 parsers.keyword_exact ("body") +
9200 parsers.keyword_exact("caption") +
9201 parsers.keyword_exact("center") +
9202 parsers.keyword_exact("col") +

9203 parsers.keyword_exact("colgroup") +
9204 parsers.keyword_exact("dd") +

9205 parsers.keyword_exact("details") +
9206 parsers.keyword_exact("dialog") +
9207 parsers.keyword_exact("dir") +

9208 parsers.keyword_exact("div") +

9209 parsers.keyword_exact ("dl") +

9210 parsers.keyword_exact ("dt") +

9211 parsers.keyword_exact("fieldset") +
9212 parsers.keyword_exact ("figcaption") +
9213 parsers.keyword_exact("figure") +
9214 parsers.keyword_exact ("footer") +
9215 parsers.keyword_exact("form") +
9216 parsers.keyword_exact ("frame") +
9217 parsers.keyword_exact("frameset") +
9218 parsers.keyword_exact("h1") +

9219 parsers.keyword_exact ("h2") +

9220 parsers.keyword_exact ("h3") +

9221 parsers.keyword_exact ("h4") +

9222 parsers.keyword_exact("h5") +

9223 parsers.keyword_exact ("h6") +

9224 parsers.keyword_exact("head") +
9225 parsers.keyword_exact ("header") +

293



9226 parsers.keyword_exact ("hr") +

9227 parsers.keyword_exact ("html") +
9228 parsers.keyword_exact("iframe") +
9229 parsers.keyword_exact("legend") +
9230 parsers.keyword_exact ("1i") +

9231 parsers.keyword_exact("link") +
9232 parsers.keyword_exact("main") +
9233 parsers.keyword_exact ("menu") +
9234 parsers.keyword_exact ("menuitem") +
9235 parsers.keyword_exact("nav") +

9236 parsers.keyword_exact("noframes") +
9237 parsers.keyword_exact("ol") +

9238 parsers.keyword_exact ("optgroup") +
9239 parsers.keyword_exact ("option") +
9240 parsers.keyword_exact("p") +

9241 parsers.keyword_exact ("param") +
9242 parsers.keyword_exact("section") +
9243 parsers.keyword_exact ("source") +
9244 parsers.keyword_exact ("summary") +
9245 parsers.keyword_exact("table") +
9246 parsers.keyword_exact ("tbody") +
9247 parsers.keyword_exact ("td") +

9248 parsers.keyword_exact ("tfoot") +
9249 parsers.keyword_exact("th") +

9250 parsers.keyword_exact ("thead") +
9251 parsers.keyword_exact("title") +
9252 parsers.keyword_exact ("tr") +

9253 parsers.keyword_exact("track") +
9254 parsers.keyword_exact("ul")

9255

9256 -— end conditions

9257 parsers.html_blankline_end_condition
9258 = parsers.linechar”0

9259  * ( parsers.newline

9260 *x (parsers.check_minimal_blank_indent_and_any_trail
9261 * #parsers.blankline

9262 + parsers.check_minimal_indent_and_any_trail)
9263 * parsers.linechar~1)~0

9264 % (parsers.newline™-1 / "")

9265

9266 local function remove_trailing_blank_lines(s)

9267  return s:gsub("[\n\rl+/sx$", "")
9268 end
9269

9270 parsers.html_until_end = function(end_marker)
9271 return Cs(Cs((parsers.newline
9272 * (parsers.check_minimal_blank_indent_and_any_trail

294



9273 * #parsers.blankline

9274 + parsers.check_minimal_indent_and_any_trail)
9275 + parsers.linechar - end_marker)~0

9276 * parsers.linechar”0 * parsers.newline™-1)

9277 / remove_trailing_blank_lines)

9278 end

9279

9280 —-- attributes

9281 parsers.html_attribute_spacing = parsers.optionalspace
9282 * V("NoSoftLineBreakEndline")
9283 * parsers.optionalspace
9284 + parsers.spacechar”1
9285

0286 parsers.html_attribute_name = ( parsers.letter

0287 + parsers.colon

9288 + parsers.underscore)

9289 * ( parsers.alphanumeric

9290 + parsers.colon

9291 + parsers.underscore

9292 + parsers.period

9293 + parsers.dash)”0

9294

9295 parsers.html_attribute_value = parsers.squote

9296 * (parsers.linechar - parsers.squote)”0
9297 * parsers.squote

9298 + parsers.dquote

9299 * (parsers.linechar - parsers.dquote)”0
9300 * parsers.dquote

9301 + ( parsers.any

9302 - parsers.spacechar

9303 - parsers.newline

9304 - parsers.dquote

9305 - parsers.squote

9306 - parsers.backtick

9307 - parsers.equal

9308 - parsers.less

9309 - parsers.more) "1
9310
9311 parsers.html_inline_attribute_value = parsers.squote

9312 * (V("NoSoftLineBreakEndline")
9313 + parsers.any

9314 - parsers.blankline™2

9315 - parsers.squote)”0

9316 * parsers.squote

9317 + parsers.dquote

9318 * (V("NoSoftLineBreakEndline")
9319 + parsers.any

295



9320
9321
9322

- parsers.blankline™2

- parsers.dquote)”0
parsers.dquote

9323 (parsers.any

9324 - parsers.spacechar
9325 - parsers.newline
9326 - parsers.dquote
9327 — parsers.squote
9328 - parsers.backtick
9329 - parsers.equal
9330 - parsers.less
9331 - parsers.more)”1
9332

0333 parsers.html_attribute_value_specification

9334 = parsers.optionalspace

9335  * parsers.equal

9336~ * parsers.optionalspace

9337 * parsers.html_attribute_value

9338

0339 parsers.html_spnl = parsers.optionalspace

9340 *x (V("NoSoftLineBreakEndline")

9341 * parsers.optionalspace) -1

9342

0343 parsers.html_inline_attribute_value_specification

9344 = parsers.html_spnl

9345  * parsers.equal

0346 * parsers.html_spnl

9347 * parsers.html_inline_attribute_value

9348

9349 parsers.html_attribute

0350 = parsers.html_attribute_spacing

9351 * parsers.html_attribute_name

9352 * parsers.html_inline_attribute_value_specification™-1
9353

9354 parsers.html_non_newline_attribute

9355 = parsers.spacechar”1

9356 * parsers.html_attribute_name

9357 * parsers.html_attribute_value_specification™-1

9358

9359 parsers.nested_breaking blank = parsers.newline

9360 * parsers.check_minimal_blank_indent
9361 * parsers.blankline

9362

9363 parsers.html_comment_start = P("<!--")

9364

9365 parsers.html_comment_end = P("-->")

9366

296



9367 parsers.html_comment

9368 = Cs( parsers.html_comment_start

9369 * parsers.html_until_end(parsers.html_comment_end))

9370

9371 parsers.html_inline_comment = (parsers.html_comment_start / "")

9372 * —P(">") * -P("->")

9373 * Cs(( V("NoSoftLineBreakEndline")
9374 + parsers.any

9375 - parsers.nested_breaking_blank
9376 - parsers.html_comment_end) ~0)
9377 * (parsers.html_comment_end / "")
9378

9379 parsers.html_cdatasection_start = P("<![CDATA[")

9380

0381 parsers.html_cdatasection_end = P("]]>")

9382

0383 parsers.html_cdatasection

9384 = Cs( parsers.html_cdatasection_start

9385 * parsers.html_until_end(parsers.html_cdatasection_end))

9386
0387 parsers.html_inline_cdatasection

9388 = parsers.html_cdatasection_start
9389  * Cs(V("NoSoftLineBreakEndline") + parsers.any
9390 - parsers.nested_breaking_blank - parsers.html_cdatasection_end) 0

9391 * parsers.html_cdatasection_end

9392

9393 parsers.html_declaration_start = P("<!") * parsers.letter
9394

9395 parsers.html_declaration_end = P(">")

9396

0397 parsers.html_declaration

9398 = Cs( parsers.html_declaration_start

9399 * parsers.html_until_end(parsers.html_declaration_end))

9400

9401 parsers.html_inline_declaration

9402 = parsers.html_declaration_start

9403  * Cs(V("NoSoftLineBreakEndline") + parsers.any

9404 - parsers.nested_breaking_blank - parsers.html_declaration_end) "0

9405 * parsers.html_declaration_end

9406

9407 parsers.html_instruction_start = P("<?")
9408

9409 parsers.html_instruction_end = P("7>")

9410
9411 parsers.html_instruction
9412 = Cs( parsers.html_instruction_start

9413 * parsers.html_until_end(parsers.html_instruction_end))

297



9414
9415 parsers.html_inline_instruction = parsers.html_instruction_start

9416 * Cs( V("NoSoftLineBreakEndline")

9417 + parsers.any

9418 - parsers.nested_breaking_blank
9419 - parsers.html_instruction_end) "0
9420 * parsers.html_instruction_end

9421

9422 parsers.html_blankline = parsers.newline

9423 * parsers.optionalspace

9424 * parsers.newline

9425

9426 parsers.html_tag_start = parsers.less
9427

0428 parsers.html_tag_closing_start = parsers.less
9429 * parsers.slash
9430

9431 parsers.html_tag_end = parsers.html_spnl

9432 * parsers.more

9433
9434 parsers.html_empty_tag_end = parsers.html_spnl

9435 * parsers.slash

9436 * parsers.more

9437

9438 —-- opening tags

9439 parsers.html_any_open_inline_tag = parsers.html_tag_start
9440 * parsers.keyword

9441 * parsers.html_attribute”0
9442 *

parsers.html_tag_end
9443
0444 parsers.html_any_open_tag = parsers.html_tag_start

9445 * parsers.keyword
9446 * parsers.html_non_newline_attribute”0
9447 * parsers.html_tag_end

9448
0449 parsers.html_open_tag = parsers.html_tag_start

9450 * parsers.block_keyword
9451 * parsers.html_attribute”0
9452 * parsers.html_tag_end

9453
9454 parsers.html_open_special_tag = parsers.html_tag_start

9455 * parsers.special_block_keyword
9456 * parsers.html_attribute”0

9457 * parsers.html_tag_end

9458

9459 —-- incomplete tags

9460 parsers.incomplete_tag_following = parsers.spacechar

298



9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507

+ parsers.more
+ parsers.slash * parsers.more
+ #(parsers.newline + parsers.eof)

parsers.incomplete_special_tag_following = parsers.spacechar

parsers.more

#( parsers.newline
+ parsers.eof)

+ o+

parsers.html_incomplete_open_tag = parsers.html_tag_start
parsers.block_keyword
parsers.incomplete_tag_following

*  *

parsers.html_incomplete_open_special_tag
parsers.html_tag_start
parsers.special_block_keyword
parsers.incomplete_special_tag_following

* ¥

parsers.html_incomplete_close_tag = parsers.html_tag_closing_start
parsers.block_keyword
parsers.incomplete_tag_following

parsers.html_incomplete_close_special_tag
parsers.html_tag_closing_start
parsers.special_block_keyword
parsers.incomplete_tag_following

-- closing tags

parsers.html_close_tag = parsers.html_tag_closing_start
parsers.block_keyword
parsers.html_tag_end

* % |

parsers.html_any_close_tag = parsers.html_tag_closing_start
parsers.keyword
parsers.html_tag_end

* ¥

parsers.html_close_special_tag = parsers.html_tag_closing_start
parsers.special_block_keyword

parsers.html_tag_end

-— empty tags
parsers.html_any_empty_inline_tag

parsers.html_tag_start

* parsers.keyword

* parsers.html_attribute”0

* parsers.html_empty_tag_end

parsers.html_any_empty_tag = parsers.html_tag_start

299



9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531

9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548

parsers.html_empty_tag

* ¥ ¥

parsers.html_empty_special_t

parsers.html_incomplete_bloc
= parsers.html_incomplete_
+ parsers.html_incomplete_
+ parsers.html_incomplete_

-- parse special html blocks
parsers.html_blankline_endin
= ( parsers.html_close_spe

+ parsers.html_empty_spe

* #( parsers.optionalspace

parsers.keyword
parsers.html_non_newline_attribute”0
parsers.optionalspace

parsers.slash

parsers.more

* X X ¥ ¥

parsers.html_tag_start
parsers.block_keyword
parsers.html_attribute”0
parsers.html_empty_tag_end

ag = parsers.html_tag_start
parsers.special_block_keyword
parsers.html_attribute”0
parsers.html_empty_tag_end

* ¥ ¥

ks

open_tag
open_special_tag
close_tag

g_special_block_opening
cial_tag
cial_tag)

* (parsers.newline + parsers.eof))

parsers.html_blankline_endin
= parsers.html_blankline_e
* parsers.html_blankline_e

parsers.html_special_block_o
= parsers.html_incomplete_
- parsers.html_empty_speci

parsers.html_closing_special
= parsers.html_special_blo
* parsers.html_until_end(p

parsers.html_special_block
= parsers.html_blankline_e
+ parsers.html_closing_spe

—-- parse html blocks
parsers.html_block_opening

g_special_block
nding_special_block_opening
nd_condition

pening
open_special_tag
al_tag

_block

ck_opening
arsers.html_close_special_tag)

nding_special_block
cial_block

= parsers.html_incomplete_open_tag
+ parsers.html_incomplete_close_tag

300



56 parsers.html_block = parsers.html_block_opening
* parsers.html_blankline_end_condition

9 -- parse any html blocks
9560 parsers.html_any_block_opening

9561 = ( parsers.html_any_open_tag
9562 + parsers.html_any_close_tag
9563 + parsers.html_any_empty_tag)

9564  * #(parsers.optionalspace * (parsers.newline + parsers.eof))

9565

9566 parsers.html_any_block = parsers.html_any_block_opening

9567 * parsers.html_blankline_end_condition

9568

09569 parsers.html_inline_comment_full = parsers.html_comment_start

9570 -P(">") *x -p("->")

9571 Cs(( V("NoSoftLineBreakEndline")
9572 + parsers.any - P("--")

3 - parsers.nested_breaking_blank
! - parsers.html_comment_end) ~0)
5 * parsers.html_comment_end

7 parsers.html_inline_tags = parsers.html_inline_comment_full
parsers.html_any_empty_inline_tag
parsers.html_inline_instruction
parsers.html_inline_cdatasection
parsers.html_inline_declaration
parsers.html_any_open_inline_tag
parsers.html_any_close_tag

9582
9583
9584

+ 4+ + A+ o+ +

3.1.5.8 Parsers Used for Markdown Tags and Links

9585 parsers.urlchar = parsers.anyescaped

9586 - parsers.newline
9587 - parsers.more
9588

0589 parsers.auto_link_scheme_part
9590

9591

9592

9593

9594 parsers.auto_link_scheme = parsers.letter

9595 parsers.auto_link_scheme_part

9596 parsers.auto_link_scheme_part~-30
9597

9598 parsers.absolute_uri = parsers.auto_link_scheme * parsers.colon

parsers.alphanumeric
parsers.plus
parsers.period
parsers.dash

+ 4+ +

* ¥

301



9599 * ( parsers.any - parsers.spacing

9600 - parsers.less - parsers.more) 0

9601

9602 parsers.printable_characters = S(".'#$%&'*x+/=7"_"{|}~-")

9603

9604 parsers.email_address_local_part_char = parsers.alphanumeric

9605 + parsers.printable_characters
9606

9607 parsers.email_address_local_part

9608 = parsers.email_address_local_part_char”1

9609

9610 parsers.email_address_dns_label

parsers.alphanumeric

9611 * ( parsers.alphanumeric

9612 + parsers.dash)~-62

9613 * B(parsers.alphanumeric)

9614

9615 parsers.email_address_domain = parsers.email_address_dns_label

9616 * ( parsers.period

9617 * parsers.email_address_dns_label) 0

9618
9619 parsers.email_address = parsers.email_address_local_part

9620 * parsers.at

9621 * parsers.email_address_domain
9622

9623 parsers.auto_link_url = parsers.less

9624 C(parsers.absolute_uri)

* ¥

9625
9626
9627 parsers.auto_link_email = parsers.less

9628 C(parsers.email_address)
9629 parsers.more

9630

9631 parsers.auto_link_relative_reference = parsers.less

parsers.more

* *

9632 * C(parsers.urlchar”1)

9633 * parsers.more

9634

9635 parsers.autolink = parsers.auto_link_url

9636 + parsers.auto_link_email

9637

9638 —— content in balanced brackets, parentheses, or quotes:

9639 parsers.bracketed = P{ parsers.lbracket

9640 * (( parsers.backslash / "" * parsers.rbracket
9641 + parsers.any - (parsers.lbracket

9642 + parsers.rbracket
9643 + parsers.blankline”2)
9644 ) +V({1))~o

9645 * parsers.rbracket }

302



9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661

9662
9663
9664
9665
9666
9667
9668
9669
9670
9671

9672
9673
9674
9675
9676
9677
9678
9679
9680
9681

9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692

parsers.inparens

parsers.squoted

parsers.dquoted

P{ parsers.lparent

*x ((parsers.anyescaped - (parsers.lparent

)

+ parsers.rparent
+ parsers.blankline”2)
+ V(1))~0

* parsers.rparent }

P{ parsers.squote * parsers.alphanumeric

* ((parsers.anyescaped - (parsers.squote

)

+ parsers.blankline”2)
+ V(1))~0

* parsers.squote }

P{ parsers.dquote * parsers.alphanumeric

* ((parsers.anyescaped - (parsers.dquote

)

+ parsers.blankline”2)
+ V(1))~0

* parsers.dquote }

parsers.link_text = parsers.lbracket
* Cs((parsers.alphanumeric~1

+

+ o+ o+ o+ o+

p
p

p
v

(
(

*

+

arsers.bracketed
arsers.inticks
arsers.autolink
("InlineHtml")
parsers.backslash * parsers.backslash)
parsers.backslash
( parsers.lbracket
+ parsers.rbracket)
V("NoSoftLineBreakSpace")
V("NoSoftLineBreakEndline")
(parsers.any
- ( parsers.newline
+ parsers.lbracket
+ parsers.rbracket
+ parsers.blankline”2))))~0)

* parsers.rbracket

parsers.link_label_body

*

*

#

C

#(parsers.sp * parsers.rbracket)
( ( parsers.any
- parsers.rbracket) ~-999
* parsers.rbracket)
s((parsers.alphanumeric”1
+ parsers.inticks
+ parsers.autolink
+ V("InlineHtml")

303



9693

9694

9695

9696

9697

9698

9699

9700

9701

9702

9703

9704

9705 parsers.link_label
9706

9707

9708

9709 parsers.inparens_url
9710

9711

9712

9713

9714

9715

9716 -- url for markdown
9717 parsers.url
9718

9719

9720

9721

9722

9723

9724

9728 —-- quoted text:
9729 parsers.title_s

38
30 parsers.title_d

( parsers.backslash * parsers.backslash)
( parsers.backslash
( parsers.lbracket
+ parsers.rbracket)
V("NoSoftLineBreakSpace")
V("NoSoftLineBreakEndline")
(parsers.any
- ( parsers.newline

+ parsers.lbracket

+ parsers.rbracket

+ parsers.blankline™2))))~1)

*

+ o+ o+

parsers.lbracket
parsers.link_label_body
parsers.rbracket

P{ parsers.lparent

* ((parsers.anyescaped - (parsers.lparent

+ parsers.rparent
+ parsers.spacing)

) + V(1))70

* parsers.rparent }

links, allowing nested brackets:
parsers.less * Cs((parsers.anyescaped

* +

*

- parsers.newline

- parsers.less

- parsers.more) ~0)
* parsers.more

-parsers.less
Cs((parsers.inparens_url + (parsers.anyescaped

- parsers.spacing
- parsers.lparent
- parsers.rparent))”1)

parsers.squote
Cs((parsers.html_entities
V("NoSoftLineBreakSpace")
V("NoSoftLineBreakEndline")

+
+
+

(

parsers.anyescaped
parsers.newline
parsers.squote
parsers.blankline~2))~0)

* parsers.squote

= parsers.dquote

304



9740 * Cs((parsers.html_entities

9741 + V("NoSoftLineBreakSpace")
9742 + V("NoSoftLineBreakEndline")
9743 + ( parsers.anyescaped

9744 - parsers.newline

9745 - parsers.dquote

9746 - parsers.blankline”2))~0)
9747 * parsers.dquote

9748

9749 parsers.title_p = parsers.lparent

9750 * Cs((parsers.html_entities

9751 + V("NoSoftLineBreakSpace")
9752 + V("NoSoftLineBreakEndline")
9753 + ( parsers.anyescaped

9754 - parsers.newline

9755 - parsers.lparent

9756 - parsers.rparent

9757 - parsers.blankline”2))~0)
9758 * parsers.rparent

9759
9760 parsers.title
9761 = parsers.title_d + parsers.title_s + parsers.title_p

9762
9763 parsers.optionaltitle
9764 = parsers.spnlc * parsers.title * parsers.spacechar”0 + Cc("")

9765

3.1.5.9 Helpers for Links and Link Reference Definitions

9766 -- parse a reference definition: [foo]: /bar "title"

9767 parsers.define_reference_parser = (parsers.check_trail / "")

9768 parsers.link_label * parsers.colon
9769 parsers.spnlc * parsers.url

9770 ( parsers.spnlc_sep * parsers.title
9771 * parsers.only_blank

9772 + Cc("") * parsers.only_blank)

* * ¥

3.1.5.10 Inline Elements

9773 parsers.Inline = V("Inline")

9774

9775 —— parse many p between starter and ender

9776 parsers.between = function(p, starter, ender)
9777  local ender2 = B(parsers.nonspacechar) * ender
9778  return ( starter

9779 * #parsers.nonspacechar
9780 * Ct(p * (p - ender2)”0)
9781 * ender2)

305



9782 end
9783

3.1.5.11 Block Elements

9784 parsers.lineof = function(c)

9785 return ( parsers.check_trail_no_rem

9786 * (P(c) * parsers.optionalspace)”3
9787 * (parsers.newline + parsers.eof))
0788 end

9789

9790 parsers.thematic_break_lines = parsers.lineof (parsers.asterisk)
9791 parsers.lineof (parsers.dash)
9792 parsers.lineof (parsers.underscore)

3.1.5.12 Headings

9793 —-- parse Atx heading start and return level

9794 parsers.heading_start = #parsers.hash * C(parsers.hash™-6)
9795 * -parsers.hash / length

9796

9797 -- parse setext header ending and return level

9798 parsers.heading_level

9799 parsers.nonindentspace * parsers.equal”l

9800 * parsers.optionalspace * #parsers.newline * Cc(1)
9801 + parsers.nonindentspace * parsers.dash”1

9802  * parsers.optionalspace * #parsers.newline * Cc(2)
9803

9804 local function strip_atx_end(s)

9805  return s:gsub("%s+#*x)s*x\n$","")

9806 end

9807

0808 parsers.atx_heading = parsers.check_trail_no_rem

9809 * Cg(parsers.heading_start, "level")
9810 * (C( parsers.optionalspace

9811 * parsers.hash™0

9812 * parsers.optionalspace

9813 * parsers.newline)

9814 + parsers.spacechar”1

9815 * C(parsers.line))

3.1.6 Markdown Reader

This section documents the reader object, which implements the routines for parsing
the markdown input. The object corresponds to the markdown reader object that was
located in the lunamark/reader/markdown.lua file in the Lunamark Lua module.

306



The reader.new method creates and returns a new TEX reader object associated
with the Lua interface options (see Section 2.1.3) options and with a writer object
writer. When options are unspecified, it is assumed that an empty table was
passed to the method.

The objects produced by the reader.new method expose instance methods
and variables of their own. As a convention, I will refer to these {(member)s as
reader—->{member).

9816 M.reader = {}

9817 function M.reader.new(writer, options)

9818 local self = {}

Make the writer and options parameters available as reader->writer and
reader->options, respectively, so that they are accessible from extensions.

09819  self.writer = writer

09820  self.options = options

Create a reader->parsers hash table that stores PEG patterns that depend on the
received options. Make reader->parsers inherit from the global parsers table.

9821  self.parsers = {}
9822 (function(parsers)

9823 setmetatable(self.parsers, {
0824 __index = function (_, key)
9825 return parsers[key]

9826 end

9827 b

9828 end) (parsers)

Make reader->parsers available as a local parsers variable that will shadow the
global parsers table and will make reader->parsers easier to type in the rest of
the reader code.

0829  local parsers = self.parsers

3.1.6.1 Top-Level Helper Functions
Define reader->normalize_tag as a function that normalizes a markdown refer-
ence tag by lowercasing it, and by collapsing any adjacent whitespace characters.

9830  function self.normalize_tag(tag)

9831 tag = util.rope_to_string(tag)

9832 tag = tag:gsub("[ \n\r\t]+", " ")

9833 tag = tag:gsub("~ ", ""):gsub(" $", "")
9834 local form = nil

9835 if options.unicodeNormalization then
9836 form = options.unicodeNormalizationForm
9837 end

9838 tag = util.casefold(tag, form)

9839 return tag

9840  end

307



Define iterlines as a function that iterates over the lines of the input string s,
transforms them using an input function f, and reassembles them into a new string,

which it returns.

9841 local function iterlines(s, f)

9842 local rope = lpeg.match(Ct((parsers.line / £)71), s)
9843 return util.rope_to_string(rope)

9844 end

Define expandtabs either as an identity function, when the preserveTabs Lua
interface option is enabled, or to a function that expands tabs into spaces otherwise.

9845 if options.preserveTabs then

9846 self.expandtabs = function(s) return s end

9847 else

9848 self.expandtabs = function(s)

9849 if s:find("\t") then

9850 return iterlines(s, util.expand_tabs_in_line)
9851 else

9852 return s

9853 end

9854 end

9855 end

3.1.6.2 High-Level Parser Functions

Create a reader->parser_functions hash table that stores high-level parser
functions. Define reader->create_parser as a function that will create a high-
level parser function reader->parser_functions.name, that matches input using
grammar grammar. If toplevel is true, the input is expected to come straight from
the user, not from a recursive call, and will be preprocessed.

9856  self.parser_functions = {}
9857 self.create_parser = function(name, grammar, toplevel)
9858 self.parser_functions[name] = function(str)

If the parser function is top-level and the stripIndent Lua option is enabled, we
will first expand tabs in the input string str into spaces and then we will count
the minimum indent across all lines, skipping blank lines. Next, we will remove the
minimum indent from all lines.

9859 if toplevel and options.stripIndent then

9860 local min_prefix_length, min_prefix = nil, ''

9861 str = iterlines(str, function(line)

9862 if lpeg.match(parsers.nonemptyline, line) == nil then
9863 return line

9864 end

9865 line = util.expand_tabs_in_line(line)

9866 local prefix = lpeg.match(C(parsers.optionalspace), line)
9867 local prefix_length = #prefix

9868 local is_shorter = min_prefix_length == nil

308



9869
9870
9871
9872
9873
9874
9875
9876
9877

9878

If the parser is top-level and the texComments or hybrid Lua options are enabled,

if not is_shorter then
is_shorter = prefix_length < min_prefix_length
end
if is_shorter then
min_prefix_length, min_prefix = prefix_length, prefix

end
return line
end)
str = str:gsub('"' .. min_prefix, '')

end

we will strip all plain TEX comments from the input string str together with the
trailing newline characters.

9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911

if toplevel and (options.texComments or options.hybrid) then
str = lpeg.match(Ct(parsers.commented_line~1), str)
str = util.rope_to_string(str)

end
local res = lpeg.match(grammar(), str)
if res == nil then

return writer.error(

format ("Parser “%s”~ failed to process the input text.", name),

format ("Here are the first 20 characters of the remaining "
"unprocessed text: “Ys .", str:sub(1,20))

)

else
return res

end

end
end

self.create_parser("parse_blocks",
function()
return parsers.blocks
end, true)

self.create_parser("parse_blocks_nested",
function()
return parsers.blocks_nested
end, false)

self.create_parser("parse_inlines",
function()
return parsers.inlines

end, false)

self.create_parser("parse_inlines_no_inline_note",

309



9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927

9928

function()
return parsers.inlines_no_inline_note
end, false)

self.create_parser("parse_inlines_no_html",
function()
return parsers.inlines_no_html
end, false)

self.create_parser("parse_inlines_nbsp",
function()
return parsers.inlines_nbsp
end, false)
self.create_parser("parse_inlines_no_link_or_emphasis",
function()
return parsers.inlines_no_link_or_emphasis
end, false)

3.1.6.3 Parsers Used for Indentation (local)
The following patterns represent basic building blocks of indented content.

9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953

9954

parsers.minimally_indented_blankline
= parsers.check_minimal_indent * (parsers.blankline / "")

parsers.minimally_indented_block
= parsers.check_minimal_indent * V("Block")

parsers.minimally_indented_block_or_paragraph
= parsers.check_minimal_indent * V("BlockOrParagraph")

parsers.minimally_indented_paragraph
= parsers.check_minimal_indent * V("Paragraph")

parsers.minimally_indented_plain
= parsers.check_minimal_indent * V("Plain")

parsers.minimally_indented_par_or_plain
= parsers.minimally_indented_paragraph
+ parsers.minimally_indented_plain

parsers.minimally_indented_par_or_plain_no_blank
= parsers.minimally_indented_par_or_plain

- parsers.minimally_indented_blankline

parsers.minimally_indented_ref
= parsers.check_minimal_indent * V("Reference")

310



9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970

parsers.minimally_indented_blank
= parsers.check_minimal_indent * V("Blank")

parsers.conditionally_indented_blankline
= parsers.check_minimal_blank_indent * (parsers.blankline / "")

parsers.minimally_indented_ref_or_block
= parsers.minimally_indented_ref
+ parsers.minimally_indented_block
- parsers.minimally_indented_blankline

parsers.minimally_indented_ref_or_block_or_par
= parsers.minimally_indented_ref
+ parsers.minimally_indented_block_or_paragraph
- parsers.minimally_indented_blankline

The following pattern parses the properly indented content that follows the initial
container start.

9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997

9998

function parsers.separator_loop(separated_block, paragraph,
block_separator, paragraph_separator)
return separated_block
+ block_separator
* paragraph
* separated_block
+ paragraph_separator
* paragraph
end

function parsers.create_loop_body_pair(separated_block, paragraph,
block_separator,
paragraph_separator)
return {
block = parsers.separator_loop(separated_block, paragraph,
block_separator, block_separator),
par = parsers.separator_loop(separated_block, paragraph,
block_separator, paragraph_separator)
}

end

parsers.block_sep_group = function(blank)
return blank™0 * parsers.eof
+ ( blank™2 / writer.paragraphsep
+ blank™0 / writer.interblocksep
)

end

311



9999

parsers.par_sep_group = function(blank)
return blank™0 * parsers.eof
+ blank™0 / writer.paragraphsep
end

parsers.sep_group_no_output = function(blank)
return blank™0 * parsers.eof
+ blank™0
end

parsers.content_blank = parsers.minimally_indented_blankline

parsers.ref_or_block_separated
= parsers.sep_group_no_output (parsers.content_blank)
* ( parsers.minimally_indented_ref
- parsers.content_blank)
+ parsers.block_sep_group(parsers.content_blank)
* ( parsers.minimally_indented_block
- parsers.content_blank)

parsers.loop_body_pair =
parsers.create_loop_body_pair(
parsers.ref_or_block_separated,
parsers.minimally_indented_par_or_plain_no_blank,
parsers.block_sep_group(parsers.content_blank),
parsers.par_sep_group(parsers.content_blank))

parsers.content_loop = ( V("Block")
* parsers.loop_body_pair.block™0
+ (V("Paragraph") + V("Plain"))
* parsers.ref_or_block_separated
* parsers.loop_body_pair.block™0
+ (V("Paragraph") + V("Plain"))
* parsers.loop_body_pair.par~0)

* parsers.content_blank™0

parsers.indented_content = function()

return Ct( (V("Reference") + (parsers.blankline / ""))

* parsers.content_blank™0

parsers.check_minimal_indent
parsers.content_loop
(V("Reference") + (parsers.blankline / ""))
parsers.content_blank™0
parsers.content_loop)

+ % + ¥ *

end

312



parsers.add_indent = function(pattern, name, breakable)
return Cg(Cmt( Cb("indent_info")
* Ct(pattern)
* ( #parsers.linechar -- check if starter is blank
* Cc(false) + Cc(true))

* Cc(name)

* Cc(breakable),
process_starter_indent), "indent_info")

end

3.1.6.4 Parsers Used for Markdown Lists (local)

10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066

00
10
10080
1008
10082
10083

10084

if options.hashEnumerators then
parsers.dig = parsers.digit + parsers.hash

else

parsers.dig = parsers.digit

end

parsers.enumerator = function(delimiter_type, interrupting)

local delimiter_range
local allowed_end
if interrupting then

delimiter_range = P("1")
allowed_end = C(parsers.spacechar”1) * #parsers.linechar

else

delimiter_range = parsers.dig * parsers.dig -8
allowed_end = C(parsers.spacechar”1)
+ #(parsers.newline + parsers.eof)

end

return parsers.check_trail
* Ct(C(delimiter_range) * C(delimiter_type))

* allowed_end
end

parsers.starter = parsers

parsers.
parsers.

+ + 4+ +

.bullet(parsers.dash)
parsers.bullet(parsers.asterisk)
parsers.bullet(parsers.plus)

enumerator (parsers.period)
enumerator (parsers.rparent)

3.1.6.5 Parsers Used for Blockquotes (local)

10085
10086
10087

parsers.blockquote_start
= parsers.check_trail
* C(parsers.more)

313



10088 * C(parsers.spacechar”0)
10089
)

(
(
10090  parsers.blockquote_body

(

)
10091 = parsers.add_indent (parsers.blockquote_start, "bq", true)
10092 * parsers.indented_content ()
10093 * remove_indent ("bqg")
10094
10095 if not options.breakableBlockquotes then
10096 parsers.blockquote_body
10097 = parsers.add_indent (parsers.blockquote_start, "bq", false)
10098 * parsers.indented_content ()
10099 * remove_indent ("bq")
10100 end

3.1.6.6 Helpers for Emphasis and Strong Emphasis (local)
Parse the content of a table content_part with links, images and emphasis
disabled.

10101 local function parse_content_part(content_part)

10102 local rope = util.rope_to_string(content_part)

10103 local parsed

10104 = self.parser_functions.parse_inlines_no_link_or_emphasis(rope)
10105 parsed.indent_info = nil

10106 return parsed

10107 end

10108

Collect the content between the opening_index and closing_index in the delimiter
table t.
10109 local collect_emphasis_content =

10110 function(t, opening_index, closing_index)

10111 local content = {}

10112

10113 local content_part = {}

10114 for i = opening_index, closing_index do

10115 local value = t[i]

10116

10117 if value.rendered ~= nil then

10118 content [#content + 1] = parse_content_part(content_part)
10119 content_part = {}

10120 content [#content + 1] = value.rendered

10121 value.rendered = nil

10122 else

10123 if value.warning ~= nil then

10124 if next(content_part) ~= nil then

10125 content [#content + 1] = parse_content_part(content_part)
10126 end

10127 content_part = {}

314



10128
10129 content [#content + 1] = value.warning

10130 value.warning = nil

10131 end

10132 if value.type == "delimiter"

10133 and value.element == "emphasis" then

10134 if value.is_active then

10135 content_part [#content_part + 1]

10136 = string.rep(value.character, value.current_count)
10137 end

10138 else

10139 content_part [#content_part + 1] = value.content
10140 end

10141 value.content = ''

10142 value.is_active = false

10143 end

10144 end

10145

10146 if next(content_part) ~= nil then

10147 content [#content + 1] = parse_content_part(content_part)
10148 end

10149

10150 return content

10151 end

10152

Render content between the opening_index and closing_index in the delimiter
table t as emphasis.

10153 local function fill_emph(t, opening_index, closing_index)

10154 local content

10155 = collect_emphasis_content(t, opening_index + 1,

10156 closing_index - 1)

10157 t [opening_index + 1].is_active = true

10158 t [opening_index + 1].rendered = writer.emphasis(content)
10159  end

10160
Render content between the opening_index and closing_index in the delimiter
table t as strong emphasis.

10161 local function fill_strong(t, opening_index, closing_index)

10162 local content

10163 = collect_emphasis_content(t, opening_index + 1,
10164 closing_index - 1)

10165 t[opening_index + 1].is_active = true

10166 t [opening_index + 1].rendered = writer.strong(content)
10167 end

10168

315



Check whether the opening delimiter opening_delimiter and closing delimiter
closing_delimiter break rule three together.

10169 local function breaks_three_rule(opening_delimiter, closing_delimiter)
10170 return ( opening_delimiter.is_closing

10171 or closing_delimiter.is_opening)

10172 and (( opening_delimiter.original_count

10173 + closing_delimiter.original_count) % 3 == 0)

10174 and ( opening_delimiter.original_count % 3 ~= 0

10175 or closing_delimiter.original_count % 3 ~= 0)

10176 end

10177

Look for the first potential emphasis opener in the delimiter table t in the range
from bottom_index to latest_index that has the same character character as the
closing delimiter closing_delimiter.

10178 local find_emphasis_opener = function(t, bottom_index, latest_index,
10179 character, closing_delimiter)

10180 for i = latest_index, bottom_index, -1 do
10181 local value = t[i]

10182 if value.is_active and

10183 value.is_opening and

10184 value.type == "delimiter" and

10185 value.element == "emphasis" and

10186 (value.character == character) and
10187 (value.current_count > 0) then

10188 if not breaks_three_rule(value, closing_delimiter) then
10189 return i

10190 end

10191 end

10192 end

10193 end

10194

Iterate over the delimiters in the delimiter table t, producing emphasis or strong
emphasis macros.

10195  local function process_emphasis(t, opening_index, closing_index)

10196 for i = opening_index, closing_index do

10197 local value = t[i]

10198 if value.type == "delimiter" and value.element == "emphasis" then
10199 local delimiter_length = string.len(value.content)
10200 value.character = string.sub(value.content, 1, 1)
10201 value.current_count = delimiter_length

10202 value.original_count = delimiter_length

10203 end

10204 end

10205

10206 local openers_bottom = {

316



10207 ['*'] = {

10208 [true] = {opening_index, opening_index, opening_index},
10209 [false] = {opening_index, opening_index, opening_index}
10210 3,

10211 ['_'1 =H

10212 [true] = {opening_index, opening_index, opening_index},
10213 [false] = {opening_index, opening_index, opening_index}
10214 }

10215 }

10216

10217 local current_position = opening_index

10218 local max_position = closing_index

10219

10220 while current_position <= max_position do

10221 local value = t[current_position]

10222

10223 if value.type ~= "delimiter" or

10224 value.element ~= "emphasis" or

10225 not value.is_active or

10226 not value.is_closing or

10227 (value.current_count <= 0) then

10228 current_position = current_position + 1

10229 goto continue

10230 end

local character = value.character

10233 local is_opening = value.is_opening

10234 local closing_length_modulo_three = value.original_count % 3
10235

10236 local current_openers_bottom

10237 = openers_bottom[character] [is_opening]

10238 [closing_length_modulo_three + 1]

10239

10240 local opener_position

10241 = find_emphasis_opener(t, current_openers_bottom,

10242 current_position - 1, character, value)
10243

10244 if (opener_position == nil) then

10245 openers_bottom[character] [is_opening]

10246 [closing_length_modulo_three + 1]

10247 = current_position

10248 current_position = current_position + 1

10249 goto continue

10250 end

10251

10252 local opening_delimiter = t[opener_position]

10253

317



10254

10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300

local current_opening_count = opening_delimiter.current_count
local current_closing_count t [current_position].current_count

if (current_opening_count >= 2)
and (current_closing_count >= 2) then
opening_delimiter.current_count = current_opening count - 2
t[current_position].current_count = current_closing_count - 2
fill_strong(t, opener_position, current_position)

else
opening_delimiter.current_count = current_opening count - 1
t[current_position].current_count = current_closing_count - 1
fill_emph(t, opener_position, current_position)

end

::continue::
end
end

parsers.delimiter_run = function(character)
return (B(parsers.backslash * character) + -B(character))
* character™1
* —#character
end

parsers.left_flanking delimiter_run = function(character)
return (B( parsers.any)
*x ( parsers.unicode.preceding_punctuation
+ parsers.unicode.preceding_whitespace)
+ -B(parsers.any))
* parsers.delimiter_run(character)
* parsers.unicode.following_punctuation
+ parsers.delimiter_run(character)
* —#( parsers.unicode.following_punctuation
+ parsers.unicode.following_whitespace
+ parsers.eof)
end

parsers.right_flanking delimiter_run = function(character)
return parsers.unicode.preceding_punctuation
* parsers.delimiter_run(character)
* ( parsers.unicode.following_punctuation
+ parsers.unicode.following_whitespace
+ parsers.eof)
+ (B(parsers.any)
* —( parsers.unicode.preceding_punctuation
+ parsers.unicode.preceding_whitespace))
*x parsers.delimiter_run(character)

318



10301
10302
10303
10304
10305
10306
10307
10308
10309
0310
0311
0312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322

1
1
1

end

if options.underscores then
parsers.emph_start
= parsers.left_flanking delimiter_run(parsers.asterisk)
+ ( -#parsers.right_flanking delimiter_run(parsers.underscore)
+ ( parsers.unicode.preceding_punctuation
* #fparsers.right_flanking_delimiter_run(parsers.underscore)))
* parsers.left_flanking delimiter_run(parsers.underscore)

parsers.emph_end
= parsers.right_flanking_delimiter_run(parsers.asterisk)
+ ( -#parsers.left_flanking delimiter_run(parsers.underscore)
+ #( parsers.left_flanking_delimiter_run(parsers.underscore)
* parsers.unicode.following_punctuation))
* parsers.right_flanking delimiter_run(parsers.underscore)
else
parsers.emph_start
= parsers.left_flanking delimiter_run(parsers.asterisk)

parsers.emph_end
= parsers.right_flanking_delimiter_run(parsers.asterisk)
end

parsers.emph_capturing_open_and_close
= #parsers.emph_start * #parsers.emph_end
* Ct( Cg(Cc("delimiter"), "type")

* Cg(Cc("emphasis"), "element")
Cg(C(parsers.emph_start), "content")
Cg(Cc(true), "is_opening")
Cg(Cc(true), "is_closing"))

* ¥ ¥

parsers.emph_capturing_open = Ct( Cg(Cc("delimiter"), "type")

* Cg(Cc("emphasis"), "element")
Cg(C(parsers.emph_start), "content")
Cg(Cc(true), "is_opening")
Cg(Cc(false), "is_closing"))

* ¥ ¥

parsers.emph_capturing_close = Ct( Cg(Cc("delimiter"), "type")
Cg(Cc("emphasis"), "element")
Cg(C(parsers.emph_end), "content")
Cg(Cc(false), "is_opening")
Cg(Cc(true), "is_closing"))

*

* * *

parsers.emph_open_or_close = parsers.emph_capturing_open_and_close
+ parsers.emph_capturing_open
+ parsers.emph_capturing_close

319



10348

10349  parsers.emph_open = parsers.emph_capturing_open_and_close
10350 + parsers.emph_capturing_open
10351
10352  parsers.emph_close = parsers.emph_capturing_open_and_close
10353 + parsers.emph_capturing_close

35

3.1.6.7 Helpers for Links and Link Reference Definitions (local)

355 -- List of references defined in the document
10356 local references
35

10358 -- List of note references defined in the document

10359  parsers.rawnotes = {}

10360

The reader->register_link method registers a link reference, where tag is the link
label, url is the link destination, title is the optional link title, and attributes
are the optional attributes.

10361 function self.register_link(_, tag, url, title,

10362 attributes)

10363 local normalized_tag = self.normalize_tag(tag)

10364 if references[normalized_tag] == nil then

10365 references[normalized_tag] = {

10366 url = url,

10367 title = title,

10368 attributes = attributes

10369 }

10370 return ""

10371 else

10372 local text

10373 = string.format('Multiply defined link reference "%s"', tag)
10374 local more = string.format("Look for the text ~[Ys]: ... .", tag)
10375 return writer.warning(text, more)

10376 end

10377 end

10378
The reader->lookup_reference method looks up a reference with link label tag.

10379  function self.lookup_reference(tag)

10380 return references[self.normalize_tag(tag)]
10381 end
10382

The reader->lookup_note_reference method looks up a note reference with label
tag.

10383  function self.lookup_note_reference(tag)

320



10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430

return parsers.rawnotes[self.normalize_tag(tag)]

end

parsers.title_s_direct_ref

parsers.title_d_direct_ref

parsers.title_p_direct_ref

parsers.title_direct_ref

+
+

= parsers.squote
* Cs((parsers.html_entities

+(

parsers.anyescaped
parsers.squote
parsers.blankline”2))~0)

* parsers.squote

= parsers.dquote
* Cs((parsers.html_entities

+ (

parsers.anyescaped
parsers.dquote
parsers.blankline~2))"~0)

* parsers.dquote

= parsers.lparent
* Cs((parsers.html_entities

+ (

parsers.anyescaped
parsers.lparent
parsers.rparent
parsers.blankline~2))~0)

* parsers.rparent

parsers

parsers.
.title_p_direct_ref

parsers

parsers.inline_direct_ref_inside =

* X ¥

.title_s_direct_ref

title_d_direct_ref

parsers.lparent * parsers.spnl
Cg(parsers.url + Cc(""), "url")
parsers.spnl
Cg( parsers.title_direct_ref

+ CC(""), "title")
parsers.spnl * parsers.rparent

parsers.inline_direct_ref = parsers.lparent * parsers.spnlc

* Cg(parsers.url + Cc(""), "url")

* parsers.spnlc

* Cg(parsers.title + Cc(""), "title")
* parsers.spnlc * parsers.rparent

parsers.empty_link =

parsers.lbracket

* parsers.rbracket

parsers.inline_link =

parsers.link_text

* parsers.inline_direct_ref

321



10431

10432 parsers.full_link = parsers.link_text

10433 * parsers.link_label
10434

10435 parsers.shortcut_link = parsers.link_label

10436 * —(parsers.empty_link + parsers.link_label)
10437

10438  parsers.collapsed_link = parsers.link_label

10439 * parsers.empty_link

10440

10441 parsers.image_opening = #(parsers.exclamation * parsers.inline_link)
10442 * Cg(Cc("inline"), "link_type")

10443 + #(parsers.exclamation * parsers.full_link)
10444 * Cg(Cc("full"), "link_type")

10445 + #( parsers.exclamation

10446 * parsers.collapsed_link)

10447 * Cg(Cc("collapsed"), "link_type")

10448 + #(parsers.exclamation * parsers.shortcut_link)
10449 * Cg(Cc("shortcut"), "link_type")

10450 + #(parsers.exclamation * parsers.empty_link)
10451 * Cg(Cc("empty"), "link_type")

10452

10453  parsers.link_opening #parsers.inline_link

10454 * Cg(Cc("inline"), "link_type")

10455 + #parsers.full_link

10456 * Cg(Cc("full"), "link_type")

10457 + #parsers.collapsed_link

10458 * Cg(Cc("collapsed"), "link_type")
10459 + #parsers.shortcut_link

10460 * Cg(Cc("shortcut"), "link_type")
10461 + #parsers.empty_link

10462 * Cg(Cc("empty_link"), "link_type")
10463 + #parsers.link_text

10464 * Cg(Cc("link_text"), "link_type")
10465

10466 ~ parsers.note_opening = #(parsers.circumflex * parsers.link_text)
10467 * Cg(Cc("note_inline"), "link_type")
10468

10469  parsers.raw_note_opening = #( parsers.lbracket

10470 * parsers.circumflex

10471 * parsers.link_label_body
10472 * parsers.rbracket)

10473 * Cg(Cc("raw_note"), "link_type")
10474

10475 local inline_note_element
10476
10477

Cg(Cc("note"), "element")
parsers.note_opening
Cg( parsers.circumflex

322



10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498

10520
10521
10522
10523
10524

* parsers.lbracket, "content")

local image_element =

* ¥

local note_element =

local link_element =

* *

Cg(Cc("image"), "element")

parsers.image_opening

Cg( parsers.
* parsers.

exclamation
lbracket, "content")

Cg(Cc("note"), "element")
parsers.raw_note_opening
Cg( parsers.

* parsers.

lbracket
circumflex, "content")

Cg(Cc("link"), "element")
parsers.link_opening
Cg(parsers.lbracket, "content")

local opening_elements = parsers.fail

if options.inlineNotes then
opening_elements =
end

opening_elements =
if options.notes then
opening_elements =

end

opening_elements =

parsers.link_image_opening = Ct(
*
*
*
parsers.link_image_closing = Ct(

opening_elements + inline_note_element

opening_elements + image_element

opening_elements + note_element

opening_elements + link_element

Cg(Cc("delimiter"), "type")
Cg(Cc(true), "is_opening")
Cg(Cc(false), "is_closing")
opening_elements)

Cg(Cc("delimiter"), "type")

* Cg(Cc("link"), "element")

* ¥ *

parsers.link_image_open_or_close

323

Cg(Cc(false), "is_opening")
Cg(Cc(true), "is_closing")
( Cg(Cc(true), "is_direct")
* Cg( parsers.rbracket

* #parsers.inline_direct_ref,

"content")

Cg(Cc(false), "is_direct")
Cg(parsers.rbracket, "content")))

* +

= parsers.link_image_opening



5 + parsers.link_image_closing

7 if options.html then

(

:
10528 parsers.link_emph_precedence = parsers.inticks
10529 + parsers.autolink
10530 + parsers.html_inline_tags
10531 else
10532 parsers.link_emph_precedence = parsers.inticks
1( + parsers.autolink

( end

(

(

6 parsers.link_and_emph_endline = parsers.newline
((parsers.check_minimal_indent

10538 * -V("EndlineExceptions")
10539 + parsers.check_optional_indent
10540 * -V("EndlineExceptions")
10541 * -V("ListStarter")) / "")
10542 * parsers.spacechar™0 / "\n"
10543

10544 parsers.link_and_emph_content

10545 = Ct( Cg(Cc("content"), "type")

10546 * Cg(Cs(( parsers.link_emph_precedence

10547 + parsers.backslash * parsers.linechar

10548 + parsers.link_and_emph_endline

10549 + (parsers.linechar

10550 - parsers.blankline”2

1

1

551 - parsers.link_image_open_or_close
5 - parsers.emph_open_or_close))”0), "content"))

2
3

1 parsers.link_and_emph_table

5 = (parsers.link_image_opening + parsers.emph_open)

6 * parsers.link_and_emph_content
10557 * ((parsers.link_image_open_or_close + parsers.emph_open_or_close)
10558 * parsers.link_and_emph_content)~1

10559
Collect the content between the opening_index and closing_index in the delimiter
table t.

10560  local function collect_link_content(t, opening_index, closing_index)
10561 local content = {}
1(

0562 for i = opening_index, closing_index do
10563 content [#content + 1] = t[i].content
10564 end
10565 return util.rope_to_string(content)
10566 end

10567

324



Look for the closest potential link opener in the delimiter table t in the range from
bottom_index to latest_index.

10568 local function find_link_opener(t, bottom_index, latest_index)

10569 for i = latest_index, bottom_index, -1 do
10570 local value = t[i]

10571 if value.type == "delimiter" and
10572 value.is_opening and

10573 ( value.element == "link"
10574 or value.element == "image"
10575 or value.element == "note")
10576 and not value.removed then
10577 if value.is_active then

10578 return i

10579 end

10580 value.removed = true

10581 return nil

10582 end

10583 end

10584 end

10585

Find the position of a delimiter that closes a full link after an an index latest_index
in the delimiter table t.

10586  local function find_next_link_closing_index(t, latest_index)

10587 for i = latest_index, #t do

10588 local value = t[i]

10589 if value.is_closing and

10590 value.element == "link" and
10591 not value.removed then

10592 return i

10593 end

10594 end

10595 end

10596

Disable all preceding opening link delimiters by marking them inactive with the
is_active property to prevent links within links. Images within links are allowed.

10597  local function disable_previous_link_openers(t, opening_index)
10598 if t[opening_index].element == "image" then

10599 return

10600 end

10601

10602 for i = opening_index, 1, -1 do

10603 local value = t[il]

10604 if value.is_active and

10605 value.type == "delimiter" and

10606 value.is_opening and

325



10607 value.element == "link" then
10608 value.is_active = false
10609 end
10610 end
10611 end
10612

Disable the delimiters between the opening_index and closing_index in the de-
limiter table t by marking them inactive with the is_active property.

10613 local function disable_range(t, opening_index, closing_index)

10614 for i = opening_index, closing_index do
10615 local value = t[i]

10616 if value.is_active then

10617 value.is_active = false

10618 if value.type == "delimiter" then
10619 value.removed = true

10620 end

10621 end

10622 end

10623 end
10624

Clear the parsed content between the opening_index and closing_index in the
delimiter table t.

10625 local delete_parsed_content_in_range =

10626 function(t, opening_index, closing_index)
10627 for i = opening_index, closing_index do
10628 t[i] .rendered = nil

10629 end

10630 end

10631

Clear the content between the opening_index and closing_index in the delimiter
table t.

10632 local function empty_content_in_range(t, opening_index, closing_index)

10633 for i = opening_index, closing_index do
10634 t[i].content = ''

10635 end

10636 end

10637
Join the attributes from the link reference definition reference_attributes with
the link’s own attributes own_attributes.

10638 local function join_attributes(reference_attributes, own_attributes)
10639 local merged_attributes = {}
10
10
(

640 for _, attribute in ipairs(reference_attributes or {}) do
641 table.insert(merged_attributes, attribute)
10642 end

326



10643 for _, attribute in ipairs(own_attributes or {}) do

10644 table.insert(merged_attributes, attribute)
10645 end

10646 if next(merged_attributes) == nil then

10647 merged_attributes = nil

10648 end

10649 return merged_attributes

10650  end

10651

Parse content between two delimiters in the delimiter table t. Produce the respective
link and image macros.

10652 local render_link_or_image =

10653 function(t, opening_index, closing_index, content_end_index,
10654 reference)

10655 process_emphasis(t, opening_index, content_end_index)

10656 local mapped = collect_emphasis_content(t, opening_index + 1,
10657 content_end_index - 1)
10658

10659 local rendered = {}

10660 if (t[opening_index].element == "link") then

10661 rendered = writer.link(mapped, reference.url,

10662 reference.title, reference.attributes)
10663 end

10664

10665 if (t[opening_index].element == "image") then

10666 rendered = writer.image(mapped, reference.url, reference.title,
10667 reference.attributes)

10668 end

10669

10670 if (t[opening_index].element == "note") then

10671 if (t[opening_index].link_type == "note_inline") then

10672 rendered = writer.note(mapped)

10673 end

10674 if (t[opening_index].link_type == "raw_note") then

10675 rendered = writer.note(reference)

10676 end

10677 end

10678

10679 t [opening_index] .rendered = rendered

10680 delete_parsed_content_in_range(t, opening_index + 1,

10681 closing_index)

10682 empty_content_in_range(t, opening_index, closing_index)

10683 disable_previous_link_openers(t, opening_index)

10684 disable_range(t, opening_index, closing_index)

10685 end

10686

327



Match the link destination of an inline link at index closing_index in table t
when match_reference is true. Additionally, match attributes when the option
linkAttributes is enabled.

10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718

local resolve_inline_following_content =
function(t, closing_index, match_reference, match_link_attributes)

local content = ""

for i = closing_index + 1, #t do
content = content .. t[i].content

end

local matching_content = parsers.succeed

if match_reference then
matching content = matching_content
* parsers.inline_direct_ref_inside
end

if match_link_attributes then
matching content = matching_content
* Cg(Ct(parsers.attributes™ 1), "attributes")
end

local matched = lpeg.match(Ct( matching_content
* Cg(Cp(), "end_position")), content)

local matched_count = matched.end_position - 1
for i = closing_index + 1, #t do
local value = t[il

local chars_left = matched_count
matched_count = matched_count - #value.content

if matched_count <= 0 then
value.content = value.content:sub(chars_left + 1)
break

end

value.content = ''
value.is_active
end

false

local attributes = matched.attributes

if attributes == nil or next(attributes) == nil then
attributes = nil

end

return {

328



nn
>

31 url = matched.url or

32 title = matched.title or "",
33 attributes = attributes

34 }

5 end

Resolve an inline link [a]l(b "c") from the delimiters at opening_index and
closing_index within a delimiter table t. Here, compared to other types of links,
no reference definition is needed.

37 local function resolve_inline_link(t, opening_index, closing_index)

38 local inline_content
9 = resolve_inline_following_content(t, closing_index, true,

0 t.match_link_attributes)
10741 render_link_or_image(t, opening_index, closing_index,
10742 closing_index, inline_content)
10743 end
10744

Resolve an inline note ~[a] from the delimiters at opening_index and
closing_index within a delimiter table t.

10745 local resolve_note_inline_link =

10746 function(t, opening_index, closing_index)

10747 local inline_content

10748 = resolve_inline_following_content(t, closing_index,
10749 false, false)
10750 render_link_or_image(t, opening_index, closing_index,
10751 closing_index, inline_content)
10752 end

10753

Resolve a shortcut link [a] from the delimiters at opening_index and
closing_index within a delimiter table t. Continue if a tag a is not found in
the references.

54 local function resolve_shortcut_link(t, opening_index, closing_index)
55 local content

56 = collect_link_content(t, opening_index + 1, closing_index - 1)
57 local r = self.lookup_reference(content)
5
)

1

10759 if r then

10760 local inline_content

10761 = resolve_inline_following_content(t, closing_index, false,
10762 t.match_link_attributes)
10763 r.attributes

10764 = join_attributes(r.attributes, inline_content.attributes)
10765 render_link_or_image(t, opening_index, closing_index,

10766 closing_index, r)

10767 end

329



10768 end

10769

Resolve a note ["a] from the delimiters at opening_index and closing_index
within a delimiter table t. Continue if a tag a is not found in the rawnotes.

0 local function resolve_raw_note_link(t, opening_index, closing_index)
local content

1
10772 = collect_link_content(t, opening_index + 1, closing_index - 1)
10773 local r = self.lookup_note_reference(content)

)
10775 if r then

6 local parsed_ref = self.parser_functions.parse_blocks_nested(r)
7 render_link_or_image(t, opening_index, closing_index,

8 closing_index, parsed_ref)

9 end

10780 end

Resolve a full link [a] [b] from the delimiters at opening_index and closing_index
within a delimiter table t. Continue if a tag b is not found in the references.

10782 local function resolve_full_link(t, opening_index, closing_index)

10783 local next_link_closing_index

10784 = find_next_link_closing_index(t, closing_index + 4)

10785 local next_link content

10786 = collect_link_content(t, closing_index + 3,

10787 next_link_closing_index - 1)

10788 local r = self.lookup_reference(next_link_content)

10789

10790 if r then

10791 local inline_content

10792 = resolve_inline_following_content(t, next_link_closing_index,
10793 false,

10794 t.match_link_attributes)
10795 r.attributes

10796 = join_attributes(r.attributes, inline_content.attributes)
10797 render_link_or_image(t, opening_index, next_link_closing_index,
10798 closing_index, r)

10799 else

10800 local text = string.format('Undefined link reference "Js"',
10801 next_link_content)

10802 local more = string.format("Look for the text “[...]1[%s] .",
10803 next_link_content)

10804 t [opening_index] .warning = writer.warning(text, more)

10805 end

10806 end

10807

330



Resolve a collapsed link [a][] from the delimiters at opening_index and
closing_index within a delimiter table t. Continue if a tag a is not found in
the references.

10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831

local function resolve_collapsed_link(t, opening_index, closing_index)

local next_link_closing_index

= find_next_link_closing_index(t, closing_index + 4)
local content

= collect_link_content(t, opening_index + 1, closing_index - 1)
local r = self.lookup_reference(content)

if r then

local inline_content

= resolve_inline_following_content(t, closing_index, false,

t.match_link_attributes)

r.attributes

= join_attributes(r.attributes, inline_content.attributes)
render_link_or_image(t, opening_index, next_link_closing_index,

closing_index, r)

else
local text = string.format('Undefined link reference "¥%s"',
content)
local more = string.format("Look for the text ~[¥s][]™.",
content)

t [opening_index] .warning = writer.warning(text, more)
end

end

Parse a table of link and emphasis delimiters t. First, iterate over the link delimiters
and produce either link or image macros. Then run process_emphasis over the
entire delimiter table, resolving emphasis and strong emphasis and parsing any
content outside of closed delimiters.

10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846

local function process_links_and_emphasis(t)

for _,value in ipairs(t) do
value.is_active = true
end

for i,value in ipairs(t) do
if not value.is_closing

or value.type ~= "delimiter"

or not ( value.element == "link"
or value.element == "image"
or value.element == "note")

or value.removed then
goto continue
end

331



10847 local opener_position = find_link_opener(t, 1, i - 1)

10848 if (opener_position == nil) then

10849 goto continue

10850 end

10851

10852 local opening_delimiter = t[opener_position]
10853 opening_delimiter.removed = true

10854

10855 local link_type = opening_delimiter.link_type
10856

10857 if (link_type == "inline") then

10858 resolve_inline_link(t, opener_position, i)
10859 end

10860 if (link_type == "shortcut") then

10861 resolve_shortcut_link(t, opener_position, i)
10862 end

10863 if (link_type == "full") then

10864 resolve_full_link(t, opener_position, i)

10865 end

10866 if (link_type == "collapsed") then

10867 resolve_collapsed_link(t, opener_position, i)
10868 end

10869 if (link_type == "note_inline") then

10870 resolve_note_inline_link(t, opener_position, i)
10871 end

10872 if (link_type == "raw_note") then

1087: resolve_raw_note_link(t, opener_position, i)
10874 end

10875

10876 ::continue::

10877 end

10878

10879 t[#t].content = t[#t].content:gsub("%s*$","")
10880

10881 process_emphasis(t, 1, #t)

10882 local final_result = collect_emphasis_content(t, 1, #t)
10883 return final result

10884 end

10885

10886 function self.defer_link_and_emphasis_processing(delimiter_table)
10887 return writer.defer_call(function()

10888 return process_links_and_emphasis(delimiter_table)
10889 end)

10890 end

10891

332



3.1.6.8 Inline Elements (local)

10892  parsers.Str = ( parsers.normalchar

10893 * (parsers.normalchar + parsers.at)”~0)
10894 / writer.string

10895

10896  parsers.Symbol = (parsers.backtick™1 + V("SpecialChar"))
10897 / writer.string

10898

10899  parsers.Ellipsis = P("...") / writer.ellipsis

10900

10901 parsers.Smart = parsers.Ellipsis

10902

10903  parsers.Code = parsers.inticks / writer.code

10904

10905  if options.blankBeforeBlockquote then

10906 parsers.bqgstart = parsers.fail

10907  else

10908 parsers.bgstart = parsers.blockquote_start

10909 end

10910
10911  if options.blankBeforeHeading then

10912 parsers.headerstart = parsers.fail

10913 else

10914 parsers.headerstart = parsers.atx_heading
10915 end

10916

10917  if options.blankBeforeList then

10918 parsers.interrupting_bullets = parsers.fail
10919 parsers.interrupting_enumerators = parsers.fail
10920  else

10921 parsers.interrupting_bullets

10922 = parsers.bullet(parsers.dash, true)

10923 + parsers.bullet(parsers.asterisk, true)
10924 + parsers.bullet(parsers.plus, true)

10925

10926 parsers.interrupting_enumerators

10927 = parsers.enumerator (parsers.period, true)
10928 + parsers.enumerator (parsers.rparent, true)
10929  end

10930
10931 if options.html then

10932 parsers.html_interrupting

10933 = parsers.check_trail

10934 * ( parsers.html_incomplete_open_tag

10935 + parsers.html_incomplete_close_tag

10936 + parsers.html_incomplete_open_special_tag
10937 + parsers.html_comment_start

333



10938 + parsers.html_cdatasection_start
10939 + parsers.html_declaration_start
10940 + parsers.html_instruction_start
10941 - parsers.html_close_special_tag
10942 - parsers.html_empty_special_tag)
10943  else

10944 parsers.html_interrupting = parsers.fail

10945 end

10946

10947 if options.blankBeforeHtmlBlock then

10948 parsers.html_interrupting = parsers.fail
10949  end

10950

10951 parsers.ListStarter = parsers.starter

10952

10953  parsers.EndlineExceptions

10954 = parsers.blankline -- paragraph break
10955 + parsers.eof -- end of document
10956 + parsers.bgstart

10957 + parsers.thematic_break_lines

10958 + parsers.interrupting_bullets

10959 + parsers.interrupting_enumerators
10960 + parsers.headerstart

10961 + parsers.html_interrupting

10962

10963  parsers.NoSoftLineBreakEndlineExceptions = parsers.EndlineExceptions
10964

10965  parsers.endline = parsers.newline

10966 * (parsers.check_minimal_indent

10967 * -V("EndlineExceptions")

10968 + parsers.check_optional_indent

10969 * -V("EndlineExceptions")

10970 * -V("ListStarter")) / function(_) return end
10971 * parsers.spacechar”0

10972

10973  parsers.Endline = parsers.endline

10974 / writer.soft_line_break

10975

10976~ parsers.EndlineNoSub = parsers.endline

10977
10978 parsers.NoSoftLineBreakEndline
10979 = parsers.newline

10980 *x (parsers.check_minimal_indent

10981 * —-V("NoSoftLineBreakEndlineExceptions")
10982 + parsers.check_optional_indent

10983 * -V("NoSoftLineBreakEndlineExceptions")
10984 * -V("ListStarter"))

334



10985 * parsers.spacechar”0

10986 / writer.space

10987

10988  parsers.EndlineBreak = parsers.backslash * parsers.endline

10989 / writer.hard_line_break

10990

10991  parsers.Optionallndent

10992 parsers.spacechar”™1 / writer.space

10993

10994  parsers.Space parsers.spacechar™2 * parsers.endline

10995 / writer.hard_line_break
10996 parsers.spacechar”1

10997 parsers.endline”-1

10998 parsers.eof / self.expandtabs

10999 parsers.spacechar”™1 * parsers.endline

11000 / writer.soft_line_break
11001 + parsers.spacechar”1

11002 -parsers.newline / self.expandtabs

11003 + parsers.spacechar”1

11004

11005  parsers.NoSoftLineBreakSpace

11006 = parsers.spacechar™2 * parsers.endline

11007 / writer.hard_line_break

+ ¥ % +

*

11008 + parsers.spacechar”1

11009 * parsers.endline”™-1

11010 * parsers.eof / self.expandtabs

11011 + parsers.spacechar”1 * parsers.endline
11012 / writer.soft_line_break
11013 + parsers.spacechar”1

11014 * -parsers.newline / self.expandtabs

11015 + parsers.spacechar”1

11016

11017  parsers.NonbreakingEndline

11018 = parsers.endline

11019 / writer.nbsp

11020

11021 parsers.NonbreakingSpace

11022 = parsers.spacechar™2 * parsers.endline

11023 / writer.nbsp

11024 + parsers.spacechar”1

11025 * parsers.endline”-1 * parsers.eof / ""

11026 + parsers.spacechar”™1 * parsers.endline

11027 * parsers.optionalspace
11028 / writer.nbsp

11029 + parsers.spacechar”1 * parsers.optionalspace
11030 / writer.nbsp

335



The reader->auto_link_url method produces an autolink to a URL or a relative
reference in the output format, where url is the link destination and attributes
are the optional attributes.

11032 function self.auto_link_url(url, attributes)
11033 return writer.link(writer.escape(url),
11034 url, nil, attributes)
11035 end

The reader->auto_link_email method produces an autolink to an e-mail in the
output format, where email is the email address destination and attributes are
the optional attributes.

11036 function self.auto_link_email (email, attributes)

11037  return writer.link(writer.escape(email),
11038 "mailto:"..email,
11039 nil, attributes)

11040 end

11041

11042  parsers.AutoLinkUrl = parsers.auto_link_url
11043 / self.auto_link_url

11044
11045  parsers.AutoLinkEmail
11046 = parsers.auto_link_email
11047 / self.auto_link_email
11048
11049 parsers.AutoLinkRelativeReference
11050 = parsers.auto_link_relative_reference
11051 / self.auto_link_url
11052
11053  parsers.LinkAndEmph = Ct(parsers.link_and_emph_table)
11054 / self .defer_link_and_emphasis_processing
11055
11056 ~ parsers.EscapedChar = parsers.backslash
11057 * C(parsers.escapable) / writer.string
11058
5

11059  parsers.InlineHtml = Cs(parsers.html_inline_comment)
11060 / writer.inline_html_comment
11061 + Cs(parsers.html_any_empty_inline_tag

11062 + parsers.html_inline_instruction
11063 + parsers.html_inline_cdatasection
11064 + parsers.html_inline_declaration
11065 + parsers.html_any_open_inline_tag
11066 + parsers.html_any_close_tag)

11067 / writer.inline_html_tag

11068

11069  parsers.HtmlEntity = parsers.html_entities / writer.string

336



3.1.6.9 Block Elements (local)

0  parsers.DisplayHtml = Cs(parsers.check_trail
* ( parsers.html_comment
+ parsers.html_special_block

07

07

072
1107¢ + parsers.html_block
1107 + parsers.html_any_block
1107 + parsers.html_instruction
11076 + parsers.html_cdatasection
11077 + parsers.html_declaration))
11078 / writer.block_html_element
11079
11080 parsers.indented_non_blank_line = parsers.indentedline
11081 - parsers.blankline
11082
11083  parsers.Verbatim
11084 = Cs( parsers.check_code_trail
11085 * (parsers.line - parsers.blankline)
11086 * (( parsers.check_minimal_blank_indent_and_full_code_trail
11087 * parsers.blankline)”0
11088 * ( (parsers.check_minimal_indent / "")
11089 * parsers.check_code_trail
11090 * (parsers.line - parsers.blankline))”1)70)
11091 / self.expandtabs / writer.verbatim
11092
11093  parsers.Blockquote = parsers.blockquote_body
11094 / writer.blockquote
11095
11096  parsers.ThematicBreak = parsers.thematic_break_lines
11097 / writer.thematic_break
11098
11099  parsers.Reference = parsers.define_reference_parser
11100 / self.register_link

11101

11102  parsers.Paragraph = parsers.freeze_trail

11103 * (Ct((parsers.Inline)”1)

11104 * (parsers.newline + parsers.eof)

11105 * parsers.unfreeze_trail

11106 / writer.paragraph)

11107

11108  parsers.Plain = parsers.nonindentspace * Ct(parsers.Inline”1)
11109 / writer.plain

3.1.6.10 Lists (local)

11110
11111 if options.taskLists then
11112 parsers.tickbox = ( parsers.ticked_box

337



11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159

else
parsers.tickbox =
end

parsers.list_blank =

parsers.ref_or_block
= parsers.sep_grou
* parsers.minimall
+ parsers.block_se
* parsers.minimall

parsers.ref_or_block
= parsers.minimall
+ (parsers.succeed
* parsers.minimall
- parsers.minimall

parsers.tight_list_1
parsers.create_loo
parsers.ref_or_b
parsers.minimall

+ parsers.halfticked_box
+ parsers.unticked_box
) / writer.tickbox

parsers.fail

parsers.conditionally_indented_blankline

_list_separated

p_no_output (parsers.list_blank)
y_indented_ref
p_group(parsers.list_blank)
y_indented_block

_non_separated
y_indented_ref

/ writer.interblocksep)
y_indented_block
y_indented_blankline

oop_body_pair =

p_body_pair(

lock_non_separated,
y_indented_par_or_plain_no_blank,

(parsers.succeed / writer.interblocksep),
(parsers.succeed / writer.paragraphsep))

parsers.loose_list_1
parsers.create_loo
parsers.ref_or_b
parsers.minimall
parsers.block_se
parsers.par_sep_

parsers.tight_list_c
= V("Block")
* parsers.tight_1i
+ (V("Paragraph")

oop_body_pair =
p_body_pair(
lock_list_separated,
y_indented_par_or_plain,
p_group(parsers.list_blank),
group(parsers.list_blank))

ontent_loop

st_loop_body_pair.block™0
+ V("Plain"))

* parsers.ref_or_block_non_separated

* parsers.tight_1i
+ (V("Paragraph")
* parsers.tight_1i

parsers.loose_list_c
= V("Block")
* parsers.loose_li

st_loop_body_pair.block™0
+ V("Plain"))
st_loop_body_pair.par~0

ontent_loop

st_loop_body_pair.block™0

338



11160 + (V("Paragraph") + V("Plain"))

11161 * parsers.ref_or_block_list_separated

11162 * parsers.loose_list_loop_body_pair.block™0

11163 + (V("Paragraph") + V("Plain"))

11164 * parsers.loose_list_loop_body_pair.par~0

11165

11166 parsers.list_item_tightness_condition

11167 = -#( parsers.list_blank™0

11168 * parsers.minimally_indented_ref_or_block_or_par)

11169 * remove_indent ("1i")

11170 + remove_indent ("1i")

11171 * parsers.fail

11172

11173 parsers.indented_content_tight
11174 = Ct( (parsers.blankline / "")

11175 * #parsers.list_blank

11176 * remove_indent("1i")

11177 + ( (V("Reference") + (parsers.blankline / ""))
11178 * parsers.check_minimal_indent

11179 * parsers.tight_list_content_loop

11180 + (V("Reference") + (parsers.blankline / ""))
11181 + (parsers.tickbox™-1 / writer.escape)

11182 * parsers.tight_list_content_loop

11183 )

11184 * parsers.list_item_tightness_condition)

11185

11186 parsers.indented_content_loose

11187 = Ct( (parsers.blankline / "")

11188 * #parsers.list_blank

11189 + ( (V("Reference") + (parsers.blankline / ""))

11190 * parsers.check_minimal_indent
11191 * parsers.loose_list_content_loop

11192 + (V("Reference") + (parsers.blankline / ""))
11193 + (parsers.tickbox™-1 / writer.escape)
11194 * parsers.loose_list_content_loop))

11195

11196  parsers.TightListItem = function(starter)
11197 return -parsers.ThematicBreak

11198 * parsers.add_indent(starter, "1i")
11199 * parsers.indented_content_tight
11200 end

11201

11202  parsers.LooselListItem = function(starter)

11203 return -parsers.ThematicBreak

11204 * parsers.add_indent (starter, "1i")
11205 * parsers.indented_content_loose
11206 * remove_indent("1i")

339



11207 end

11208

11209  parsers.BulletList0fType = function(bullet_type)
11210 local bullet = parsers.bullet(bullet_type)

11211 return ( Ct( parsers.TightListItem(bullet)

11212 * ( (parsers.check_minimal_indent / "")
11213 * parsers.TightListItem(bullet)
11214 )70

11215 )

11216 * Cc(true)

11217 * —#( (parsers.list_blank™0 / "")

11218 * parsers.check_minimal_indent
11219 * (bullet - parsers.ThematicBreak)
11220 )

11221 + Ct( parsers.LooseListItem(bullet)
11222 * ( (parsers.list_blank™0 / "")
11223 * (parsers.check_minimal_indent / "")
11224 * parsers.LooseListItem(bullet)
11225 )"0

11226 )

11227 *x Cc(false)

11228 ) / writer.bulletlist

11229  end

11230

11231 parsers.BulletList = parsers.BulletList0fType(parsers.dash)

11232 + parsers.BulletList0fType(parsers.asterisk)
11233 + parsers.BulletList0fType(parsers.plus)
11234

11235  local function ordered_list(items,tight,starter)

11236 local startnum = starter[2][1]

11237 if options.startNumber then

11238 startnum = tonumber (startnum) or 1 -- fallback for '#'
11239 if startnum ~= nil then

11240 startnum = math.floor (startnum)

11241 end

11242 else

11243 startnum = nil

11244 end

11245 return writer.orderedlist(items,tight,startnum)

11246 end

11247
11248  parsers.OrderedList0fType = function(delimiter_type)

11249 local enumerator = parsers.enumerator(delimiter_type)
11250 return Cg(enumerator, "listtype")

11251 * (Ct( parsers.TightListItem(Cb("listtype"))
11252 * ( (parsers.check_minimal_indent / "")
11253 * parsers.TightListItem(enumerator))~0)

340



11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266

*

Cc(true)
-#((parsers.list_blank™0 / "")
* parsers.check_minimal_indent * enumerator)
+ Ct( parsers.LooseListItem(Cb("listtype"))
* ((parsers.list_blank™0 / "")
* (parsers.check_minimal_indent / "")
* parsers.LooselListItem(enumerator))~0)
Cc(false)
* Ct(Cb("listtype")) / ordered_list

*

*

~—

end

parsers.OrderedList = parsers.0OrderedListOfType(parsers.period)
+ parsers.0OrderedList0fType(parsers.rparent)

3.1.6.11 Blank (local)

11267
11268

parsers.Blank = parsers.blankline / ""
+ V("Reference")

3.1.6.12 Headings (local)

11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295

function parsers.parse_heading_text(s)
local inlines = self.parser_functions.parse_inlines(s)
local flatten_inlines = self.writer.flatten_inlines
self.writer.flatten_inlines = true

local flat_text = self.parser_functions.parse_inlines(s)

flat_text = util.rope_to_string(flat_text)
self.writer.flatten_inlines = flatten_inlines
return {flat_text, inlines}

end

-- parse atx header
parsers.AtxHeading

parsers.check_trail_no_rem
Cg(parsers.heading_start, "level")
((C( parsers.optionalspace
* parsers.hash™0
* parsers.optionalspace
* parsers.newline)
+ parsers.spacechar”1
* C(parsers.line))
/ strip_atx_end
/ parsers.parse_heading_text)
* Cb("level")
/ writer.heading

* ¥

parsers.heading_line = parsers.linechar”1
- parsers.thematic_break_lines

341



11296  parsers.heading_text = parsers.heading_line

11297 * ( (V("Endline") / "\n")
11298 * ( parsers.heading_line
11299 - parsers.heading level))~0

11300 * parsers.newline”-1

11301

11302  parsers.SetextHeading = parsers.freeze_trail

11303 parsers.check_trail_no_rem

11304 #( parsers.heading_text

11305 * parsers.check_minimal_indent

11306 * parsers.check_trail

11307 * parsers.heading_level)

11308 Cs(parsers.heading_text)

11309 parsers.parse_heading_text

11310 parsers.check_minimal_indent_and_trail
11311 parsers.heading_level

11312 parsers.newline

11313 parsers.unfreeze_trail

11314 writer.heading

11315

11316~ parsers.Heading = parsers.AtxHeading + parsers.SetextHeading

*
*

DN T N

3.1.6.13 Syntax Specification

Define reader->finalize_grammar as a function that constructs the PEG grammar
of markdown, applies syntax extensions extensions and returns a conversion function
that takes a markdown string and turns it into a plain TEX output.

11317 function self.finalize_grammar (extensions)

Create a local writable copy of the global read-only walkable_syntax hash ta-
ble. This table can be used by user-defined syntax extensions to insert new
PEG patterns into existing rules of the PEG grammar of markdown using the
reader->insert_pattern method. Furthermore, built-in syntax extensions can
use this table to override existing rules using the reader->update_rule method.

11318 local walkable_syntax = (function(global_walkable_syntax)
11319 local local_walkable_syntax = {}

11320 for 1lhs, rule in pairs(global_walkable_syntax) do

11321 local_walkable_syntax[lhs] = util.table_copy(rule)
11322 end

11323 return local_walkable_syntax

11324 end) (walkable_syntax)

The reader->insert_pattern method adds a pattern to walkable_syntax [left-
hand side terminal symbol] before, instead of, or after a right-hand-side terminal
symbol.

11325 local current_extension_name = nil
11326 self.insert_pattern = function(selector, pattern, pattern_name)

342



11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373

assert(pattern_name == nil or type(pattern_name) == "string")
local _, _, lhs, pos, rhs
= selector:find ("~ (%a+)%s+([%aks]l+%a+)%s+(ha+)$")
assert(lhs ~= nil,
[[Expected selector in form ]]
[["LHS (beforelafter|instead of) RHS", not "]]
selector .. [["]])

assert(walkable_syntax[lhs] ~= nil,
[[Rule ]] .. 1lhs
[[ -> ... does not exist in markdown grammar]])
assert(pos == "before" or pos == "after" or pos == "instead of",

[[Expected positional specifier "before", "after", 1]
[[or "instead of", not "]]
pos .. [["1D)
local rule = walkable_syntax[lhs]
local index = nil
for current_index, current_rhs in ipairs(rule) do

if type(current_rhs) == "string" and current_rhs == rhs then
index = current_index
if pos == "after" then
index = index + 1
end
break
end
end
assert(index ~= nil,

[[Rule 1] .. 1hs .. [[ -> 1] .. rhs
[[ does not exist in markdown grammar]])
local accountable_pattern
if current_extension_name then
accountable_pattern
= {pattern, current_extension_name, pattern_name}
else
assert (type(pattern) == "string",
[[reader->insert_pattern() was called outside ]]
[[an extension with ]]
[[a PEG pattern instead of a rule name]])
accountable_pattern = pattern

end

if pos == "instead of" then
rule[index] = accountable_pattern

else

table.insert(rule, index, accountable_pattern)
end
-- TODO: Remove all occurrences of “pattern” after “index’
- to improve speed?
end

343



11374 if options.htmlOverLinks then

11375 self.insert_pattern("Inline before AutoLinkUrl", "InlineHtml")
11376 end

Create a local syntax hash table that stores those rules of the PEG grammar of
markdown that can’t be represented as an ordered choice of terminal symbols.

11377 local syntax =

11378 { "Blocks",

11379

11380 Blocks = V("InitializeState")
11381 * V("ExpectedJekyllData")
11382 * V("Blank") "0

Only create interblock separators between pairs of blocks that are not both paragraphs.
Between a pair of paragraphs, any number of blank lines will always produce a
paragraph separator.

11383 * ( V("Block")

11384 * ( V("Blank")~0 * parsers.eof

11385 + ( V("Blank")"2 / writer.paragraphsep
11386 + V("Blank")~0 / writer.interblocksep
11387 )

11388 )

11389 ( V("Paragraph") + V("Plain") )

11390 * ( V("Blank")~0 * parsers.eof

11391 + ( V("Blank")"2 / writer.paragraphsep
11392 + V("Blank")~0 / writer.interblocksep
11393 )

11394 )

11395 * V("Block")

11396 * ( V("Blank")~0 * parsers.eof

11397 + ( V("Blank")"2 / writer.paragraphsep
11398 + V("Blank")~0 / writer.interblocksep
11399 )

11400 )

11401 + ( V("Paragraph") + V("Plain") )

11402 * ( V("Blank")~0 * parsers.eof

11403 + V("Blank")~0 / writer.paragraphsep
11404 )

11405 )"0,

11406

11407 ExpectedJekyllData = parsers.succeed,

11408

11409 Blank = parsers.Blank,

11410 Reference = parsers.Reference,

11411

11412 Blockquote = parsers.Blockquote,

11413 Verbatim = parsers.Verbatim,

11414 ThematicBreak = parsers.ThematicBreak,

344



11415 BulletList = parsers.Bulletlist,

11416 OrderedList = parsers.Orderedlist,

11417 DisplayHtml = parsers.DisplayHtml,

11418 Heading = parsers.Heading,

11419 Paragraph = parsers.Paragraph,

11420 Plain = parsers.Plain,

11421

11422 ListStarter = parsers.ListStarter,

11423 EndlineExceptions = parsers.EndlineExceptions,
11424 NoSoftLineBreakEndlineExceptions

11425 = parsers.NoSoftLineBreakEndlineExceptions,
11426

11427 Str = parsers.Str,

11428 Space = parsers.Space,

11429 NoSoftLineBreakSpace

11430 = parsers.NoSoftLineBreakSpace,
11431 Optionallndent = parsers.Optionallndent,

11432 Endline = parsers.Endline,

11433 EndlineNoSub = parsers.EndlineNoSub,

11434 NoSoftLineBreakEndline

11435 = parsers.NoSoftLineBreakEndline,
11436 EndlineBreak = parsers.EndlineBreak,

11437 LinkAndEmph = parsers.LinkAndEmph,

11438 Code = parsers.Code,

11439 AutoLinkUrl = parsers.AutoLinkUrl,

11440 AutoLinkEmail = parsers.AutoLinkEmail,

11441 AutoLinkRelativeReference

11442 = parsers.AutolLinkRelativeReference,
11443 InlineHtml = parsers.InlineHtml,

11444 HtmlEntity = parsers.HtmlEntity,

11445 EscapedChar = parsers.EscapedChar,

11446 Smart = parsers.Smart,

11447 Symbol = parsers.Symbol,

11448 SpecialChar = parsers.fail,

11449 InitializeState = parsers.succeed,

11450 3

Define reader->update_rule as a function that receives two arguments: a left-
hand side terminal symbol and a function that accepts the current PEG pattern in
walkable_syntax [left-hand side terminal symbol] if defined or nil otherwise and
returns a PEG pattern that will (re)define walkable_syntax [left-hand side terminal
symbol].

11451 self .update_rule = function(rule_name, get_pattern)

11452 assert(current_extension_name ~= nil)

11453 assert(syntax[rule_name] ~= nil,

11454 [[Rule 1] .. rule_name

11455 .. [[ -> ... does not exist in markdown grammar]])

345



11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469

local previous_pattern
local extension_name
if walkable_syntax[rule_name] then
local previous_accountable_pattern
= walkable_syntax[rule_name] [1]
previous_pattern = previous_accountable_pattern[1]
extension_name
= previous_accountable_pattern[2]
", " .. current_extension_name
else
previous_pattern = nil
extension_name = current_extension_name
end
local pattern

Instead of a function, a PEG pattern pattern may also be supplied with
roughly the same effect as supplying the following function, which will define
walkable_syntax [left-hand side terminal symbol] unless it has been previously

defined.

function(previous_pattern)
assert(previous_pattern == nil)
return pattern

end

11470 if type(get_pattern) == "function" then

11471 pattern = get_pattern(previous_pattern)

11472 else

11473 assert(previous_pattern == nil,

11474 [[Rule 1] .. rule_name

11475 [[ has already been updated by ]] .. extension_name)
11476 pattern = get_pattern

11477 end

11478 local accountable_pattern = { pattern, extension_name, rule_name }
11479 walkable_syntax[rule_name] = { accountable_pattern }

11480 end

Define a hash table of all characters with special meaning and add method
reader->add_special_character that extends the hash table and updates the
PEG grammar of markdown.

11481
11482
11483
11484
11485
11486
11487

local special_characters = {}
self.add_special_character = function(c)

table.insert(special_characters, c)
syntax.SpecialChar = S(table.concat(special_characters, ""))

end

self.add_special_character("*")

346



11488 self.add_special_character("[")

11489 self.add_special_character("]")
11490 self.add_special_character("<")
11491 self.add_special_character("!")
11492 self.add_special_character("\\")

Add method reader->initialize_named_group that defines named groups with a
default capture value.

11493 self.initialize_named_group = function(name, value)
11494 local pattern = Ct("")

11495 if value ~= nil then

11496 pattern = pattern / value

11497 end

11498 syntax.InitializeState = syntax.InitializeState
11499 * Cg(pattern, name)

11500 end

Add a named group for indentation.
11501 self.initialize_named_group("indent_info")

Apply syntax extensions.

11502 for _, extension in ipairs(extensions) do
11503 current_extension_name = extension.name
11504 extension.extend _writer(writer)

11505 extension.extend_reader(self)

11506 end

11507 current_extension_name = nil

If the debugExtensions option is enabled, serialize walkable_syntax to a JSON for
debugging purposes.

11508 if options.debugExtensions then

11509 local sorted_lhs = {}

11510 for lhs, _ in pairs(walkable_syntax) do

11511 table.insert(sorted_lhs, 1lhs)

11512 end

11513 table.sort(sorted_lhs)
11514

11515 local output_lines = {"{"}

11516 for lhs_index, lhs in ipairs(sorted_lhs) do
11517 local encoded_lhs = util.encode_json_string(lhs)

11518 table.insert (output_lines, [[ 1] ..encoded_lhs .. [[: [11)
11519 local rule = walkable_syntax[lhs]

11520 for rhs_index, rhs in ipairs(rule) do

11521 local human_readable_rhs

11522 if type(rhs) == "string" then

11523 human_readable_rhs = rhs

11524 else

11525 local pattern_name

347



11526 if rhs[3] then

11527 pattern_name = rhs[3]

11528 else

11529 pattern_name = "Anonymous Pattern"

11530 end

11531 local extension_name = rhs[2]

11532 human_readable_rhs = pattern_name .. [[ (]]
11533 .. extension_name .. [[)]]
11534 end

11535 local encoded_rhs

11536 = util.encode_json_string(human_readable_rhs)
11537 local output_line = [[ 1] .. encoded_rhs
11538 if rhs_index < #rule then

11539 output_line = output_line .. ","

11540 end

11541 table.insert(output_lines, output_line)

11542 end

11543 local output_line = " 1"

11544 if lhs_index < #sorted_lhs then

11545 output_line = output_line "

11546 end

11547 table.insert (output_lines, output_line)

11548 end

11549 table.insert (output_lines, "3}")

11550

11551 local output = table.concat(output_lines, "\n")
11552 local output_filename = options.debugExtensionsFileName
11553 local output_file = assert(io.open(output_filename, "w"),
11554 [[Could not open file "]] .. output_filename
11555 .. [[" for writingl])

11556 assert (output_file:write(output))

11557 assert (output_file:close())

11558 end

Materialize walkable_syntax and merge it into syntax to produce the complete
PEG grammar of markdown. Whenever a rule exists in both walkable_syntax and
syntax, the rule from walkable_syntax overrides the rule from syntax.

11559 for lhs, rule in pairs(walkable_syntax) do
11560 syntax[lhs] = parsers.fail

11561 for _, rhs in ipairs(rule) do

11562 local pattern

Although the interface of the reader->insert_pattern method does not doc-
ument this (see Section 2.1.2), we allow the reader->insert_pattern and
reader->update_rule methods to insert not just PEG patterns, but also rule names
that reference the PEG grammar of Markdown.

11563 if type(rhs) == "string" then

348



11564 pattern = V(rhs)

11565 else

11566 pattern = rhs[1]

11567 if type(pattern) == "string" then
11568 pattern = V(pattern)

11569 end

11570 end

11571 syntax[1lhs] = syntax[lhs] + pattern
11572 end

11573 end

Finalize the parser by reacting to options and by producing special parsers for difficult
edge cases such as blocks nested in definition lists or inline content nested in link,
note, and image labels.

if options.underscores then

574

575 self.add_special_character("_")
11576 end
11577
11578 if not options.codeSpans then
11579 syntax.Code = parsers.fail
11580 else
11581 self.add_special_character(" ")
11582 end
11583
11584 if not options.html then
11585 syntax.DisplayHtml = parsers.fail
11586 syntax.InlineHtml = parsers.fail
11587 syntax.HtmlEntity = parsers.fail
11588 else
11589 self.add_special_character("&")
11590 end
11591
11592 if options.preserveTabs then
11593 options.stripIndent = false
11594 end
11595
11596 if not options.smartEllipses then
11597 syntax.Smart = parsers.fail
11598 else
11599 self.add_special_character(".")
11600 end
11601
11602 if not options.relativeReferences then
11603 syntax.AutoLinkRelativeReference = parsers.fail
11604 end
11605
11606 if options.contentlLevel == "inline" then

349



11607 syntax[1] = "Inlines"

11608 syntax.Inlines = V("InitializeState")
11609 * parsers.Inline”0
11610 * ( parsers.spacing 0
11611 * parsers.eof / "")

11612 syntax.Space = parsers.Space + parsers.blankline / writer.space
11613 end

11614

11615 local blocks_nested_t = util.table_copy(syntax)

11616 blocks_nested_t.ExpectedJekyllData = parsers.succeed
11617 parsers.blocks_nested = Ct(blocks_nested_t)
11618

11619 parsers.blocks = Ct(syntax)

11620

11621 local inlines_t = util.table_copy(syntax)

11622 inlines_t[1] = "Inlines"

11623 inlines_t.Inlines = V("InitializeState")

11624 * parsers.Inline”0

11625 * ( parsers.spacing”0

11626 * parsers.eof / "")

11627 parsers.inlines = Ct(inlines_t)

11628

11629 local inlines_no_inline_note_t = util.table_copy(inlines_t)
11630 inlines_no_inline_note_t.InlineNote = parsers.fail

11631 parsers.inlines_no_inline_note = Ct(inlines_no_inline_note_t)
11632

11633 local inlines_no_html_t = util.table_copy(inlines_t)
11634 inlines_no_html_t.DisplayHtml = parsers.fail

11635 inlines_no_html_t.InlineHtml = parsers.fail

11636 inlines_no_html_t.HtmlEntity = parsers.fail

11637 parsers.inlines_no_html = Ct(inlines_no_html_t)

11638

11639 local inlines_nbsp_t = util.table_copy(inlines_t)

11640 inlines_nbsp_t.Endline = parsers.Nonbreakingkndline

11641 inlines_nbsp_t.Space = parsers.NonbreakingSpace

11642 parsers.inlines_nbsp = Ct(inlines_nbsp_t)

11643

11644 local inlines_no_link_or_emphasis_t = util.table_copy(inlines_t)
11645 inlines_no_link_or_emphasis_t.LinkAndEmph = parsers.fail
11646 inlines_no_link_or_emphasis_t.EndlineExceptions

11647 = parsers.EndlineExceptions - parsers.eof

11648 parsers.inlines_no_link_or_emphasis

11649 = Ct(inlines_no_link_or_emphasis_t)

Return a function that converts markdown string input into a plain TEX output
and returns it..

11650 return function(input)

350



Unicode-normalize the input.

11651 if options.unicodeNormalization then

11652 local form = options.unicodeNormalizationForm
11653 input = util.normalize(input, form)

11654 end

Since the Lua converter expects UNIX line endings, normalize the input. Also add a
line ending at the end of the file in case the input file has none.

11655 input = input:gsub("\r\n?", "\n")
11656 if input:sub(-1) ~= "\n" then
11657 input = input .. "\n"

11658 end

Clear the table of references.

11659 references = {}

11660 local document = self.parser_functions.parse_blocks(input)

11661 local output = util.rope_to_string(writer.document(document))
Remove block element / paragraph separators immediately followed by the output of
writer->undosep, possibly interleaved by section ends. Then, remove any leftover
output of writer->undosep.

11662 local undosep_start, undosep_end

11663 local potential_secend_start, secend_start

11664 local potential_sep_start, sep_start

11665 while true do

11666 -- find a “writer->undosep’

11667 undosep_start, undosep_end

11668 = output:find(writer.undosep_text, 1, true)

11669 if undosep_start == nil then break end

11670 -- skip any preceding section ends

11671 secend_start = undosep_start

11672 while true do

11673 potential_secend_start = secend_start - #writer.secend_text
11674 if potential_secend_start < 1

11675 or output:sub(potential_secend_start,

11676 secend_start - 1) ~= writer.secend_text
11677 then

11678 break

11679 end

11680 secend_start = potential_secend_start

11681 end

11682 -- find an immediately preceding

11683 -- block element / paragraph separator

11684 sep_start = secend_start

11685 potential_sep_start = sep_start - #writer.interblocksep_text
11686 if potential_sep_start >= 1

11687 and output:sub(potential_sep_start,

11688 sep_start - 1) == writer.interblocksep_text

351



11689 then

11690 sep_start = potential_sep_start

11691 else

11692 potential_sep_start = sep_start - #writer.paragraphsep_text
11693 if potential_sep_start >= 1

11694 and output:sub(potential_sep_start,

11695 sep_start - 1) == writer.paragraphsep_text
11696 then

11697 sep_start = potential_sep_start

11698 end

11699 end

11700 -- remove “writer—>undosep” and immediately preceding

11701 -- block element / paragraph separator

11702 output = output:sub(l, sep_start - 1)

11703 .. output:sub(secend_start, undosep_start - 1)

11704 .. output:sub(undosep_end + 1)

11705 end

11706 return output

11707 end

11708 end

11709 return self
11710 end

3.1.7 Built-In Syntax Extensions

Create extensions hash table that contains built-in syntax extensions. Syntax
extensions are functions that produce objects with two methods: extend_writer
and extend_reader. The extend_writer object takes a writer object as the only
parameter and mutates it. Similarly, extend_reader takes a reader object as the
only parameter and mutates it.

11711 M.extensions = {}

3.1.7.1 Bracketed Spans
The extensions.bracketed_spans function implements the Pandoc bracketed
span syntax extension.

11712 M.extensions.bracketed_spans = function()

11713 return {
11714 name = "built-in bracketed_spans syntax extension",
11715 extend_writer = function(self)

Define writer->span as a function that will transform an input bracketed span s
with attributes attr to the output format.

11716 function self.span(s, attr)

11717 if self.flatten_inlines then return s end

11718 return {"\\markdownRendererBracketedSpanAttributeContextBegin",
11719 self.attributes(attr),

352



11720 s,

11721 "\\markdownRendererBracketedSpanAttributeContextEnd{}"}
11722 end

11723 end, extend_reader = function(self)

11724 local parsers = self.parsers

11725 local writer = self.writer

11726

11727 local span_label = parsers.lbracket

11728 * (Cs((parsers.alphanumeric™1

11729 + parsers.inticks

11730 + parsers.autolink

11731 + V("InlineHtml")

11732 + ( parsers.backslash * parsers.backslash)
11733 + ( parsers.backslash

11734 * (parsers.lbracket + parsers.rbracket)
11735 + V("Space") + V("Endline")

11736 + (parsers.any

11737 - ( parsers.newline

11738 + parsers.lbracket

11739 + parsers.rbracket

11740 + parsers.blankline”2))))"1)
11741 / self .parser_functions.parse_inlines)
11742 * parsers.rbracket

11743

11744 local Span = span_label

11745 * Ct(parsers.attributes)

11746 / writer.span

11747

11748 self.insert_pattern("Inline before LinkAndEmph",

11749 Span, "Span")

11750 end

11751}

11752 end

3.1.7.2 Citations

The extensions.citations function implements the Pandoc citation syntax
extension. When the citation_nbsps parameter is enabled, the syntax extension
will replace regular spaces with non-breaking spaces inside the prenotes and postnotes
of citations.
11753 M.extensions.citations = function(citation_nbsps)
11754  return {
11755 name = "built-in citations syntax extension",
11756 extend_writer = function(self)
Define writer->citations as a function that will transform an input array of
citations cites to the output format. If text_cites is enabled, the citations should

353



be rendered in-text, when applicable. The cites array contains tables with the
following keys and values:

11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790

suppress_author — If the value of the key is true, then the author of the work
should be omitted in the citation, when applicable.

prenote — The value of the key is either nil or a rope that should be inserted
before the citation.

postnote — The value of the key is either nil or a rope that should be inserted
after the citation.

name — The value of this key is the citation name.

function self.citations(text_cites, cites)
local buffer = {}
if self.flatten_inlines then
for _,cite in ipairs(cites) do
if cite.prenote then
table.insert(buffer, {cite.prenote, " "})
end
table.insert(buffer, cite.name)
if cite.postnote then
table.insert(buffer, {" ", cite.postnotel})
end
end
else
table.insert (buffer,
{"\\markdownRenderer",
text_cites and "TextCite" or "Cite",
n{n s #cites R n}u})
for _,cite in ipairs(cites) do
table.insert (buffer,

{cite.suppress_author and "-" or "+", "{",
cite.prenote or "", "}{",
cite.postnote or "", "}{", cite.name, "}"})

end
end
return buffer
end
end, extend_reader = function(self)
local parsers = self.parsers
local writer = self.writer

local citation_chars

= parsers.alphanumeric
+ S("#$RE—+<>~/_")

354



11791 local citation_name

11792 = Cs(parsers.dash™-1) * parsers.at
11793 * Cs(citation_chars

11794 * ((( citation_chars

11795 + parsers.internal_punctuation
11796 - parsers.comma - parsers.semicolon)
11797 * —#(( parsers.internal_punctuation
11798 - parsers.comma

11799 - parsers.semicolon)”0
11800 * —( citation_chars

11801 + parsers.internal_punctuation
11802 - parsers.comma

11803 - parsers.semicolon)))”0
11804 * citation_chars)~-1)

11805

11806 local citation_body_prenote

11807 = Cs((parsers.alphanumeric~1

11808 + parsers.bracketed

11809 + parsers.inticks

11810 + parsers.autolink

11811 + V("InlineHtml")

11812 + V("Space") + V("EndlineNoSub")
11813 + (parsers.anyescaped

11814 - ( parsers.newline

11815 + parsers.rbracket

11816 + parsers.blankline”2))

11817 - ( parsers.spnl

11818 * parsers.dash™-1

11819 * parsers.at))”1)

11820

11821 local citation_body_postnote

11822 = Cs((parsers.alphanumeric~1

11823 + parsers.bracketed

11824 + parsers.inticks

11825 + parsers.autolink

11826 + V("InlineHtml")

11827 + V("Space") + V("EndlineNoSub")
11828 + (parsers.anyescaped

11829 - ( parsers.newline

11830 + parsers.rbracket

11831 + parsers.semicolon

11832 + parsers.blankline”2))

11833 - (parsers.spnl * parsers.rbracket))”1)
11834

11835 local citation_body_chunk

11836 = ( citation_body_prenote

11837 * parsers.spnlc_sep

355



11838 + Cc(""™)

11839 * parsers.spnlc

11840 )

11841 * citation_name

11842 * ( parsers.internal_punctuation
11843 - parsers.semicolon) -1

11844 * ( parsers.spnlc / function(_) return end
11845 * citation_body_postnote

11846 + Cc("")

11847 * parsers.spnlc

11848 )

11849

11850 local citation_body

11851 = citation_body_chunk

11852 * ( parsers.semicolon

11853 * parsers.spnlc

11854 * citation_body_chunk

11855 )70

11856

11857 local citation_headless_body_postnote

11858 = Cs((parsers.alphanumeric~1

11859 + parsers.bracketed

11860 + parsers.inticks

11861 + parsers.autolink

11862 + V("InlineHtml")

11863 + V("Space") + V("Endline")
11864 + (parsers.anyescaped

11865 - ( parsers.newline

11866 + parsers.rbracket

11867 + parsers.at

11868 + parsers.semicolon + parsers.blankline”2))
11869 - (parsers.spnl * parsers.rbracket))~0)
11870

11871 local citation_headless_body

11872 = citation_headless_body_postnote
11873 * ( parsers.semicolon

11874 * parsers.spnlc

11875 * citation_body_chunk

11876 )0

11877

11878 local citations

11879 = function(text_cites, raw_cites)
11880 local function normalize(str)

11881 if str == "" then

11882 str = nil

11883 else

11884 str = (citation_nbsps and

356



11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931

self.parser_functions.parse_inlines_nbsp or
self.parser_functions.parse_inlines) (str)
end
return str
end

local cites = {}
for i = 1,#raw_cites,4 do
cites[#cites+1] = {
prenote = normalize(raw_cites[i]),
suppress_author = raw_cites[i+1] == "-",
name = writer.identifier(raw_cites[i+2]),
postnote = normalize(raw_cites[i+3]),
}
end
return writer.citations(text_cites, cites)
end

local TextCitations
= Ct((parsers.spnlc
* Cc("")
* citation_name
* ((parsers.spnlc
* parsers.lbracket
* citation_headless_body
* parsers.rbracket) + Cc("")))"1)
/ function(raw_cites)
return citations(true, raw_cites)
end

local ParenthesizedCitations
= Ct((parsers.spnlc
parsers.lbracket
citation_body
parsers.rbracket) ~1)
function(raw_cites)
return citations(false, raw_cites)
end

N ¥ ¥ ¥

local Citations = TextCitations + ParenthesizedCitations

self.insert_pattern("Inline before LinkAndEmph",
Citations, "Citations")

self.add_special_character("@")

self.add_special_character("-")
end

357



11932 }
11933 end

3.1.7.3 Content Blocks

The extensions.content_blocks function implements the iA Writer content
blocks syntax extension. The language_map parameter specifies the filename of the
JSON file that maps filename extensions to programming language names.
11934 M.extensions.content_blocks = function(language_map)
The languages_json table maps programming language filename extensions to fence
infostrings. All language_map files located by the kpathsea library are loaded into a
chain of tables. languages_json corresponds to the first table and is chained with
the rest via Lua metatables.

11935  local languages_json = (function()

11936 local base, prev, curr

11937 for _, pathname in ipairs(util.find_files(language_map)) do
11938 local file = io.open(pathname, "r")

11939 if not file then goto continue end

11940 local input = assert(file:read("x*a"))

11941 assert(file:close())

11942 local json = input:gsub('("["\n]l-"):','[%1]=")
11943 curr = load("_ENV = {}; return "..json) ()

11944 if type(curr) == "table" then

11945 if base == nil then

11946 base = curr

11947 else

11948 setmetatable(prev, { __index = curr })
11949 end

11950 prev = curr

11951 end

11952 ::continue::

11953 end

11954 return base or {}

11955  end) ()

11956

11957  return {

11958 name = "built-in content_blocks syntax extension",
11959 extend_writer = function(self)

Define writer->contentblock as a function that will transform an input iA Writer
content block to the output format, where src corresponds to the URI prefix, suf to
the URI extension, type to the type of the content block (Localfile or onlineimage),
and tit to the title of the content block.

11960 function self.contentblock(src,suf,type,tit)
11961 if not self.is_writing then return "" end
11962 src = src.."."..suf

358



11963 suf = suf:lower()

11964 if type == "onlineimage" then

11965 return {"\\markdownRendererContentBlockOnlineImage{",suf,"}",
11966 "{",self.string(src),"}",

11967 "{",self.uri(src),"}",

11968 "{",self.string(tit or ""),"}"}

11969 elseif languages_json[suf] then

11970 return {"\\markdownRendererContentBlockCode{",suf,"}",
11971 "{",self.string(languages_json[suf]),"}",
11972 "{",self.string(src),"}",

11973 "{" self.uri(src),"}",

11974 "{",self.string(tit or ""),"}"}

11975 else

11976 return {"\\markdownRendererContentBlock{",suf,"}",
11977 "{",self.string(src),"}",

11978 "{" self.uri(src),"}",

11979 "{",self.string(tit or ""),"}"}

11980 end

11981 end

11982 end, extend_reader = function(self)

11983 local parsers = self.parsers

11984 local writer = self.writer

11985

11986 local contentblock_tail

11987 = parsers.optionaltitle

11988 * (parsers.newline + parsers.eof)
11989

11990 -- case insensitive online image suffix:

11991 local onlineimagesuffix

11992 = (function(...)

11993 local parser = nil

11994 for _, suffix in ipairs({...}) do
11995 local pattern=nil

11996 for i=1,#suffix do

11997 local char=suffix:sub(i,i)
11998 char = S(char:lower()..char:upper())
11999 if pattern == nil then

12000 pattern = char

12001 else

12002 pattern = pattern * char
12003 end

12004 end

12005 if parser == nil then

12006 parser = pattern

12007 else

12008 parser = parser + pattern
12009 end

359



12010 end

12011 return parser

12012 end) ("png", "jpg", "jpeg", "gif", "tif", "tiff")
12013

12014 —-- online image url for iA Writer content blocks with
12015 -- mandatory suffix, allowing nested brackets:
12016 local onlineimageurl

12017 = (parsers.less

12018 * Cs((parsers.anyescaped

12019 - parsers.more

12020 - parsers.spacing

12021 - #(parsers.period

12022 * onlineimagesuffix
12023 * parsers.more

12024 * contentblock_tail))~0)
12025 * parsers.period

12026 * Cs(onlineimagesuffix)

12027 * parsers.more

12028 + (Cs((parsers.inparens

12029 + (parsers.anyescaped
12030 - parsers.spacing

12031 - parsers.rparent

12032 - #(parsers.period

12033 * onlineimagesuffix
12034 * contentblock_tail)))~0)
12035 * parsers.period

12036 * Cs(onlineimagesuffix))

12037 ) * Cc("onlineimage")

12038

12039 —-- filename for iA Writer content blocks with mandatory suffix:
12040 local localfilepath

12041 = parsers.slash

12042 * Cs((parsers.anyescaped

12043 - parsers.tab

12044 - parsers.newline

12045 - #(parsers.period

12046 * parsers.alphanumeric”1
12047 * contentblock_tail))~1)
12048 * parsers.period

12049 * Cs(parsers.alphanumeric™1)

12050 * Cc("localfile")

12051

12052 local ContentBlock

12053 = parsers.check_trail_no_rem

12054 * (localfilepath + onlineimageurl)
12055 * contentblock_tail

12056 / writer.contentblock

360



5
58 self.insert_pattern("Block before Blockquote",
5

0!
120
12059 ContentBlock, "ContentBlock")
12060 end
12061 }
12062 end

3.1.7.4 Definition Lists

The extensions.definition_lists function implements the Pandoc definition
list syntax extension. If the tight_lists parameter is true, tight lists will produce
special right item renderers.
12063 M.extensions.definition_lists = function(tight_lists)
12064  return {
12065 name = "built-in definition_lists syntax extension",
12066 extend_writer = function(self)
Define writer->definitionlist as a function that will transform an input definition
list to the output format, where items is an array of tables, each of the form
{ term = t, definitions = defs }, where t is a term and defs is an array of
definitions. tight specifies, whether the list is tight or not.

12067 local function dlitem(term, defs)

12068 local retVal = {"\\markdownRendererDlItem{",term,"}"}
12069 for _, def in ipairs(defs) do

12070 retVal [#retVal+1]

12071 = {"\\markdownRendererD1DefinitionBegin ",def,
12072 "\\markdownRendererDlDefinitionEnd "}

12073 end

12074 retVal [#retVal+1] = "\\markdownRendererDlItemEnd "
12075 return retVal

12076 end

12077

12078 function self.definitionlist(items,tight)

12079 if not self.is_writing then return "" end

12080 local buffer = {}

12081 for _,item in ipairs(items) do

12082 buffer [#buffer + 1] = dlitem(item.term, item.definitions)
12083 end

12084 if tight and tight_lists then

12085 return {"\\markdownRendererD1BeginTight\n", buffer,
12086 "\n\\markdownRendererD1EndTight"}

12087 else

12088 return {"\\markdownRendererD1Begin\n", buffer,

12089 "\n\\markdownRendererD1End"}

12090 end

12091 end

12092 end, extend_reader = function(self)

361



12093 local parsers = self.parsers

12094 local writer = self.writer

12095

12096 local defstartchar = S("~:")

12097

12098 local defstart

12099 = parsers.check_trail_length(0) * defstartchar

12100 * #parsers.spacing

12101 * (parsers.tab + parsers.space”™-3)

12102 + parsers.check_trail_length(1)

12103 * defstartchar * #parsers.spacing

12104 * (parsers.tab + parsers.space”-2)

12105 + parsers.check_trail_length(2)

12106 * defstartchar * #parsers.spacing

12107 * (parsers.tab + parsers.space”-1)

12108 + parsers.check_trail_length(3)

12109 * defstartchar * #parsers.spacing

12110

12111 local indented_line

12112 = (parsers.check_minimal_indent / "")

12113 * parsers.check_code_trail * parsers.line

12114

12115 local blank

12116 = parsers.check_minimal_blank_indent_and_any_trail
12117 * parsers.optionalspace * parsers.newline

12118

12119 local dlchunk = Cs(parsers.line * (indented_line - blank)~0)
12120

12121 local indented_blocks = function(bl)

12122 return Cs( bl

12123 * (blank™1 * (parsers.check _minimal_indent / "")
12124 * parsers.check_code_trail * -parsers.blankline * bl)~0
12125 * (blank™1 + parsers.eof))

12126 end

12127

12128 local function definition_list_item(term, defs, _)

12129 return { term = self.parser_functions.parse_inlines(term),
12130 definitions = defs }

12131 end

12132

12133 local DefinitionListItemLoose

12134 = C(parsers.line) * blank™0

12135 * Ct((parsers.check_minimal_indent * (defstart

12136 * indented_blocks(dlchunk)

12137 / self .parser_functions.parse_blocks_nested))”1)
12138 * Cc(false) / definition_list_item

12139

362



12140 local DefinitionListItemTight

12141 = C(parsers.line)

12142 * Ct((parsers.check_minimal_indent * (defstart * dlchunk
12143 / self .parser_functions.parse_blocks_nested))”1)
12144 * Cc(true) / definition_list_item

12145

12146 local DefinitionList

12147 = ( Ct(DefinitionListItemLoose”1) * Cc(false)

12148 + Ct(DefinitionListItemTight~1)

12149 * (blank™0

12150 * -DefinitionListItemLoose * Cc(true))

12151 ) / writer.definitionlist

12152

12153 self.insert_pattern("Block after Heading",

12154 DefinitionList, "DefinitionList")
12155 end

12156}

12157 end

3.1.7.5 Fancy Lists
The extensions.fancy_lists function implements the Pandoc fancy list syntax
extension.

12158 M.extensions.fancy_lists = function()

12159 return {

12160 name = "built-in fancy_lists syntax extension",
12161 extend_writer = function(self)

12162 local options = self.options

12163
Define writer->fancylist as a function that will transform an input ordered list
to the output format, where:

e items is an array of the list items,

e tight specifies, whether the list is tight or not,

e startnum is the number of the first list item,

o numstyle is the style of the list item labels from among the following:

— Decimal — decimal arabic numbers,

LowerRoman — lower roman numbers,

UpperRoman — upper roman numbers,

— LowerAlpha — lower ASCII alphabetic characters, and
— UpperAlpha — upper ASCII alphabetic characters, and

e numdelim is the style of delimiters between list item labels and texts from
among the following:

— Default — default style,

363



— OneParen — parentheses, and
— Period — periods.

12164 function self.fancylist(items,tight,startnum,numstyle,numdelim)
12165 if not self.is_writing then return "" end

12166 local buffer = {}

12167 local num = startnum

12168 for _,item in ipairs(items) do

12169 if item ~= "" then

12170 buffer [#buffer + 1] = self.fancyitem(item,num)
12171 end

12172 if num ~= nil and item ~= "" then

12173 num = num + 1

12174 end

12175 end

12176 local contents = util.intersperse(buffer,"\n")
12177 if tight and options.tightLists then

12178 return {"\\markdownRendererFancy0lBeginTight{",
12179 numstyle,"}{" ,numdelim,"}",contents,
12180 "\n\\markdownRendererFancy0lEndTight "}
12181 else

12182 return {"\\markdownRendererFancyOlBegin{",

12183 numstyle,"}{" ,numdelim,"}",contents,
12184 "\n\\markdownRendererFancyOlEnd "}

12185 end

12186 end

Define writer->fancyitem as a function that will transform an input fancy ordered
list item to the output format, where s is the text of the list item. If the optional
parameter num is present, it is the number of the list item.

12187 function self.fancyitem(s,num)

12188 if num ~= nil then

12189 return {"\\markdownRendererFancyOlItemWithNumber{" ,num,"}",s,
12190 "\\markdownRendererFancyOlItemEnd "}

12191 else

12192 return {"\\markdownRendererFancyOlItem ",s,

12193 "\\markdownRendererFancyOlItemEnd "}

12194 end

12195 end

12196 end, extend_reader = function(self)

12197 local parsers = self.parsers

12198 local options = self.options

12199 local writer = self.writer

12200

12201 local function combine_markers_and_delims(markers, delims)
12202 local markers_table = {}

12203 for _,marker in ipairs(markers) do

364



12204 local start_marker

12205 local continuation_marker

12206 if type(marker) == "table" then

12207 start_marker = marker[1]

12208 continuation_marker = marker[2]

12209 else

12210 start_marker = marker

12211 continuation_marker = marker

12212 end

12213 for _,delim in ipairs(delims) do

12214 table.insert (markers_table,

12215 {start_marker, continuation_marker, delim})
12216 end

12217 end

12218 return markers_table

12219 end

12220

12221 local function join_table_with_func(func, markers_table)
12222 local pattern = func(table.unpack(markers_table[1]))
12223 for i = 2, #markers_table do

12224 pattern = pattern + func(table.unpack(markers_table[i]))
12225 end

12226 return pattern

12227 end

12228

12229 local lowercase_letter_marker = R("az")

12230 local uppercase_letter_marker = R("AZ")

12231

12232 local roman_marker = function(chars)

12233 local m, d, ¢ = P(chars[1]), P(chars[2]), P(chars([3])
12234 local 1, x, v, i

12235 = P(chars[4]), P(chars[5]), P(chars[6]), P(chars[7])
12236 return m -3

12237 * (cxm + cxd + d7-1 * ¢™-3)

12238 * (x*c + x*1 + 17-1 * x7-3)

12239 * (ixx + ixv + v™-1 * i7-3)

12240 end

12241

12242 local lowercase_roman_marker

12243 = roman_marker({"m", "4", "c", "1", "x", "vy", "i"})
12244 local uppercase_roman_marker

12245 = roman_marker ({"M", "D", "C", "L", "X", "V', "I"})
12246

12247 local lowercase_opening_roman_marker = P("i")

12248 local uppercase_opening_roman_marker = P("I")

12249

12250 local digit_marker = parsers.dig * parsers.dig™-8

365



12251

12252 local markers = {

12253 {lowercase_opening_roman_marker, lowercase_roman_marker},
12254 {uppercase_opening_roman_marker, uppercase_roman_markerl,
12255 lowercase_letter_marker,

12256 uppercase_letter_marker,

12257 lowercase_roman_marker,

12258 uppercase_roman_marker,

12259 digit_marker

12260 }

12261

12262 local delims = {

12263 parsers.period,

12264 parsers.rparent

12265 }

12266

12267 local markers_table = combine_markers_and_delims(markers, delims)
12268

12269 local function enumerator(start_marker, _,

12270 delimiter_type, interrupting)
12271 local delimiter_range

12272 local allowed_end

12273 if interrupting then

12274 delimiter_range = P("1")

12275 allowed_end = C(parsers.spacechar”1) * #parsers.linechar
12276 else

12277 delimiter_range = start_marker

12278 allowed_end = C(parsers.spacechar”1)

12279 + #(parsers.newline + parsers.eof)

12280 end

12281

12282 return parsers.check_trail

12283 * Ct(C(delimiter_range) * C(delimiter_type))
12284 * allowed_end

12285 end

12286

12287 local starter = join_table_with_func(enumerator, markers_table)
12288

12289 local TightListItem = function(starter)

12290 return parsers.add_indent(starter, "1i")

12291 * parsers.indented_content_tight

12292 end

12293

12294 local LooselListItem = function(starter)

12295 return parsers.add_indent(starter, "1i")

12296 * parsers.indented_content_loose

12297 * remove_indent ("1i")

366



12298 end

12299

12300 local function roman2number (roman)

12301 local romans = { ["M"] = 1000, ["D"] = 500, ["C"] = 100,
12302 ("] = 50, ["X"] = 10, ["V"] =5, ["I"] =1}
12303 local numeral = 0

12304

12305 local i =1

12306 local len = string.len(roman)

12307 while i < len do

12308 local zl, z2 = romans[ string.sub(roman, i, i) ],
12309 romans[ string.sub(roman, i+1, i+1) ]
12310 if z1 < z2 then

12311 numeral = numeral + (z2 - z1)

12312 i=1i+2

12313 else

12314 numeral = numeral + z1

12315 i=1i+1

12316 end

12317 end

12318 if i <= len then

12319 numeral = numeral + romans[ string.sub(roman,i,i) ]
12320 end

12321 return numeral

12322 end

12323

12324 local function sniffstyle(numstr, delimend)

12325 local numdelim

12326 if delimend == ")" then

12327 numdelim = "OneParen"

12328 elseif delimend == "." then

12329 numdelim = "Period"

12330 else

12331 numdelim = "Default"

12332 end

12333

12334 local num

12335 num = numstr:match("~([I])$")

12336 if num then

12337 return roman2number (num), "UpperRoman", numdelim
12338 end

12339 num = numstr:match("~([i])$")

12340 if num then

12341 return roman2number (string.upper(num)), "LowerRoman", numdelim
12342 end

12343 num = numstr:match("~([A-Z])$")

12344 if num then

367



12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391

return string.byte(num) - string.byte("A") + 1,
"UpperAlpha", numdelim
end
num = numstr:match("~([a-z])$")
if num then
return string.byte(num) - string.byte("a") + 1,
"LowerAlpha", numdelim
end
num = numstr:match ("~ ([IVXLCDM]+)")
if num then
return roman2number (num), "UpperRoman", numdelim
end
num = numstr:match("~([ivxlcdm]+)")
if num then
return roman2number (string.upper(num)), "LowerRoman", numdelim
end
return math.floor (tonumber (numstr) or 1), "Decimal", numdelim
end

local function fancylist(items,tight,start)
local startnum, numstyle, numdelim
= sniffstyle(start[2] [1], start[2][2])
return writer.fancylist(items,tight,
options.startNumber and startnum or 1,
numstyle or "Decimal",
numdelim or "Default")
end

local FancyListOfType
= function(start_marker, continuation_marker, delimiter_type)
local enumerator_start
= enumerator (start_marker, continuation_marker,
delimiter_type)
local enumerator_cont
= enumerator (continuation_marker, continuation_marker,
delimiter_type)
return Cg(enumerator_start, "listtype")
* (Ct( TightListItem(Cb("listtype"))
* ((parsers.check_minimal_indent / "")
* TightListItem(enumerator_cont))~0)
* Cc(true)
* —#((parsers.conditionally_indented_blankline™0 / "")
*x parsers.check_minimal_indent * enumerator_cont)
+ Ct( LooseListItem(Cb("listtype"))
* ((parsers.conditionally_indented_blankline™0 / "")
* (parsers.check_minimal_indent / "")
* LooseListItem(enumerator_cont))~0)

368



12392 * Cc(false)

12393 ) * Ct(Cb("listtype")) / fancylist
12394 end

12395

12396 local FancyList

12397 = join_table_with_func(FancyList0fType, markers_table)
12398

12399 local ListStarter = starter

12400

12401 self .update_rule("OrderedList", FancyList)
12402 self .update_rule("ListStarter", ListStarter)
12403 end

12404  }

12405 end

3.1.7.6 Fenced Code

The extensions.fenced_code function implements the commonmark fenced code
block syntax extension. When the blank_before_code_fence parameter is true,
the syntax extension requires a blank line between a paragraph and the following
fenced code block.

When the allow_attributes option is true, the syntax extension permits at-
tributes following the infostring. When the allow_raw_blocks option is true, the
syntax extension permits the specification of raw blocks using the Pandoc raw
attribute syntax extension.

12406 M.extensions.fenced_code = function(blank_before_code_fence,

12407 allow_attributes,
12408 allow_raw_blocks)
12409  return {

12410 name = "built-in fenced_code syntax extension",
12411 extend_writer = function(self)

12412 local options = self.options

12413

Define writer->fencedCode as a function that will transform an input fenced code
block s with the infostring i and optional attributes attr to the output format.

12414 function self.fencedCode(s, i, attr)

12415 if not self.is_writing then return "" end

12416 s = s:gsub("\n$", "")

12417 local buf = {}

12418 if attr ~= nil then

12419 table.insert (buf,

12420 {"\\markdownRendererFencedCodeAttributeContextBegin",
12421 self.attributes(attr)})

12422 end

12423 local name = util.cache_verbatim(options.cacheDir, s)
12424 table.insert (buf,

369



12425 {"\\markdownRendererInputFencedCode{",

12426 name, "}",self.string(i),"}{",self.infostring(i),"}"})
12427 if attr ~= nil then

12428 table.insert (buf,

12429 "\\markdownRendererFencedCodeAttributeContextEnd{}")
12430 end

12431 return buf

12432 end

12433
Define writer->rawBlock as a function that will transform an input raw block s
with the raw attribute attr to the output format.

12434 if allow_raw_blocks then

12435 function self.rawBlock(s, attr)

12436 if not self.is_writing then return "" end

12437 s = s:gsub("\n$", "")

12438 local name = util.cache_verbatim(options.cacheDir, s)
12439 return {"\\markdownRendererInputRawBlock{",
12440 name, "}{", self.string(attr),"}"}

12441 end

12442 end

12443 end, extend_reader = function(self)

12444 local parsers = self.parsers

12445 local writer = self.writer

12446

12447 local function captures_geq_length(_,i,a,b)

12448 return #a >= #b and i

12449 end

12450

12451 local function strip_enclosing_whitespaces(str)
12452 return str:gsub(" %sx(.-)%s*$", "%1")

12453 end

12454

12455 local tilde_infostring = Cs(Cs((V("HtmlEntity")
12456 + parsers.anyescaped
12457 - parsers.newline)~0)
12458 / strip_enclosing_whitespaces)
12459

12460 local backtick_infostring

12461 = Cs( Cs((V("HtmlEntity")

12462 + ( -#(parsers.backslash * parsers.backtick)
12463 * parsers.anyescaped)

12464 - parsers.newline

12465 - parsers.backtick)~0)

12466 / strip_enclosing_whitespaces)

12467

12468 local fenceindent

370



12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515

local function has_trail (indent_table)

return indent_table ~= nil and
indent_table.trail ~= nil and
next(indent_table.trail) ~= nil
end

local function has_indents(indent_table)

return indent_table ~= nil and
indent_table.indents ~= nil and
next(indent_table.indents) ~= nil
end

local function get_last_indent_name(indent_table)
if has_indents(indent_table) then
return indent_table.indents[#indent_table.indents] .name
end
end

local count_fenced_start_indent =
function(_, _, indent_table, trail)
local last_indent_name = get_last_indent_name(indent_table)
fenceindent = 0

if last_indent_name ~= "1li" then
fenceindent = #trail
end
return true
end

local fencehead = function(char, infostring)
return Cmt( Cb("indent_info")
* parsers.check_trail, count_fenced_start_indent)
Cg(char~3, "fencelength")
parsers.optionalspace
infostring

* ¥ ¥ ¥

(parsers.newline + parsers.eof)
end

local fencetail = function(char)
return parsers.check_trail_no_rem
* Cmt(C(char~3) * Cb("fencelength"), captures_geq_length)
* parsers.optionalspace * (parsers.newline + parsers.eof)
+ parsers.eof
end

local process_fenced_line =
function(s, i, -- luacheck: ignore s i

371



12516 indent_table, line_content, is_blank)

12517 local remainder = ""

12518 if has_trail(indent_table) then

12519 remainder = indent_table.trail.internal remainder
12520 end

12521

12522 if is_blank

12523 and get_last_indent_name(indent_table) == "1i" then
12524 remainder = ""

12525 end

12526

12527 local str = remainder .. line_content
12528 local index =1

12529 local remaining = fenceindent

12530

12531 while true do

12532 local ¢ = str:sub(index, index)

12533 if ¢ == " " and remaining > O then

12534 remaining = remaining - 1

12535 index = index + 1

12536 elseif ¢ == "\t" and remaining > 3 then
12537 remaining = remaining - 4

12538 index = index + 1

12539 else

12540 break

12541 end

12542 end

12543

12544 return true, str:sub(index)

12545 end

12546

12547 local fencedline = function(char)

12548 return Cmt( Cb("indent_info")

12549 * C(parsers.line - fencetail(char))
12550 * Cc(false), process_fenced_line)
12551 end

12552

12553 local blankfencedline

12554 = Cmt( Cb("indent_info")

12555 * C(parsers.blankline)

12556 * Cc(true), process_fenced_line)

12557

12558 local TildeFencedCode

12559 = fencehead(parsers.tilde, tilde_infostring)
12560 * Cs(( (parsers.check_minimal_blank_indent / "")
12561 * blankfencedline

12562 + ( parsers.check_minimal_indent / "")

372



12563
12564
12565
12566
12567
12568
12569
1257(

e e el e el e
[\
oL ot Ot Ot
1

0 N & T W N RO

3
T 09 9 93939393

©

e el e e e
DN NN DN DN DN DN NN DN
ot Ot Ot Ot Ut C C

12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609

* fencedline(parsers.tilde))~0)
* ( (parsers.check_minimal_indent / "")
*x fencetail (parsers.tilde) + parsers.succeed)

local BacktickFencedCode

= fencehead(parsers.backtick, backtick_infostring)

* Cs(( (parsers.check_minimal_blank_indent / "")
* blankfencedline
+ (parsers.check_minimal_indent / "")
*x fencedline(parsers.backtick))~0)

* ( (parsers.check_minimal_indent / "")

* fencetail (parsers.backtick) + parsers.succeed)

local infostring with_attributes
= Ct(C((parsers.linechar
- ( parsers.optionalspace
* parsers.attributes))~0)
* parsers.optionalspace
*x Ct(parsers.attributes))

local FencedCode
= ((TildeFencedCode + BacktickFencedCode)
/ function(infostring, code)
local expanded_code = self.expandtabs(code)

if allow_raw_blocks then
local raw_attr = lpeg.match(parsers.raw_attribute,
infostring)
if raw_attr then
return writer.rawBlock(expanded_code, raw_attr)
end
end

local attr = nil
if allow_attributes then

local match = lpeg.match(infostring_with_attributes,

infostring)
if match then
infostring, attr = table.unpack(match)

end

end

return writer.fencedCode(expanded_code, infostring, attr)

end)

self.insert_pattern("Block after Verbatim",
FencedCode, "FencedCode")

373



12610 local fencestart

12611 if blank _before_code_fence then

12612 fencestart = parsers.fail

12613 else

12614 fencestart = fencehead(parsers.backtick, backtick_infostring)
12615 + fencehead(parsers.tilde, tilde_infostring)

12616 end

12617

12618 self .update_rule("EndlineExceptions", function(previous_pattern)
12619 if previous_pattern == nil then

12620 previous_pattern = parsers.EndlineExceptions

12621 end

12622 return previous_pattern + fencestart

12623 end)

12624

12625 self.add_special_character(" ")

12626 self.add_special_character("~")

12627 end

12628  }

12629 end

3.1.7.7 Fenced Divs

The extensions.fenced_divs function implements the Pandoc fenced div syntax
extension. When the blank_before_div_fence parameter is true, the syntax
extension requires a blank line between a paragraph and the following fenced code
block.
12630 M.extensions.fenced_divs = function(blank_before_div_fence)
12631  return {
12632 name = "built-in fenced_divs syntax extension",
12633 extend_writer = function(self)
Define writer->div_begin as a function that will transform the beginning of an
input fenced div with with attributes attributes to the output format.

12634 function self.div_begin(attributes)

12635 local start_output

12636 = {"\\markdownRendererFencedDivAttributeContextBegin\n",
12637 self.attributes(attributes)}

12638 local end_output

12639 = {"\\markdownRendererFencedDivAttributeContextEnd{}"}
12640 return self.push_attributes(

12641 "div", attributes, start_output, end_output)

12642 end

Define writer->div_end as a function that will produce the end of a fenced div in
the output format.

12643 function self.div_end()

374



12644 return self.pop_attributes("div")

12645 end

12646 end, extend_reader = function(self)
12647 local parsers = self.parsers

12648 local writer = self.writer

Define basic patterns for matching the opening and the closing tag of a div.

12649 local fenced_div_infostring

12650 = Ct(parsers.attributes)

12651 +(

12652 C( parsers.attribute_classname
12653 - parsers.colon)”1

12654 / function (infostring)

12655 return {"." infostring}
12656 end

12657 )

12658

12659 local fenced_div_begin = parsers.nonindentspace

12660 * parsers.colon”3

12661 * parsers.optionalspace

12662 * fenced_div_infostring

12663 * ( parsers.spacechar”1

12664 * parsers.colon”1)~0

12665 * parsers.optionalspace

12666 * (parsers.newline + parsers.eof)
12667

12668 local fenced_div_end = parsers.nonindentspace

12669 parsers.colon”3

*
12670 * parsers.optionalspace
12671 * (parsers.newline + parsers.eof)
Initialize a named group named fenced_div_level for tracking how deep we are
nested in divs and the named group fenced_div_num_opening_indents for tracking
the indent of the starting div fence. The former named group is immutable and
should roll back properly when we fail to match a fenced div. The latter is mutable
and may contain items from unsuccessful matches on top. However, we always know
how many items at the head of the latter we can trust by consulting the former.

12672 self.initialize_named_group("fenced_div_level", "O")

12673 self.initialize_named_group("fenced_div_num_opening_indents")
12674

12675 local function increment_div_level()

12676 local push_indent_table =

12677 function(s, i, indent_table, -- luacheck: ignore s i

12678 fenced_div_num_opening_indents, fenced_div_level)
12679 fenced_div_level = tonumber(fenced_div_level) + 1

12680 local num_opening_indents = 0O

12681 if indent_table.indents ~= nil then

375



12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728

num_opening_indents = #indent_table.indents
end
fenced_div_num_opening_indents[fenced_div_levell]
= num_opening_indents
return true, fenced_div_num_opening_indents
end

local increment_level =
function(s, i, fenced_div_level) -- luacheck: ignore s i
fenced_div_level = tonumber(fenced_div_level) + 1
return true, tostring(fenced_div_level)
end

return Cg( Cmt( Cb("indent_info")
* Cb("fenced_div_num_opening_indents")
* Cb("fenced_div_level"), push_indent_table)
, "fenced_div_num_opening_indents")
* Cg( Cmt( Cb("fenced_div_level"), increment_level)
, "fenced_div_level")
end

local function decrement_div_level()
local pop_indent_table =
function(s, i, —- luacheck: ignore s i
fenced_div_indent_table, fenced_div_level)

fenced_div_level = tonumber (fenced_div_level)
fenced_div_indent_table[fenced_div_level] = nil
return true, tostring(fenced_div_level - 1)

end

return Cg( Cmt( Cb("fenced_div_num_opening_indents")
* Cb("fenced_div_level"), pop_indent_table)
, "fenced_div_level")
end

local non_fenced_div_block

= parsers.check_minimal_indent * V("Block")

- parsers.check_minimal_indent_and_trail * fenced_div_end
local non_fenced_div_paragraph

= parsers.check_minimal_indent * V("Paragraph")

- parsers.check_minimal_indent_and_trail * fenced_div_end

local blank = parsers.minimally_indented_blank

local block_separated = parsers.block_sep_group(blank)

376



1
1
1

* non_fenced_div_block

local loop_body_pair
= parsers.create_loop_body_pair(block_separated,
non_fenced_div_paragraph,
parsers.block_sep_group(blank),
parsers.par_sep_group(blank))

T ¥ + ¥ ¥ + ¥ ~

non_fenced_div_block
loop_body_pair.block™0
non_fenced_div_paragraph
block_separated
loop_body_pair.block™0
non_fenced_div_paragraph
loop_body_pair.par~0)
lank™0

local content_loop

*

local FencedDiv fenced_div_begin

writer.div_begin

increment_div_level()
parsers.skipblanklines
Ct(content_loop)
parsers.minimally_indented_blank™0
parsers.check_minimal_indent_and_trail
fenced_div_end

decrement_div_level()

(Cc("") / writer.div_end)

* X X X X X ¥ ¥ |

self.insert_pattern("Block after Verbatim",
FencedDiv, "FencedDiv")

self.add_special_character(":")

If the blank_before_div_fence parameter is false, we will have the closing div at
the beginning of a line break the current paragraph if we are currently nested in a
div and the indentation matches the opening div fence.

12765
12766
12767
12768
12769
12770
12771

local function is_inside_div()
local check_div_level =
function(s, i, fenced_div_level) -- luacheck: ignore s i
fenced_div_level = tonumber (fenced_div_level)
return fenced_div_level > 0O
end

return Cmt(Cb("fenced_div_level"), check_div_level)
end

377



12772 local function check_indent ()

12773 local compare_indent =

12774 function(s, i, indent_table, -- luacheck: ignore s i
12775 fenced_div_num_opening_indents, fenced_div_level)
12776 fenced_div_level = tonumber (fenced_div_level)

12777 local num_current_indents

12778 = ( indent_table.current_line_indents ~= nil and
12779 #indent_table.current_line_indents) or O

12780 local num_opening_indents

12781 = fenced_div_num_opening_indents[fenced_div_level]
12782 return num_current_indents == num_opening_indents
12783 end

12784

12785 return Cmt( Cb("indent_info")

12786 * Cb("fenced_div_num_opening_indents")

12787 * Cb("fenced_div_level"), compare_indent)
12788 end

12789

12790 local fencestart = is_inside_div()

12791 * fenced_div_end

12792 * check_indent ()

12793

12794 if not blank_before_div_fence then

12795 self .update_rule("EndlineExceptions", function(previous_pattern)
12796 if previous_pattern == nil then

12797 previous_pattern = parsers.EndlineExceptions

12798 end

12799 return previous_pattern + fencestart

12800 end)

12801 end

12802 end

12803  }

12804 end

3.1.7.8 Header Attributes
The extensions.header_attributes function implements the Pandoc header
attribute syntax extension.

12805 M.extensions.header_attributes = function()
12806  return {

12807 name = "built-in header_attributes syntax extension",
12808 extend_writer = function()

12809 end, extend_reader = function(self)

12810 local parsers = self.parsers

12811 local writer = self.writer

12812

12813 local function strip_atx_end(s)

378



12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860

return s:gsub("%s+#x)sk$" ")
end

local AtxHeading = Cg(parsers.heading_ start, "level")
parsers.optionalspace
(C(((parsers.linechar
- (parsers.attributes
* parsers.optionalspace
* parsers.newline))
* (parsers.linechar
- parsers.lbrace)”~0)~1)
/ strip_atx_end
/ parsers.parse_heading_text)
*x Cg(Ct(parsers.newline
+ (parsers.attributes
* parsers.optionalspace
* parsers.newline)), "attributes")
* Cb("level")
* Cb("attributes")
/ writer.heading

*
*

local function strip_trailing_spaces(s)

return s:gsub("%s*x$","")
end
local heading_line = (parsers.linechar

- (parsers.attributes
* parsers.optionalspace
* parsers.newline))”~1
- parsers.thematic_break_lines

local heading_text
= heading_line
* ( (V("Endline") / "\n")
* (heading_line - parsers.heading level))~0
* parsers.newline”™-1

local SetextHeading
= parsers.freeze_trail * parsers.check_trail_no_rem
* #(heading_text
* (parsers.attributes
* parsers.optionalspace
* parsers.newline) -1
* parsers.check_minimal_indent
* parsers.check_trail
* parsers.heading_level)
* Cs(heading_text) / strip_trailing_spaces

379



12861 / parsers.parse_heading_text

12862 * Cg(Ct((parsers.attributes

12863 * parsers.optionalspace

12864 * parsers.newline) -1), "attributes")
12865 * parsers.check_minimal_indent_and_trail * parsers.heading_level
12866 * Cb("attributes")

12867 * parsers.newline

12868 * parsers.unfreeze_trail

12869 / writer.heading

12870

12871 local Heading = AtxHeading + SetextHeading
12872 self .update_rule("Heading", Heading)

12873 end

12874}

12875 end

3.1.7.9 Inline Code Attributes
The extensions.inline_code_attributes function implements the Pandoc in-
line code attribute syntax extension.

12876 M.extensions.inline_code_attributes = function()

12877  return {

12878 name = "built-in inline_code_attributes syntax extension",
12879 extend_writer = function()

12880 end, extend_reader = function(self)

12881 local writer = self.writer

12882

12883 local CodeWithAttributes = parsers.inticks

12884 * Ct(parsers.attributes)
12885 / writer.code

12886

12887 self.insert_pattern("Inline before Code",

12888 CodeWithAttributes,

12889 "CodeWithAttributes")

12890 end

12891  }

12892 end

3.1.7.10 Line Blocks
The extensions.line_blocks function implements the Pandoc line block syntax
extension.
12893 M.extensions.line_blocks = function()
12894  return {
12895 name = "built-in line_blocks syntax extension",
12896 extend_writer = function(self)

380



Define writer->lineblock as a function that will transform a line block consisted
of 1ines to the output format, with all but the last newline rendered as a line break.

12897 function self.lineblock(lines)

12898 if not self.is_writing then return "" end

12899 local buffer = {}

12900 for i = 1, #lines - 1 do

12901 buffer [#buffer + 1] = { lines[i], self.hard_line_break }
12902 end

12903 buffer [#buffer + 1] = lines[#lines]

12904

12905 return {"\\markdownRendererLineBlockBegin\n"
12906 ,buffer,

12907 "\n\\markdownRendererLineBlockEnd "}
12908 end

12909 end, extend_reader = function(self)

12910 local parsers = self.parsers

12911 local writer = self.writer

12912

12913 local LineBlock

12914 = Ct((Cs(( (parsers.pipe * parsers.space) / ""
12915 * ((parsers.space)/entities.char_entity("nbsp"))~0
12916 * parsers.linechar™0 * (parsers.newline/""))
12917 * (-parsers.pipe

12918 * (parsers.space”1/" ")

12919 * parsers.linechar”1

12920 *x (parsers.newline/"")

12921 )70

12922 * (parsers.blankline/"")~0)

12923 / self .parser_functions.parse_inlines)~1)
12924 / writer.lineblock

12925

12926 self.insert_pattern("Block after Blockquote",
12927 LineBlock, "LineBlock")
12928 end

12929  }

12930 end

3.1.7.11 Marked text
The extensions.mark function implements the Pandoc mark syntax extension.

12931 M.extensions.mark = function()

12932  return {

12933 name = "built-in mark syntax extension",
12934 extend_writer = function(self)

Define writer->mark as a function that will transform an input marked text s to
the output format.

381



12935 function self.mark(s)

12936 if self.flatten_inlines then return s end

12937 return {"\\markdownRendererMark{", s, "}"}

12938 end

12939 end, extend_reader = function(self)

12940 local parsers = self.parsers

12941 local writer = self.writer

12942

12943 local doubleequals = P("==")

12944

12945 local Mark

12946 = parsers.between(V("Inline"), doubleequals, doubleequals)
12947 / function (inlines) return writer.mark(inlines) end
12948

12949 self.add_special_character("=")

12950 self.insert_pattern("Inline before LinkAndEmph",

12951 Mark, "Mark")

12952 end

12953}

12954 end

3.1.7.12 Link Attributes
The extensions.link_attributes function implements the Pandoc link attribute
syntax extension.

12955 M.extensions.link_attributes = function()
12056 return {

12957 name = "built-in link_attributes syntax extension",
12958 extend_writer = function()

12959 end, extend_reader = function(self)

12960 local parsers = self.parsers

12961 local options = self.options

12962

The following patterns define link reference definitions with attributes.

12963 local define_reference_parser

12964 = (parsers.check_trail / "")

12965 * parsers.link_label

12966 * parsers.colon

12967 * parsers.spnlc * parsers.url

12968 * ( parsers.spnlc_sep * parsers.title

12969 * (parsers.spnlc * Ct(parsers.attributes))

12970 * parsers.only_blank

12971 + parsers.spnlc_sep * parsers.title * parsers.only_blank
12972 + Cc("") * (parsers.spnlc * Ct(parsers.attributes))
12973 * parsers.only_blank

12974 + Cc("") * parsers.only_blank)

12975

382



12976
12977
12978
12979
12980

local ReferenceWithAttributes = define_reference_parser
/ self.register_link

self .update_rule("Reference", ReferenceWithAttributes)

The following patterns define direct and indirect links with attributes.

12981
12982
12983
12984
12985
12986
12987
12988

local LinkWithAttributesAndEmph
= Ct(parsers.link_and_emph_table * Cg(Cc(true),
"match_link_attributes"))
/ self.defer_link_and_emphasis_processing

self .update_rule("LinkAndEmph", LinkWithAttributesAndEmph)

The following patterns define autolinks with attributes.

12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019

local AutoLinkUrlWithAttributes
= parsers.auto_link_url
* Ct(parsers.attributes)
/ self.auto_link_url

self.insert_pattern("Inline before AutoLinkUrl",
AutoLinkUrlWithAttributes,
"AutoLinkUrlWithAttributes")

local AutoLinkEmailWithAttributes
= parsers.auto_link_email
* Ct(parsers.attributes)
/ self.auto_link_email

self.insert_pattern("Inline before AutolLinkEmail",
AutoLinkEmailWithAttributes,
"AutoLinkEmailWithAttributes")

if options.relativeReferences then

local AutoLinkRelativeReferenceWithAttributes
= parsers.auto_link_relative_reference
*x Ct(parsers.attributes)
/ self.auto_link_url

self.insert_pattern(
"Inline before AutoLinkRelativeReference",
AutoLinkRelativeReferenceWithAttributes,
"AutoLinkRelativeReferenceWithAttributes")

end

383



21 end

3.1.7.13 Notes

The extensions.notes function implements the Pandoc note and inline note
syntax extensions. When the note parameter is true, the Pandoc note syntax
extension will be enabled. When the inline_notes parameter is true, the Pandoc
inline note syntax extension will be enabled.
13024 M.extensions.notes = function(notes, inline_notes)
13025  assert(notes or inline_notes)
13026 return {
13027 name = "built-in notes syntax extension",
13028 extend_writer = function(self)
Define writer->note as a function that will transform an input note s to the output
format.

13029 function self.note(s)

13030 if self.flatten_inlines then return "" end
13031 return {"\\markdownRendererNote{",s,"}"}
13032 end

13033 end, extend_reader = function(self)

13034 local parsers = self.parsers

13035 local writer = self.writer

13036

13037 local rawnotes = parsers.rawnotes

13038

13039 if inline_notes then

13040 local InlineNote

13041 = parsers.circumflex

13042 * ( parsers.link_label

13043 / self .parser_functions.parse_inlines_no_inline_note)
13044 / writer.note

13046 self.insert_pattern("Inline after LinkAndEmph",

13047 InlineNote, "InlineNote")

13048 end

13049 if notes then

13050 local function strip_first_char(s)

13051 return s:sub(2)

13052 end

13053

13054 local RawNoteRef

13055 = #(parsers.lbracket * parsers.circumflex)
13056 * parsers.link_label / strip_first_char

384



13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069

—_
w

1 33

ND

130
130

S =
b

w

—
w
(SIS

—
w w
g o

oo

I 33333

w

13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103

—- like indirect_link
local function lookup_note(ref)
return writer.defer_call (function()
local found = rawnotes[self.normalize_tag(ref)]
if found then
return writer.note(
self.parser_functions.parse_blocks_nested(found))
else
local text = string.format(
'Undefined note reference "%s"', ref)
local more = string.format(
"Look for the text ~[“¥s] .", ref)
return {writer.warning(text, more), "[",
self .parser_functions.parse_inlines(""" .. ref), "I"}
end
end)
end

local function register_note(ref,rawnote)
local normalized_tag = self.normalize_tag(ref)

if rawnotes[normalized_tag]l == nil then
rawnotes [normalized_tag] = rawnote
return ""
else
local text
= string.format('Multiply defined note reference "Ys"',
ref)
local more
= string.format("Look for the text “[“Ysl: ... .", ref)
return writer.warning(text, more)
end
end

local NoteRef = RawNoteRef / lookup_note

local optionally_indented_line
= parsers.check_optional_indent_and_any_trail * parsers.line

local blank
= parsers.check_optional_blank_indent_and_any_trail
* parsers.optionalspace * parsers.newline

local chunk

= Cs(parsers.line
* (optionally_indented_line - blank)~0)

385



13104 local indented_blocks = function(bl)

13105 return Cs( bl

13106 * ( blank™1 * (parsers.check_optional_indent / "")
13107 * parsers.check_code_trail

13108 * -parsers.blankline * bl)~0)

13109 end

13110

13111 local NoteBlock

13112 = parsers.check_trail_no_rem

13113 * RawNoteRef * parsers.colon

13114 * parsers.spnlc * indented_blocks(chunk)
13115 / register_note

13116

13117 self .update_rule("Reference", function(previous_pattern)
13118 if previous_pattern == nil then

13119 previous_pattern = parsers.Reference

13120 end

13121 return NoteBlock + previous_pattern

13122 end)

13123

13124 self.insert_pattern("Inline before LinkAndEmph",
13125 NoteRef, "NoteRef")

13126 end

13127

13128 self.add_special_character("™")

13129 end

13130}

13131 end

3.1.7.14 Pipe Tables

The extensions.pipe_table function implements the PHP Markdown table syn-
tax extension (also known as pipe tables in Pandoc). When the table_captions
parameter is true, the function also implements the Pandoc table caption syntax
extension for table captions. When the table_attributes parameter is also true,
the function also allows attributes to be attached to the (possibly empty) table
captions.
13132 M.extensions.pipe_tables = function(table_captions, table_attributes)
13133
13134 local function make_pipe_table_rectangular (rows)
13135 local num_columns = #rows[2]
13136 local rectangular_rows = {}
13137 for i = 1, #rows do

13138 local row = rows[i]
13139 local rectangular_row = {}
13140 for j = 1, num_columns do

13141 rectangular_row[j] = row[j] or ""

386



13142 end

13143 table.insert(rectangular_rows, rectangular_row)
13144 end

13145 return rectangular_rows

13146 end

13147

13148 local function pipe_table_row(allow_empty_first_column
13149 , nonempty_column
13150 , column_separator
13151 , column)

13152 local row_beginning

13153 if allow_empty_first_column then

13154 row_beginning = -- empty first column

13155 #(parsers.spacechar™4

13156 * column_separator)

13157 * parsers.optionalspace

13158 * column

13159 * parsers.optionalspace

13160 -- non-empty first column

13161 + parsers.nonindentspace

13162 * nonempty_column™-1

13163 * parsers.optionalspace

13164 else

13165 row_beginning = parsers.nonindentspace

13166 * nonempty_column”-1

13167 * parsers.optionalspace

13168 end

13169

13170 return Ct(row_beginning

13171 * (-- single column with no leading pipes
13172 #(column_separator

13173 * parsers.optionalspace

13174 * parsers.newline)

13175 * column_separator

13176 * parsers.optionalspace

13177 -- single column with leading pipes or
13178 -- more than a single column

13179 + (column_separator

13180 * parsers.optionalspace

13181 * column

13182 * parsers.optionalspace)”1

13183 * (column_separator

13184 * parsers.optionalspace)”-1))

13185  end

13186

13187  return {

13188 name = "built-in pipe_tables syntax extension",

387



13189

extend_writer = function(self)

Define writer->table as a function that will transform an input table to the output
format, where rows is a sequence of columns and a column is a sequence of cell texts.

13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232

function self.table(rows, caption, attributes)
if not self.is_writing then return "" end
local buffer = {}
if attributes ~= nil then
table.insert (buffer,
"\\markdownRendererTableAttributeContextBegin\n")
table.insert(buffer, self.attributes(attributes))
end
table.insert (buffer,
{"\\markdownRendererTable{",
caption or "", "}{", #rows - 1, "}{",
#rows[1], "}"})
local temp = rows[2] -- put alignments on the first row
rows[2] = rows[1]
rows[1] = temp
for i, row in ipairs(rows) do
table.insert (buffer, "{")
for _, column in ipairs(row) do
if 1 > 1 then -- do not use braces for alignments
table.insert (buffer, "{")
end
table.insert(buffer, column)
if i > 1 then
table.insert (buffer, "}")
end
end
table.insert (buffer, "}")
end
if attributes ~= nil then
table.insert (buffer,
"\\markdownRendererTableAttributeContextEnd{}")
end
return buffer
end
end, extend_reader = function(self)
local parsers = self.parsers
local writer = self.writer

local table_hline_separator = parsers.pipe + parsers.plus
local table_hline_column = (parsers.dash

- #(parsers.dash
* (parsers.spacechar

388



13233 + table_hline_separator

13234 + parsers.newline)))”1
13235 * (parsers.colon * Cc("r"

13236 + parsers.dash * Cc("d"))

13237 + parsers.colon

13238 * (parsers.dash

13239 - #(parsers.dash

13240 * (parsers.spacechar

13241 + table_hline_separator
13242 + parsers.newline)))”1
13243 * (parsers.colon * Cc("c")

13244 + parsers.dash * Cc("1"))

13245

13246 local table_hline = pipe_table_row(false

13247 , table_hline_column
13248 , table_hline_separator
13249 , table_hline_column)
13250

13251 local table_caption_beginning

13252 = ( parsers.check_minimal_blank_indent_and_any_trail_no_rem
13253 * parsers.optionalspace * parsers.newline) 0

13254 * parsers.check_minimal_indent_and_trail

13255 * (P("Table") -1 * parsers.colon)

13256 * parsers.optionalspace

13257

13258 local function strip_trailing_spaces(s)

13259 return s:gsub("%s*$","")

13260 end

13261

13262 local table_row

13263 = pipe_table_row(true

13264 , (C((parsers.linechar - parsers.pipe)”1)
13265 / strip_trailing_spaces

13266 / self.parser_functions.parse_inlines)
13267 , parsers.pipe

13268 , (C((parsers.linechar - parsers.pipe)~0)
13269 / strip_trailing_spaces

13270 / self .parser_functions.parse_inlines))
13271

13272 local table_caption

13273 if table_captions then

13274 table_caption = #table_caption_beginning

13275 * table_caption_beginning

13276 if table_attributes then

13277 table_caption = table_caption

13278 * (C(((( parsers.linechar

13279 - (parsers.attributes

389



13280 * parsers.optionalspace

13281 * parsers.newline

13282 * —#( parsers.optionalspace
13283 * parsers.linechar)))
13284 + ( parsers.newline

13285 * #( parsers.optionalspace
13286 * parsers.linechar)

13287 * C(parsers.optionalspace)
13288 / writer.space))

13289 * (parsers.linechar

13290 - parsers.lbrace)”0)71)

13291 / self.parser_functions.parse_inlines)
13292 * (parsers.newline

13293 + ( Ct(parsers.attributes)

13294 * parsers.optionalspace

13295 * parsers.newline))

13296 else

13297 table_caption = table_caption

13298 * C(( parsers.linechar

13299 + ( parsers.newline

13300 * #( parsers.optionalspace
13301 * parsers.linechar)

13302 * C(parsers.optionalspace)
13303 / writer.space))”1)

13304 / self .parser_functions.parse_inlines
13305 * parsers.newline

13306 end

13307 else

13308 table_caption = parsers.fail

13309 end

13310
13311 local PipeTable

13312 = Ct( table_row * parsers.newline

13313 * (parsers.check_minimal_indent_and_trail / {3})
13314 * table_hline * parsers.newline

13315 * ( (parsers.check_minimal_indent / {})
13316 * table_row * parsers.newline)”0)

13317 / make_pipe_table_rectangular

13318 * table_caption™-1

13319 / writer.table

13320

13321 self.insert_pattern("Block after Blockquote",
13322 PipeTable, "PipeTable")
13323 end

13324}

13325 end

390



3.1.7.15 Raw Attributes
The extensions.raw_inline function implements the Pandoc raw attribute syn-
tax extension for inline code spans.

13326 M.extensions.raw_inline = function()

13327 return {

13328 name = "built-in raw_inline syntax extension",
13329 extend_writer = function(self)

13330 local options = self.options

13331
Define writer->rawInline as a function that will transform an input inline raw
span s with the raw attribute attr to the output format.

13332 function self.rawInline(s, attr)

13333 if not self.is_writing then return "" end
13334 if self.flatten_inlines then return s end
13335 local name = util.cache_verbatim(options.cacheDir, s)
13336 return {"\\markdownRendererInputRawInline{",
13337 name, "}{", self.string(attr),"}"}
13338 end

13339 end, extend_reader = function(self)

13340 local writer = self.writer

13341

13342 local RawInline = parsers.inticks

13343 * parsers.raw_attribute

13344 / writer.rawInline

13345

13346 self.insert_pattern("Inline before Code",

13347 RawInline, "RawInline")
13348 end

13349  }

13350 end

3.1.7.16 Strike-Through
The extensions.strike_through function implements the Pandoc strike-through
syntax extension.
13351 M.extensions.strike_through = function()
13352  return {
13353 name = "built-in strike_through syntax extension",
13354 extend_writer = function(self)
Define writer->strike_through as a function that will transform a strike-through
span s of input text to the output format.

13355 function self.strike_through(s)

13356 if self.flatten_inlines then return s end

13357 return {"\\markdownRendererStrikeThrough{",s,"}"}
13358 end

391



13359 end, extend_reader = function(self)

13360 local parsers = self.parsers

13361 local writer = self.writer

13362

13363 local StrikeThrough = (

13364 parsers.between(parsers.Inline, parsers.doubletildes,
13365 parsers.doubletildes)

13366 ) / writer.strike_through

13367

13368 self.insert_pattern("Inline after LinkAndEmph",
13369 StrikeThrough, "StrikeThrough")
13370

13371 self.add_special_character("~")

13372 end

13373}

13374 end

3.1.7.17 Subscripts
The extensions.subscripts function implements the Pandoc subscript syntax
extension.

=

’5 M.extensions.subscripts = function()
6 return {

7 name = "built-in subscripts syntax extension",
78 extend_writer = function(self)

1:
1:
1:
1:

Define writer->subscript as a function that will transform a subscript span s of
input text to the output format.

13379 function self.subscript(s)

13380 if self.flatten_inlines then return s end
13381 return {"\\markdownRendererSubscript{",s,"}"}
13382 end

13383 end, extend_reader = function(self)

13384 local parsers = self.parsers

13385 local writer = self.writer

13386

13387 local Subscript = (

13388 parsers.between(parsers.Str, parsers.tilde, parsers.tilde)
13389 ) / writer.subscript

13390

13391 self.insert_pattern("Inline after LinkAndEmph",
13392 Subscript, "Subscript")
13393

13394 self.add_special_character("~")

13395 end

13396}

13397 end

392



3.1.7.18 Superscripts
The extensions.superscripts function implements the Pandoc superscript syn-
tax extension.

13398 M.extensions.superscripts = function()

13399  return {
13400 name = "built-in superscripts syntax extension",
13401 extend_writer = function(self)

Define writer->superscript as a function that will transform a superscript span s
of input text to the output format.

13402 function self.superscript(s)

13403 if self.flatten_inlines then return s end

13404 return {"\\markdownRendererSuperscript{",s,"}"}
13405 end

13406 end, extend_reader = function(self)

13407 local parsers = self.parsers

13408 local writer = self.writer

13409

13410 local Superscript = (

13411 parsers.between(parsers.Str, parsers.circumflex,
13412 parsers.circumflex)

13413 ) / writer.superscript

13414

13415 self.insert_pattern("Inline after LinkAndEmph",
13416 Superscript, "Superscript")
13417

13418 self.add_special_character("~")

13419 end

13420  }

13421 end

3.1.7.19 TeX Math
The extensions.tex_math function implements the Pandoc math syntax exten-
sions.

13422 M.extensions.tex_math = function(tex_math_dollars,

13423 tex_math_single_backslash,
13424 tex_math_double_backslash)
13425  return {

13426 name = "built-in tex_math syntax extension",

13427 extend_writer = function(self)

Define writer->display_math as a function that will transform a math span s of
input text to the output format.

13428 function self.display_math(s)
13429 if self.flatten_inlines then return s end
13430 return {"\\markdownRendererDisplayMath{",self.math(s),"}"}

393



13431 end

Define writer->inline_math as a function that will transform a math span s of
input text to the output format.

13432 function self.inline_math(s)

13433 if self.flatten_inlines then return s end

13434 return {"\\markdownRendererInlineMath{",self.math(s),"}"}
13435 end

13436 end, extend_reader = function(self)

13437 local parsers = self.parsers

13438 local writer = self.writer

13439

13440 local function between(p, starter, ender)

13441 return (starter * Cs(p * (p - ender)”0) * ender)
13442 end

13443
13444 local function strip_preceding whitespaces(str)

13445 return str:gsub(" %s*x(.-)$", "%1")

13446 end

13447

13448 local allowed_before_closing

13449 = B( parsers.backslash * parsers.any

13450 + parsers.any * (parsers.any - parsers.backslash))

13451

13452 local allowed_before_closing_no_space

13453 = B( parsers.backslash * parsers.any

13454 + parsers.any * (parsers.nonspacechar - parsers.backslash))

13455

The following patterns implement the Pandoc dollar math syntax extension.

13456 local dollar_math_content

13457 = (parsers.newline * (parsers.check_optional_indent / "")
13458 + parsers.backslash™-1

13459 * parsers.linechar)

13460 - parsers.blankline”2

13461 - parsers.dollar

13462

13463 local inline_math_opening_dollars = parsers.dollar

13464 * #(parsers.nonspacechar)
13465

13466 local inline_math_closing_dollars

13467 = allowed_before_closing_no_space

13468 * parsers.dollar

13469 * —#(parsers.digit)

13470

13471 local inline_math_dollars = between(Cs( dollar_math_content),
13472 inline_math_opening_dollars,

13473 inline_math_closing_dollars)

394



13474
13475
13476
13477
13478
13479
13480
13481
13482
13483

local display_math_opening_dollars

local display_math_closing_dollars

*

*

.dollar
.dollar

parsers
parsers

.dollar
.dollar

parsers
parsers

local display_math_dollars = between(Cs( dollar_math_content),

display_math_opening_dollars,
display_math_closing_dollars)

The following patterns implement the Pandoc single and double backslash math
syntax extensions.

13484
13485
13486
13487

The

sion.

13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514

13515

local backslash_math_content

= (parsers.newline * (parsers.check_optional_indent / "")
+ parsers.linechar)
- parsers.blankline”2

following patterns implement the Pandoc double backslash math syntax exten-

local

local

local

local

local

local

inline_math_opening_double

inline_math_closing_double

inline_math_double

* ¥

* ¥ ¥ ¥

parsers.backslash
parsers.backslash
parsers.lparent

allowed_before_closing
parsers.spacechar”0
parsers.backslash
parsers.backslash
parsers.rparent

= between(Cs( backslash_math_content),

inline_math_opening_double,
inline_math_closing_double)

/ strip_preceding_whitespaces

display_math_opening_double

display_math_closing_double

* ¥

* ¥ ¥ ¥

parsers.backslash
parsers.backslash
parsers.lbracket

allowed_before_closing
parsers.spacechar™0
parsers.backslash
parsers.backslash
parsers.rbracket

display_math_double = between(Cs( backslash_math_content),

395

display_math_opening_double,
display_math_closing_double)



13516 / strip_preceding_whitespaces

The following patterns implement the Pandoc single backslash math syntax extension.

13517 local inline_math_opening_single = parsers.backslash

13518 * parsers.lparent

13519

13520 local inline_math_closing_single = allowed_before_closing

13521 * parsers.spacechar”0

13522 * parsers.backslash

13523 * parsers.rparent

13524

13525 local inline_math_single = between(Cs( backslash_math_content),
13526 inline_math_opening_single,
13527 inline_math_closing_single)
13528 / strip_preceding_whitespaces

13529

13530 local display_math_opening_single = parsers.backslash

13531 * parsers.lbracket

13532

13533 local display_math_closing_single = allowed_before_closing
13534 * parsers.spacechar”0

13535 * parsers.backslash

13536 * parsers.rbracket

13537

13538 local display_math_single = between(Cs( backslash_math_content),
13539 display_math_opening_single,
13540 display_math_closing_single)
13541 / strip_preceding_whitespaces

13542

13543 local display_math = parsers.fail

13544

13545 local inline_math = parsers.fail

13546

13547 if tex_math_dollars then

13548 display_math = display_math + display_math_dollars

13549 inline_math = inline_math + inline_math_dollars

13550 end

13551

13552 if tex_math_double_backslash then

13553 display_math = display_math + display_math_double

13554 inline_math = inline_math + inline_math_double

13555 end

13556

13557 if tex_math_single_backslash then

13558 display_math = display_math + display_math_single

13559 inline_math = inline_math + inline_math_single

13560 end

13561

396



13562 local TexMath = display_math / writer.display_math

13563 + inline_math / writer.inline_math
13564

13565 self.insert_pattern("Inline after LinkAndEmph",
13566 TexMath, "TexMath")

13567

13568 if tex_math_dollars then

13569 self.add_special_character("$")

13570 end

1

2 if tex_math_single_backslash or tex_math_double_backslash then
3 self.add_special_character("\\")

A self.add_special_character("[")

5

35
135 self.add_special_character("]")
13576 self .add_special_character(")")
13577 self.add_special_character("(")
13578 end

13579 end
13580  }

13581 end

3.1.7.20 YAML Metadata

The extensions.jekyll_data function implements the Pandoc YAML meta-
data block syntax extension. When the expect_jekyll_data parameter is true,
then a markdown document may begin directly with YAML metadata and may
contain nothing but YAML metadata. When both expect_jekyll_data and
ensure_jekyll_data parameters are true, then a a markdown document must
begin directly with YAML metadata and must contain nothing but YAML metadata.
13582 M.extensions.jekyll_data = function(expect_jekyll_data,

13583 ensure_jekyll_data)
13584 return {

13585 name = "built-in jekyll_data syntax extension",
13586 extend_writer = function(self)

Define writer->jekyllData as a function that will transform an input YAML table
d to the output format. The table is the value for the key p in the parent table; if p
is nil, then the table has no parent. All scalar keys and values encountered in the
table will be cast to a string following YAML serialization rules. String values will
also be transformed using the function t for the typographic output format used by
the \markdownRendererJekyllDataTypographicString macro.

13587 function self.jekyllData(d, t, p)

13588 if not self.is_writing then return "" end
13589

13590 local buf = {}

13591

397



13592 local keys = {}

13593 for k, _ in pairs(d) do
13594 table.insert (keys, k)
13595 end

For reproducibility, sort the keys. For mixed string-and-numeric keys, sort numeric
keys before string keys.

13596 table.sort(keys, function(first, second)

13597 if type(first) ~= type(second) then

13598 return type(first) < type(second)

13599 else

13600 return first < second

13601 end

13602 end)

13603

13604 if not p then

13605 table.insert(buf, "\\markdownRendererJekyllDataBegin")
13606 end

13607

13608 local is_sequence = false

13609 if #d > O and #d == #keys then

13610 for i=1, #d do

13611 if d[i] == nil then

13612 goto not_a_sequence

13613 end

13614 end

13615 is_sequence = true

13616 end

13617 ::not_a_sequence::

13618

13619 if is_sequence then

13620 table.insert (buf,

13621 "\\markdownRendererJekyllDataSequenceBegin{")
13622 table.insert(buf, self.identifier(p or "null"))
13623 table.insert(buf, "}H")

13624 table.insert(buf, #keys)

13625 table.insert (buf, "}")

13626 else

13627 table.insert(buf, "\\markdownRendererJekyllDataMappingBegin{")
13628 table.insert(buf, self.identifier(p or "null"))
13629 table.insert (buf, "}{")

13630 table.insert(buf, #keys)

13631 table.insert (buf, "}")

13632 end

13633

13634 for _, k in ipairs(keys) do

13635 local v = d[k]

398



13636 local typ = type(v)

13637 k = tostring(k or "null")

13638 if typ == "table" and next(v) ~= nil then

13639 table.insert(

13640 buf,

13641 self.jekyllData(v, t, k)

13642 )

13643 else

13644 k = self.identifier(k)

13645 v = tostring(v)

13646 if typ == "boolean" then

13647 table.insert(buf, "\\markdownRendererJekyllDataBoolean{")
13648 table.insert (buf, k)

13649 table.insert (buf, "}{")

13650 table.insert (buf, v)

13651 table.insert (buf, "}")

13652 elseif typ == "number" then

13653 table.insert(buf, "\\markdownRendererJekyllDataNumber{")
13654 table.insert (buf, k)

13655 table.insert (buf, "}{")

13656 table.insert (buf, v)

13657 table.insert (buf, "}")

13658 elseif typ == "string" then

13659 table.insert (buf,

13660 "\\markdownRendererJekyllDataProgrammaticString{")
13661 table.insert (buf, k)

13662 table.insert (buf, "}{")

13663 table.insert (buf, self.identifier(v))

13664 table.insert (buf, "}")

13665 table.insert (buf,

13666 "\\markdownRendererJekyllDataTypographicString{")
13667 table.insert (buf, k)

13668 table.insert (buf, "}{")

13669 table.insert(buf, t(v))

13670 table.insert (buf, "}")

13671 elseif typ == "table" then

13672 table.insert(buf, "\\markdownRendererJekyllDataEmpty{")
13673 table.insert(buf, k)

13674 table.insert (buf, "}")

13675 else

13676 local error = self.error(format (

13677 "Unexpected type %s for value of "

13678 .. "YAML key %s.", typ, k))

13679 table.insert (buf, error)

13680 end

13681 end

13682 end

399



13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729

if is_sequence then

table.insert(buf, "\\markdownRendererJekyllDataSequenceEnd")
else

table.insert(buf, "\\markdownRendererJekyllDataMappingEnd")
end

if not p then
table.insert(buf, "\\markdownRendererJekyllDataEnd")
end

return buf
end
end, extend_reader = function(self)
local parsers = self.parsers
local writer = self.writer

local JekyllData

= Cmt( C((parsers.line - P("---") - P("..."))"0)
, function(s, i, text) -- luacheck: ignore s i
local data
local ran_ok, _ = pcall(function()

local tinyyaml = require("tinyyaml")
data = tinyyaml.parse(text, {timestamps=falsel})
end)
if ran_ok and data ~= nil then
return true, writer.jekyllData(data, function(s)
return self.parser_functions.parse_blocks_nested(s)
end, nil)
else
return false
end
end

local UnexpectedJekyllData
= P("---")
* parsers.blankline / 0
-- if followed by blank, it's thematic break
* #(-parsers.blankline)
* JekyllData
* (P("-—=") + P("..."M))

local ExpectedJekyllData
= ( P("———")
* parsers.blankline / 0
-- if followed by blank, it's thematic break

400



o

* #(-parsers.blankline)

1373

13731 )7-1

13732 * JekyllData

13733 * (P("-—=") + P("..."))"-1

13734

13735 if ensure_jekyll_data then

13736 ExpectedJekyllData = ExpectedJekyllData

13737 * parsers.eof

13738 else

13739 ExpectedJekyllData = ( ExpectedJekyllData

13740 * (V("Blank")~0 / writer.interblocksep)
13741 )~-1

13742 end

13743

13744 self.insert_pattern("Block before Blockquote",

13745 UnexpectedJekyllData, "UnexpectedJekyllData")
13746 if expect_jekyll_data then

1374

7 self.update_rule("ExpectedJekyllData", ExpectedJekyllData)
13748 end

13749 end

13750}

13751 end

3.1.8 Conversion from Markdown to Plain TEX

The new function of file markdown.lua loads file markdown-parser.lua and calls
its function new unless option eagerCache or finalizeCache has been enabled and
a cached conversion output exists, in which case it is returned without loading file
markdown-parser.lua.

13752 function M.new(options)

Make the options table inherit from the defaultOptions and experimentalOptions
tables.

13753  options = optiomns or {}

13754 setmetatable(options, { __index = function (_, key)

13755 return defaultOptions[key] end })

13756 if options.experimental then

13757 setmetatable(options, { __index = function (_, key)
13758 return experimentalOptions[key] end })

13759  end

Return a conversion function that tries to produce a cached conversion output exists.
If no cached conversion output exists, we load the file markdown-parser.lua and
use it to convert the input.

13760  local parser_convert = nil

13761 return function(input, include_flat_output)

13762 local function convert(input)

401



13763 if parser_convert == nil then

Lazy-load markdown-parser.lua and check that it originates from the same version
of the Markdown package.

13764 local parser = require("markdown-parser")

13765 if metadata.version ~= parser.metadata.version then

13766 warn("markdown.lua " .. metadata.version .. " used with "

13767 "markdown-parser.lua " .. parser.metadata.version .. ".")
13768 end

13769 parser_convert = parser.new(options)

13770 end

13771 return parser_convert(input)

13772 end

If we cache markdown documents, produce the cache file and transform its filename
to plain TEX output.

When determining the name of the cache file, create salt for the hashing function
out of the package version and the passed options recognized by the Lua interface
(see Section 2.1.3).

13773 local raw_output, flat_output

13774 if options.eagerCache or options.finalizeCache then

13775 local salt = util.salt(options)

13776 local name, result = util.cache(options.cacheDir, input, salt,
13777 convert, ".md.tex")

13778 raw_output = [[\input{]] .. name .. [[}\relax]]

13779 flat_output = function()

13780 if result == nil then

13781 local input_file = assert(io.open(name, "r"),

13782 [[Could not open file "]] .. name .. [[" for readingl])
13783 result = assert(input_file:read("*a"))

13784 assert(input_file:close())

13785 end

13786 return result

13787 end

Otherwise, return the result of the conversion directly.

13788 else

13789 raw_output = convert (input)

13790 flat_output = function()

13791 return raw_output

13792 end

13793 end

If the finalizeCache option is enabled, populate the frozen cache in the
file frozenCacheFileName with an entry for markdown document number
frozenCacheCounter.

13794 if options.finalizeCache then

13795 local file, mode

402



13796 if options.frozenCacheCounter > O then

13797 mode = "a"

13798 else

13799 mode = "w"

13800 end

13801 file = assert(io.open(options.frozenCacheFileName, mode),
13802 [[Could not open file "]] .. options.frozenCacheFileName
13803 .. [[" for writingl])

13804 assert(file:write(

13805 [[\expandafter\global\expandafter\def\csname ]]

13806 .. [[markdownFrozenCachel]] .. options.frozenCacheCounter
13807 .. [[\endcsname{]] .. raw_output .. [[}] .. "\n"))
13808 assert(file:close())

13809 end

Besides the canonical output of the conversion, which may contain cached files
behind \input, also return a function that always produces a flat output regardless
of caching as the second return value.

13810 if include_flat_output then

13811 return raw_output, flat_output
13812 else

13813 return raw_output

13814 end

13815 end

13816 end

The new function from file markdown-parser.lua returns a conversion function that
takes a markdown string and turns it into a plain TEX output. See Section 2.1.1.

13817 function M.new(options)

Make the options table inherit from the defaultOptions and experimentalOptions
tables.

13818  options = options or {}

13819  setmetatable(options, { __index = function (_, key)
13820 return defaultOptions[key] end })

13821 if options.experimental then

13822 setmetatable(options, { __index = function (_, key)
13823 return experimentalOptions[key] end 1})

13824 end

If the singleton cache contains a conversion function for the same options, reuse it.

13825  if options.singletonCache and singletonCache.convert then

13826 for k, v in pairs(defaultOptions) do

13827 if type(v) == "table" then

13828 for i = 1, math.max(#singletonCache.options[k], #options[k]) do
13829 if singletonCache.options[k] [i] ~= options[k][i] then

13830 goto miss

13831 end

403



13832 end

The cacheDir option is disregarded.

13833 elseif k ~= "cacheDir"

13834 and singletonCache.options[k] ~= options[k] then
13835 goto miss

13836 end

13837 end

13838 return singletonCache.convert

13839  end

13840 ::miss::

Apply built-in syntax extensions based on options.

13841 local extensions = {}

13842

13843 if options.bracketedSpans then

13844 local bracketed_spans_extension = M.extensions.bracketed_spans()
13845 table.insert(extensions, bracketed_spans_extension)

13846 end

13847

13848 if options.contentBlocks then

13849 local content_blocks_extension = M.extensions.content_blocks(
13850 options.contentBlocksLanguageMap)

13851 table.insert (extensions, content_blocks_extension)

13852  end
13853
13854  if options.definitionLists then

13855 local definition_lists_extension = M.extensions.definition_lists(
13856 options.tightLists)

13857 table.insert(extensions, definition_lists_extension)
13858 end

13859

13860 if options.fencedCode then

13861 local fenced_code_extension = M.extensions.fenced_code(
13862 options.blankBeforeCodeFence,

13863 options.fencedCodeAttributes,

13864 options.rawAttribute)

13865 table.insert (extensions, fenced_code_extension)

13866 end

13867
13868  if options.fencedDivs then

13869 local fenced_div_extension = M.extensions.fenced_divs(
13870 options.blankBeforeDivFence)

13871 table.insert (extensions, fenced_div_extension)

13872 end

13873
13874 if options.headerAttributes then
13875 local header_attributes_extension = M.extensions.header_attributes()

404



13876 table.insert(extensions, header_attributes_extension)
13877 end

13878

13879 if options.inlineCodeAttributes then

13880 local inline_code_attributes_extension =

13881 M.extensions.inline_code_attributes()

13882 table.insert(extensions, inline_code_attributes_extension)
13883 end

13884

13885 if optiomns.jekyllData then

13886 local jekyll_data_extension = M.extensions.jekyll_data(
13887 options.expectJekyllData, options.ensureJekyllData)
13888 table.insert(extensions, jekyll_data_extension)

13889 end

13890

13891 if options.linkAttributes then

13892 local link_attributes_extension =

13893 M.extensions.link_attributes()

13894 table.insert (extensions, link_attributes_extension)
13895 end

13896

13897 if options.lineBlocks then

13898 local line_block_extension = M.extensions.line_blocks()
13899 table.insert (extensions, line_block_extension)

13900 end

13901
13902 if options.mark then

13903 local mark_extension = M.extensions.mark()

13904 table.insert(extensions, mark_extension)

13905 end

13906

13907  if options.pipeTables then

13908 local pipe_tables_extension = M.extensions.pipe_tables(
13909 options.tableCaptions, options.tableAttributes)

13910 table.insert(extensions, pipe_tables_extension)

13911 end

13912

13913 if options.rawAttribute then

13914 local raw_inline_extension = M.extensions.raw_inline()
13915 table.insert (extensions, raw_inline_extension)
13916 end

13917

13918 if options.strikeThrough then

13919 local strike_through_extension = M.extensions.strike_through()
13920 table.insert(extensions, strike_through_extension)

13921 end

13922

405



13923  if options.subscripts then

13924 local subscript_extension = M.extensions.subscripts()
13925 table.insert(extensions, subscript_extension)

13926 end

13927

13928 if options.superscripts then

13929 local superscript_extension = M.extensions.superscripts()
13930 table.insert(extensions, superscript_extension)

13931 end
13932

13933 if options.texMathDollars or

13934 options.texMathSingleBackslash or

13935 options.texMathDoubleBackslash then

13936 local tex_math_extension = M.extensions.tex_math(
13937 options.texMathDollars,

13938 options.texMathSingleBackslash,

13939 options.texMathDoubleBackslash)

13940 table.insert (extensions, tex_math_extension)

13941 end

13942

13943 if options.notes or options.inlineNotes then

13944 local notes_extension = M.extensions.notes(

13945 options.notes, options.inlineNotes)

13946 table.insert (extensions, notes_extension)

13947 end

13948

13949 if options.citations then

13950 local citations_extension

13951 = M.extensions.citations(options.citationNbsps)
13952 table.insert (extensions, citations_extension)
13953 end

13954

13955 if options.fancyLists then

13956 local fancy_lists_extension = M.extensions.fancy_lists()
13957 table.insert(extensions, fancy_lists_extension)
13958 end

Apply user-defined syntax extensions based on options.extensions.

13959 for _, user_extension_filename in ipairs(options.extensions) do
13960 local user_extension = (function(filename)

First, load and compile the contents of the user-defined syntax extension.

13961 local pathname = assert(util.find_file(filename),

13962 [[Could not locate user-defined syntax extension "]]
13963 .. filename)

13964 local input_file = assert(io.open(pathname, "r"),

13965 [[Could not open user-defined syntax extension "]]
13966 .. pathname .. [[" for reading]])

406



13967 local input = assert(input_file:read("*a"))

13968 assert(input_file:close())

13969 local user_extension, err = load([[

13970 local sandbox = {}

13971 setmetatable(sandbox, {__index = _G})

13972 _ENV = sandbox

13973 11 .. input) Q)

13974 assert(user_extension,

13975 [[Failed to compile user-defined syntax extension "]]

13976 .. pathname .. [[": 1] .. (err or [[11))
Then, validate the user-defined syntax extension.

13977 assert(user_extension.api_version ~= nil,

13978 [[User-defined syntax extension "]] .. pathname

13979 .. [[" does not specify mandatory field "api_version"]])
13980 assert (type(user_extension.api_version) == "number",

13981 [[User-defined syntax extension "]] .. pathname

13982 .. [[" specifies field "api_version" of type "I]

13983 .. type(user_extension.api_version)

13984 .. [[" but "number" was expected]])

13985 assert(user_extension.api_version > 0

13986 and user_extension.api_version

13987 <= metadata.user_extension_api_version,

13988 [[User-defined syntax extemnsion "]] .. pathname

13989 .. [[" uses syntax extension API version "]]

13990 .. user_extension.api_version .. [[ but markdown.lua ]]
13991 .. metadata.version .. [[ uses API version ]]

13992 .. metadata.user_extension_api_version

13993 .. [[, which is incompatible]])

13994

13995 assert(user_extension.grammar_version ~= nil,

13996 [[User-defined syntax extension "]] .. pathname

13997 .. [[" does not specify mandatory field "grammar_version"]])
13998 assert (type(user_extension.grammar_version) == "number",
13999 [[User-defined syntax extension "]] .. pathname

14000 .. [[" specifies field "grammar_version" of type "]]
14001 .. type(user_extension.grammar_version)

14002 .. [[" but "number" was expected]])

14003 assert(user_extension.grammar_version == metadata.grammar_version,
14004 [[User-defined syntax extension "]] .. pathname

14005 .. [[" uses grammar version "]]

14006 .. user_extension.grammar_version

14007 .. [[ but markdown.lua ]] .. metadata.version

14008 .. [[ uses grammar version ]] .. metadata.grammar_version
14009 .. [[, which is incompatible]])

14010

14011 assert(user_extension.finalize_grammar ~= nil,

14012 [[User-defined syntax extension "]] .. pathname

407



14013 [[" does not specify mandatory "finalize_grammar" field]])
14014 assert(type(user_extension.finalize_grammar) == "function",
14015 [[User-defined syntax extension "]] .. pathname

14016 .. [[" specifies field "finalize_grammar" of type "]]

14017 .. type(user_extension.finalize_grammar)

14018 .. [[" but "function" was expected]])

Finally, cast the user-defined syntax extension to the internal format of user extensions
used by the Markdown package (see Section 3.1.7.)

14019 local extension = {

14020 name = [[user-defined "]] .. pathname .. [[" syntax extension]],
14021 extend_reader = user_extension.finalize_grammar,

14022 extend_writer = function() end,

14023 }

14024 return extension

14025 end) (user_extension_filename)

14026 table.insert(extensions, user_extension)

14027 end

Produce a conversion function from markdown to plain TEX.

14028 local writer = M.writer.new(options)
14029  local reader = M.reader.new(writer, options)
14030  local convert = reader.finalize_grammar (extensions)

Force garbage collection to reclaim memory for temporary objects created in
writer.new, reader.new, and reader->finalize_grammar.

14031  collectgarbage("collect")

Update the singleton cache.

14032 if options.singletonCache then

3 local singletonCacheOptions = {}
14034 for k, v in pairs(options) do
14035 singletonCacheOptions[k] = v
14036 end
14037 setmetatable(singletonCacheOptions,
14038 { __index = function (_, key)
14039 return defaultOptions[key] end })
14040 singletonCache.options = singletonCacheOptions
14041 singletonCache.convert = convert
14042 end

Return the conversion function from markdown to plain TEX.

14043 return convert
14044 end

14045 return M

408



3.1.9 Command-Line Implementation

The command-line implementation provides the actual conversion routine for the
command-line interface described in Section 2.1.7.

7 local input

14048 if input_filename then

14049  local input_file = assert(io.open(input_filename, "r"),

50 [[Could not open file "]] .. input_filename .. [[" for readingll)
1 input = assert(input_file:read("*a"))

2 assert(input_file:close())

; else

4 input = assert(io.read("*a"))

5 end

First, ensure that the options.cacheDir directory exists.

14057 local 1fs = require("1lfs")

14058 if options.cacheDir and not 1fs.isdir(options.cacheDir) then
14059  assert(1lfs.mkdir(options["cacheDir"]))

14060 end

If Kpathsea has not been loaded before or if LuaTEX has not yet been initialized,
configure Kpathsea on top of loading it.

14061 local kpse

14062 (function()

14063 local should_initialize = package.loaded.kpse == nil
064 or tex.initialize ~= nil

11065  kpse = require("kpse")

14066 if should_initialize then

14067 kpse.set_program_name ("luatex")
14068 end
14069 end) ()

14070 local md = require("markdown")

Since we are loading the rest of the Lua implementation dynamically, check that both
the markdown module and the command line implementation are the same version.

14071 if metadata.version ~= md.metadata.version then

14072 warn("markdown-cli.lua " .. metadata.version .. " used with "
14073 "markdown.lua " .. md.metadata.version .. ".")

14074 end

14075

11076 local convert = md.new(options)

14077 local raw_output, flat_output = convert(input, true)

14078 local output

14079 if flat_output == nil then

14080 if options.eagerCache then

14081 warn("markdown.lua has not produced flat output, so I am using "

409



14082 "backwards-compatible raw output instead. This may cause "

0
14083 'the conversion result to be hidden behind "\\input".')
14084 end
14085 output = raw_output
14086 else
14087  output = flat_output()
14088 end
14089
14090 if output_filename then
14091 local output_file = assert(io.open(output_filename, "w"),
14092 [[Could not open file "]] .. output_filename .. [[" for writing]])

14093 assert(output_file:write(output))

14094  assert(output_file:close())

14095 else

14096  assert(io.write(output))

14097 end

Remove the options.cacheDir directory if it is empty.
141098 if options.cacheDir then

14099  1fs.rmdir (options.cacheDir)

14100 end

3.2 Plain TEX Implementation

The plain TEX implementation provides macros for the interfacing between TEX and
Lua and for the buffering of input text. These macros are then used to implement
the macros for the conversion from markdown to plain TEX exposed by the plain
TEX interface (see Section 2.2).

3.2.1 Logging Facilities

14101 \ExplSyntaxOn
14102 \cs_if_free:NT
14103 \markdownInfo

14104

14105 \cs_new:Npn

14106 \markdownInfo #1

14107 {

14108 \msg_info:nne

14109 { markdown }

14110 { generic-message }
14111 {#1}

14112 }

14113}

14114 \cs_if_free:NT
14115  \markdownWarning
14116 {

410



14117 \cs_new:Npn

14118 \markdownWarning #1
14119 {

14120 \msg_warning:nne
14121 { markdown }
14122 { generic-message }
14123 {#1}

14124 }

14125  }

14126 \cs_if_free:NT

14127 \markdownError

14128  {

14129 \cs_new:Npn

14130 \markdownError #1 #2
14131 {

14132 \msg_error:nnee
14133 { markdown }
14134 { generic-message-with-help-text }
14135 {#1}

14136 {#2 %

14137 ¥

14138}

14139 \msg_new:nnn

14140  { markdown }

14141 { generic-message }
14142 { #1 }

14143 \msg_new:nnnn

14144 { markdown }

14145  { generic-message-with-help-text }
14146 { #1 }

14147 { #2 }

14148 \cs_generate_variant:Nn
14149 \msg_info:nnn

14150  { nne }

14151 \cs_generate_variant:Nn
14152 \msg_warning:nnn

14153 { nne }

14154 \cs_generate_variant:Nn
14155  \msg_error :nnnn

14156 { nnee }
14157 \ExplSyntax0ff
3.2.2 Themes

This section implements the theme-loading mechanism and the built-in themes
provided with the Markdown package. Furthermore, this section also implements
the built-in plain TEX themes provided with the Markdown package.

411



14158 \ExplSyntaxOn

14159 \prop_new:N \g_0@_plain_tex_loaded_themes_linenos_prop
14160 \prop_new:N \g_@@_plain_tex_loaded_themes_versions_prop
14161 \cs_new:Nn

14162  \@@_plain_tex_load_theme:nnn

14163 {

14164 \prop_get :NnNTF

14165 \g_0@_plain_tex_loaded_themes_linenos_prop

14166 { #1372

14167 \1_tmpa_tl

14168 {

14169 \prop_get :NnN

14170 \g_0@_plain_tex_loaded_themes_versions_prop
14171 { #1732

14172 \1_tmpb_tl

14173 \str_if_eq:nVTF

14174 {#2 3}

14175 \1_tmpb_tl

14176 {

14177 \msg_warning:nnnVn

14178 { markdown }

14179 { repeatedly-loaded-plain-tex-theme }
14180 {#1 3}

14181 \1_tmpa_tl

14182 {#2 %

14183 }

14184 {

14185 \msg_error :nnnnVV

14186 { markdown }

14187 { different-versions-of-plain-tex-theme }
14188 {#1 3}

14189 {#2 %

14190 \1_tmpb_tl

14191 \1_tmpa_tl

14192 }

14193 }

14194 {

14195 \prop_gput :Nnx

14196 \g_0@_plain_tex_loaded_themes_linenos_prop
14197 {#1 3}

14198 { \tex_the:D \tex_inputlineno:D } 7% noga: W200
14199 \prop_gput : Nnn

14200 \g_00@_plain_tex_loaded_themes_versions_prop
14201 {#1}

14202 {#2 3}

412



Load built-in plain TEX themes from the prop \g_00_plain_tex_built_in_themes_prop
and from the filesystem otherwise.

14203 \prop_if_in:NnTF

14204 \g_0@_plain_tex_built_in_themes_prop
14205 {#1 %

14206 {

14207 \msg_info:nnnn

14208 { markdown }

14209 { loading-built-in-plain-tex-theme }
14210 {#1 3}

14211 {#2 %

14212 \prop_item:Nn

14213 \g_0@_plain_tex_built_in_themes_prop
14214 {#1}

14215 }

14216 {

14217 \msg_info:nnnn

14218 { markdown }

14219 { loading-plain-tex-theme }

14220 {#1 3}

14221 {#2 %

14222 \file_input:n

14223 { markdown theme #3 }

14224 }

14225 }

14226}

14227 \msg_new:nnn

14228 { markdown }

14229 { loading-plain-tex-theme }

14230  { Loading~version~#2~of~plain~TeX~Markdown~theme~#1 }

14231 \msg_new:nnn

14232 { markdown }

14233 { loading-built-in-plain-tex-theme }

14234 { Loading~version~#2~of~built-in~plain~TeX~Markdown~theme~#1 }
14235 \msg_new:nnn

14236 { markdown }

14237 { repeatedly-loaded-plain-tex-theme }

14238 {

14239 Version~#3~of~plain~TeX~Markdown~theme~#1~was~previously~
14240 loaded~on~line~#2,~not~loading~it~again

14241}

14242 \msg_new:nnn

14243 { markdown }

14244 { different-versions-of-plain-tex-theme }

14245  {

14246 Tried~to~load~version~#2~of~plain~TeX~Markdown~theme~#1~
14247 but~version~#3~has~already~been~loaded~on~line~#4

413



14248  }

14249 \cs_generate_variant:Nn

14250  \prop_gput :Nnn

14251 { Nox }

14252 \cs_gset_eq:NN

14253  \@@_load_theme:nnn

14254 \@@_plain_tex_load_theme:nnn
14255 \cs_generate_variant:Nn

14256 \@@_load_theme:nnn
14257 { VeV }

14258 \cs_generate_variant:Nn
14259  \mSg_error :nnnnnn
14260  { nnnnVV }

14261 \cs_generate_variant:Nn

14262  \msg_warning:nnnnn

14263 { nnnVn }

Developers can use the \markdownLoadPlainTeXTheme macro to load a corresponding
plain TEX theme from within themes for higher-level TEX formats such as IATEX and

ConTEXt.

14264 \cs_new:Npn
14265 \markdownLoadPlainTeXTheme
14266 {

First, we extract the name of the current theme from the \g_0@_current_theme_tl

macro.
14267 \tl_set:NV

14268 \1_tmpa_tl

14269 \g_0Q@_current_theme_t1l
14270 \tl_reverse:N

14271 \1_tmpa_tl

14272 \tl_set:Ne

14273 \1_tmpb_t1

14274 {

14275 \tl_tail:V

14276 \1_tmpa_tl

14277 }

14278 \tl_reverse:N

14279 \1_tmpb_tl

Next, we munge the theme name.
14280 \str_set:NV

14281 \1_tmpa_str

14282 \1_tmpb_tl

14283 \str_replace_all:Nnn
14284 \1_tmpa_str

14285 {/1%

14286 {_1%

414



Finally, we load the plain TEX theme.

14287 \@@_plain_tex_load_theme:VeV
14288 \1_tmpb_tl

14289 { \markdownThemeVersion }
14290 \1_tmpa_str

14291}

14292 \cs_generate_variant:Nn

14293 \tl_set:Nn

14294 { Ne }

14295 \cs_generate_variant:Nn

14296 \@@_plain_tex_load_theme:nnn

14297 { VeV }

The witiko/dot theme nags users that they should use the name witiko/diagrams@vil
instead.

14298 \prop_gput :Nnn

14299  \g_0@_plain_tex_built_in_themes_prop

14300  { witiko / dot }

14301 {

14302 \str_if_eq:enF

14303 { \markdownThemeVersion }

14304 { silent }

14305 {

14306 \markdownWarning

14307 {

14308 The~theme~name~"witiko/dot"~has~been~soft-deprecated.
14309 \iow_newline:

14310 Consider~changing~the~name~to~"witiko/diagrams@vi".
14311 }

14312 }

We enable the fencedCode Lua option.

14313 \markdownSetup { fencedCode }

We store the previous definition of the fenced code token renderer prototype:

14314 \cs_set_eq:NN

14315 \@@_dot_previous_definition:nnn

14316 \markdownRendererInputFencedCodePrototype

If the infostring starts with dot .., we redefine the fenced code block token renderer
prototype, so that it typesets the code block via Graphviz tools if and only if the
frozenCache plain TEX option is disabled and the code block has not been previously
typeset:

14317 \regex_const:Nn

14318 \c_0@_dot_infostring_regex
14319 { "dot(\s+(.+))? }

14320 \seq_new:N

14321 \1_0@_dot_matches_seq

415



14322 \markdownSetup {

14323 rendererPrototypes = {

14324 inputFencedCode = {

14325 \regex_extract_once:NnNTF

14326 \c_0@_dot_infostring_regex

14327 {#2 }

14328 \1_@@_dot_matches_seq

14329 {

14330 \@@_if_option:nF

14331 { frozenCache }

14332 {

14333 \sys_shell_now:n

14334 {

14335 if~!~test~-e~#1.pdf.source~
14336 [ |~!~diff~#1~#1.pdf.source;
14337 then~

14338 dot~-Tpdf~-o~#1.pdf~#1;
14339 cp~#1~#1.pdf.source;

14340 fi

14341 }

14342 }

We include the typeset image using the image token renderer:

14343 \exp_args:NNne

14344 \exp_last_unbraced:No
14345 \markdownRendererImage
14346 {

14347 { Graphviz~image }
14348 { #1.pdf }

14349 { #1.pdf }

14350 }

14351 {

14352 \seq_item:Nn

14353 \1_0@_dot_matches_seq
14354 {31}

14355 }

14356 }

If the infostring does not start with dot .., we use the previous definition of the
fenced code token renderer prototype:

14357 {

14358 \@@_dot_previous_definition:nnn
14359 {#1 }

14360 {#2 }

14361 { #3 }

14362 }

14363 },

14364 },

416



14365 }

14366}

The theme witiko/diagrams loads either the theme witiko/dot for version v1 or
the theme witiko/diagrams/v2 for version v2.

14367 \prop_gput :Nnn

14368  \g_0@_plain_tex_built_in_themes_prop

14369 { witiko / diagrams }

14370 {

14371 \str_case:enF

14372 { \markdownThemeVersion }

14373 {

14374 { latest }

14375 {

14376 \markdownWarning

14377 {

14378 Write~"witiko/diagrams@v2"~to~pin~version~"v2"~of~the~
14379 theme~"witiko/diagrams".~This~will~keep~your~documents~
14380 from~suddenly~breaking~when~we~have~released~future~
14381 versions~of~the~theme~with~backwards—-incompatible~
14382 syntax~and~behavior.

14383 }

14384 \markdownSetup

14385 {

14386 import = witiko/diagrams/v2,

14387 }

14388 }

14389 {v2}

14390 {

14391 \markdownSetup

14392 {

14393 import = witiko/diagrams/v2,

14394 }

14395 ¥

14396 {v1}

14397 {

14398 \markdownSetup

14399 {

14400 import = witiko/dot@silent,

14401 }

14402 }

14403 }

14404 {

14405 \msg_error :nnnen

14406 { markdown }

14407 { unknown-theme-version }

14408 { witiko/diagrams }

417



14409 { \markdownThemeVersion }
14410 {vl}

14411 }

14412}

14413 \cs_generate_variant:Nn

14414 \msg_error :nnnnn

14415  { nnnen }

14416 \msg_new:nnnn

14417 { markdown }
14418 { unknown-theme-version }
14419 { Unknown~version~"#2"~of~theme~"#1"~has~been~requested. }

14420  { Known~versions~are:~#3 }
Next, we implement the theme witiko/diagrams/v2.

14421 \prop_gput :Nnn

14422 \g_0Q@_plain_tex_built_in_themes_prop
14423 { witiko / diagrams / v2 }

14424 o

We enable the fencedCode and fencedCodeAttributes Lua option.

14425 \@@_setup:n

14426 {

14427 fencedCode = true,

14428 fencedCodeAttributes = true,
14429 }

Store the previous fenced code token renderer prototype.

14430 \cs_set_eq:NN
14431 \@@_diagrams_previous_fenced_code:nnn
14432 \markdownRendererInputFencedCodePrototype

Store the caption and the desired format of the diagram.

14433 \tl_new:N

14434 \1_0@_diagrams_caption_tl
14435 \tl_new:N

14436 \1_QQ@_diagrams_format_tl
14437 \tl_set:Nn

14438 \1_00@_diagrams_format_tl
14439 { pdf }

14440 \@@_setup:n

14441 {

14442 rendererPrototypes = {

Route attributes on fenced code blocks to the image attribute renderer prototypes.

14443 fencedCodeAttributeContextBegin = {

14444 \group_begin:

14445 \markdownRendererImageAttributeContextBegin
14446 \cs_set_eq:NN

14447 \@@_diagrams_previous_key_value:nn

418



14448 \markdownRendererAttributeKeyValuePrototype

14449 \@@_setup:n

14450 {

14451 rendererPrototypes = {

14452 attributeKeyValue = {
14453 \str_case:nnF

14454 { ##1 }

14455 {

14456 { caption }

14457 {

14458 \tl_set:Nn

14459 \1_0Q@_diagrams_caption_tl
14460 { ##2 }

14461 }

14462 { format }

14463 {

14464 \tl_set:Nn

14465 \1_0@_diagrams_format_tl
14466 { ##2 }

14467 }

14468 }

14469 {

14470 \@@_diagrams_previous_key_value:nn
14471 { ##1 }

14472 { ##2 }

14473 X

14474 T,

14475 },

14476 }

14477 1,

14478 fencedCodeAttributeContextEnd = {
14479 \markdownRendererImageAttributeContextEnd
14480 \group_end:

14481 },

14482 },

14483 }

14484 \cs_new:Nn

14485 \@@_diagrams_render_diagram:nnnn

14486 {

14487 \@@_if_option:nF

14488 { frozenCache }

14489 {

14490 \sys_shell_now:n

14491 {

14492 if~!~test~-e~#2.source~
14493 | |~1'~diff~#1~#2.source;
14494 then~

419



14495 (#3);

14496 cp~#1~#2.source;
14497 fi

14498 }

14499 \exp_args:NNnV

14500 \exp_last_unbraced:No
14501 \markdownRendererImage
14502 {

14503 { #4

14504 {#2 }

14505 {#2 }

14506 }

14507 \1_0@@_diagrams_caption_tl
14508 }

14509 ¥

Use the prop \g_markdown_diagrams_infostrings_prop to determine how the
code with a given infostring should be processed and routed to the token renderer
prototype(s) for images.

14510 \prop_new:N

14511 \g_markdown_diagrams_infostrings_prop

If we know a processing function for a given infostring, use it.

14512 \@@_setup:n

14513 {

14514 rendererPrototypes = {

14515 inputFencedCode = {

14516 \prop_get :NnNTF

14517 \g_markdown_diagrams_infostrings_prop
14518 {#2 %

14519 \1_tmpa_tl

14520 {

14521 \cs_set:NV

14522 \@@_diagrams_infostrings_current:n
14523 \1_tmpa_t1

14524 \@@_diagrams_infostrings_current:n
14525 {#1 2

14526 }

Otherwise, use the previous fenced code token renderer prototype.

14527 {

14528 \@@_diagrams_previous_fenced_code:nnn
14529 {#1 }

14530 {#2 3}

14531 {#3 }

14532 }

14533 },

14534 },

420



14535 }

14536 \cs_generate_variant:Nn
14537 \cs_set:Nn
14538 { NV 3

Typeset fenced code with infostring dot using the command dot from the package
Graphviz.

14539 \cs_set:Nn

14540 \@@_diagrams_infostrings_current:n
14541 {

14542 \tl_set:Nn

14543 \1_tmpb_tl

14544 { dot~-T }

14545 \tl_put_right:NV

14546 \1_tmpb_tl

14547 \1_0@_diagrams_format_tl

14548 \tl_put_right:Nn

14549 \1_tmpb_tl

14550 { ~-o~#1. }

14551 \tl_put_right:NV

14552 \1_tmpb_tl

14553 \1_@Q@_diagrams_format_tl

14554 \tl_put_right:Nn

14555 \1_tmpb_tl

14556 {-~#1}

For the SVG format, use Inkscape to convert the resulting image to PDF.
14557 \str_if_eq:VnT

14558 \1_0@_diagrams_format_tl

14559 { svg }

14560 {

14561 \tl_put_right:Nn

14562 \1_tmpb_tl

14563 { ;~inkscape~#1. }

14564 \tl_put_right:NV

14565 \1_tmpb_t1

14566 \1_@Q@_diagrams_format_tl
14567 \tl_put_right:Nn

14568 \1_tmpb_tl

14569 { ~--export-area-drawing~--export-dpi=300~-o~#1.pdf }
14570 }

14571 \@@_diagrams_render_diagram:nnVn
14572 {#1 3}

14573 { #1.pdf }

14574 \1_tmpb_tl

14575 { Graphviz~image }

14576 }

14577 \cs_generate_variant:Nn

421



14578 \@@_diagrams_render_diagram:nnnn

14579 { onVn }

14580 \@@_t1_set_from_cs:NNn

14581 \1_tmpa_tl

14582 \@@_diagrams_infostrings_current:n
14583 {11}

14584 \prop_gput :NnV

14585 \g_markdown_diagrams_infostrings_prop
14586 { dot }

14587 \1_tmpa_tl

Typeset fenced code with infostring mermaid using the command mmdc from the
npm package @mermaid-js/mermaid-cli. The exact command can be configured
by redefining or appending to the \g_00_diagrams_mmdc_command_t1 token list or
by redefining the \mmdcCommand macro. Unlike the token list, the macro can be
redefined even before loading the Markdown package.

14588 \tl_new:N

14589 \g_00_diagrams_mmdc_command_tl
14590 \tl_gset:Nn

14591 \g_0@_diagrams_mmdc_command_t1
14592 { mmdc }

14593 \cs_if_free:NT

14594 \mmdcCommand

14595 {

14596 \cs_new:Npn

14597 \mmdcCommand

14598 {

14599 \tl_use:N

14600 \g_00_diagrams_mmdc_command_tl
14601 }

14602 }

14603 \cs_set:Nn

14604 \@@_diagrams_infostrings_current:n
14605 {

14606 \tl_set:Nx

14607 \1_tmpb_tl

14608 { \mmdcCommand }

14609 \tl_put_right:Nn

14610 \1_tmpb_tl

14611 { ~--pdfFit~-i~#1~-o~#1.pdf }
14612 \@@_diagrams_render_diagram:nnVn
14613 {#1 3}

14614 { #1.pdf }

14615 \1_tmpb_tl

14616 { Mermaid~image }

14617 }

14618 \@@_t1_set_from_cs:NNn

422



14619 \1_tmpa_tl

14620 \@@_diagrams_infostrings_current:n
14621 {11}

14622 \prop_gput : NnV

14623 \g_markdown_diagrams_infostrings_prop
14624 { mermaid }

14625 \1_tmpa_tl

Typeset fenced code with infostring plantuml using the command plantuml from
the package PlantUML.

14626 \regex_const:Nn

14627 \c_00@_diagrams_filename_suffix_regex
14628 {N\N. [T %% 3

14629 \cs_set:Nn

14630 \@@_diagrams_infostrings_current:n
14631 {

Use the output format provided by the user.

14632 \tl_set:Nn

14633 \1_tmpa_t1

14634 {#1}

14635 \regex_replace_once:NxN

14636 \c_00_diagrams_filename_suffix_regex
14637 {

14638 .

14639 \tl_use:N

14640 \1_0@_diagrams_format_tl
14641 ¥

14642 \1_tmpa_tl

14643 \tl_set:Nn

14644 \1_tmpb_t1

14645 { plantuml~-t }

14646 \tl_put_right:NV

14647 \1_tmpb_tl

14648 \1__markdown_diagrams_format_tl
14649 \tl_put_right:Nn

14650 \1_tmpb_t1

14651 {-#1 1}

For the SVG format, use Inkscape to convert the resulting image to PDF.
14652 \str_if_eq:VnT

14653 \1_0@_diagrams_format_tl

14654 { svg }

14655 {

14656 \tl_put_right:Nn

14657 \1_tmpb_tl

14658 { ;~inkscape~ }

14659 \tl_put_right:NV

423



14660 \1_tmpb_tl

14661 \1_tmpa_tl

14662 \tl_put_right:Nn

14663 \1_tmpb_t1l

14664 { ~--export-area-drawing~--export-dpi=300~-o~ }
14665 \tl_set:Nn

14666 \1_tmpa_tl

14667 {#1 3}

14668 \regex_replace_once:NnN

14669 \c_0Q@_diagrams_filename_suffix_regex
14670 { .pdf }

14671 \1_tmpa_tl

14672 \tl_put_right:NV

14673 \1_tmpb_t1

14674 \1_tmpa_tl

14675 }

14676 \@@_diagrams_render_diagram:nVVn
14677 {#1 3}

14678 \1_tmpa_tl

14679 \1_tmpb_t1

14680 { PlantUML~image }

14681 }

14682 \cs_generate_variant:Nn

14683 \@@_diagrams_render_diagram:nnnn
14684 { nVVn }

14685 \cs_generate_variant:Nn

14686 \regex_replace_once:NnN

14687 { NxN }

14688 \@@_t1_set_from_cs:NNn

14689 \1_tmpa_tl

14690 \@@_diagrams_infostrings_current:n
14691 {11}

14692 \prop_gput :NnV

14693 \g_markdown_diagrams_infostrings_prop
14694 { plantuml }

14695 \1_tmpa_tl

14696  }

We locally change the category code of percent signs, so that we can use them in the
shell code:

14697 \group_begin:

14698 \char_set_catcode_other:N \J%

The witiko/graphicx/http theme stores the previous definition of the image token
renderer prototype:

14699 \prop_gput :Nnn
14700 \g_0@_plain_tex_built_in_themes_prop
14701 { witiko / graphicx / http }

424



14702 {

14703 \cs_set_eq:NN
14704 \@@_graphicx_http_previous_definition:nnnn
14705 \markdownRendererImagePrototype

We define variables and functions to enumerate the images for caching and to store
the pathname of the file containing the pathname of the downloaded image file.

14706 \int_new:N

14707 \g_0Q@_graphicx_http_image_number_int
14708 \int_gset:Nn

14709 \g_0@_graphicx_http_image_number_int
14710 {0}

14711 \cs_new:Nn

14712 \@@_graphicx_http_filename:

14713 {

14714 \markdownOptionCacheDir

14715 / witiko_graphicx_http .

14716 \int_use:N

14717 \g_00@_graphicx_http_image_number_int
14718 }

We define a function that will receive two arguments that correspond to the URL of
the online image and to the pathname, where the online image should be downloaded.
The function produces a shell command that tries to downloads the online image to
the pathname.

14719 \cs_new:Nn

14720 \@@_graphicx_http_download:nn
14721 {

14722 wget~-0~#2~#1~

14723 | | ~curl~--location~-o~#2~#1~
14724 | | ~rm~-f~#2

14725 }

We redefine the image token renderer prototype, so that it tries to download an
online image.

14726 \str_new:N

14727 \1_Q@_graphicx_http_filename_str
14728 \ior_new:N

14729 \g_00@_graphicx_http_filename_ior
14730 \markdownSetup {

14731 rendererPrototypes = {

14732 image = {

14733 \@@_if_option:nF

14734 { frozenCache }

14735 {

The image will be downloaded only if the image URL has the http or https protocols
and the frozenCache plain TEX option is disabled:

425



14736
14737
14738
14739
14740

\sys_shell_now:e
{
mkdir~-p~" \markdownOptionCacheDir ";
if~printf~'%s'~"#3"~|~grep~-q~-E~'"https?:';
then~

The image will be downloaded to the pathname cacheDir/{(the MD5 digest of the
image URL).(the suffix of the image URL):

14741
14742
14743
14744
14745
14746

The
14747
14748
14749
14750
14751
14752
14753
14754

OUTPUT_PREFIX=" \markdownOptionCacheDir ";
OUTPUT_BODY="$ (printf~"'%s'~"'#3'
| ~md5sum~ | ~cut~-d'~'~-f1)";
OUTPUT_SUFFIX="$(printf~'%s'~'#3"
|~sed~'s/.x[.1//")";
OUTPUT="$0UTPUT_PREFIX/$0UTPUT_BODY.$0UTPUT_SUFFIX";

image will be downloaded only if it has not already been downloaded:

if~!~[~-e~"$0UTPUT"~];
then~
\@@_graphicx_http_download:nn
{ '#3' }
{ "$0UTPUT" } ;
printf~'Ys'~"$0UTPUT" ~
>~" \@@_graphicx_http_filename: ";
fi;

If the image does not have the http or https protocols or the image has already been
downloaded, the URL will be stored as-is:

14755
14756
14757
14758
14759
14760

else~
printf~'Ys'~'#3'~
>~" \@@_graphicx_http_filename: ";
fi
}
}

We load the pathname of the downloaded image and we typeset the image using the
previous definition of the image renderer prototype:

14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772

\ior_open:Ne
\g_0@_graphicx_http_filename_ior
{ \@@_graphicx_http_filename: }
\ior_str_get:NN
\g_0@_graphicx_http_filename_ior
\1_0@_graphicx_http_filename_str
\ior_close:N
\g_0@_graphicx_http_filename_ior
\@@_graphicx_http_previous_definition:nnVn
{#1}
{#2}
\1_0Q@_graphicx_http_filename_str

426



14773 {#4 %}

14774 \int_gincr:N

14775 \g_0@_graphicx_http_image_number_int
14776 }

14777 }

14778 }

14779 \cs_generate_variant:Nn

14780 \ior_open:Nn

14781 { Ne }

14782 \cs_generate_variant:Nn

14783 \@@_graphicx_http_previous_definition:nnnn
14784 { nnVn }

14785  }

14786 \group_end:

The witiko/tilde theme redefines the tilde token renderer prototype, so that it
expands to a non-breaking space:

14787 \prop_gput :Nnn

14788 \g_0@_plain_tex_built_in_themes_prop

14789 { witiko / tilde }

14790  {

14791 \markdownSetup {

14792 rendererPrototypes = {
14793 tilde = {~},

14794 },

14795 }

14796  }

The themes witiko/example/foo and witiko/example/bar are supposed to be
used in code examples. They don’t do anything.

14797 \clist_map_inline:nn

14798 { foo, bar }

14799  {

14800 \prop_gput :Nnn

14801 \g_0@_plain_tex_built_in_themes_prop

14802 { witiko / example / #1 }

14803 {

14804 \markdownWarning

14805 {

14806 The~theme~witiko/example/#1~is~supposed~to~be~used~in~code~
14807 examples.~Using~it~in~actual~code~has~no~effect,~except~
14808 this~warning~message,~and~is~usually~a~mistake.

14809 +

14810 }

14811}

14812 \ExplSyntax0ff

427



The witiko/markdown/defaults plain TEX theme provides default definitions for
token renderer prototypes. See Section 3.2.3 for the actual definitions.

3.2.3 Token Renderer Prototypes

The following definitions should be considered placeholder.

14813 \def\markdownRendererInterblockSeparatorPrototype{\par}ty
14814 \def\markdownRendererParagraphSeparatorPrototype{’
14815 \markdownRendererInterblockSeparator}

14816 \def\markdownRendererHardLineBreakPrototype{\hfil\break},
14817 \def\markdownRendererSoftLineBreakPrototype{ 1}/

14818 \let\markdownRendererEllipsisPrototype\dots

14819 \def\markdownRendererNbspPrototype{~}/

14820 \def\markdownRendererLeftBracePrototype{\char \{}/
14821 \def\markdownRendererRightBracePrototype{\char "\}}/
14822 \def\markdownRendererDollarSignPrototype{\char $}/,
14823 \def\markdownRendererPercentSignPrototype{\char \%}%
14824 \def\markdownRendererAmpersandPrototype{\&}%

14825 \def\markdownRendererUnderscorePrototype{\char _}J
14826 \def\markdownRendererHashPrototype{\char " \#}},

14827 \def\markdownRendererCircumflexPrototype{\char "}/,
14828 \def\markdownRendererBackslashPrototype{\char \\}/,
14829 \def\markdownRendererTildePrototype{\char ~}/

14830 \def\markdownRendererPipePrototype{ |}’

14831 \def\markdownRendererCodeSpanPrototype#1{{\tt#1}1}/
14832 \def\markdownRendererLinkPrototype#1#2#3#4{#23}/,

14833 \def\markdownRendererContentBlockPrototype#1#2#3#4{%

14834 \markdownInput{#3}}/
14835 \def\markdownRendererContentBlockOnlineImagePrototype{’
14836 \markdownRendererImagel}

14837 \def\markdownRendererContentBlockCodePrototype#1#2#3#4#5{/,
14838 \markdownRendererInputFencedCode{#3}{#2}{#2}}/
14839 \def\markdownRendererImagePrototype#1#2#3#4{#2},
14840 \def\markdownRendererUlBeginPrototype{}%

14841 \def\markdownRendererUlBeginTightPrototype{1}/
14842 \def\markdownRendererUlItemPrototype{}%

14843 \def\markdownRendererUlItemEndPrototype{}%

14844 \def\markdownRendererUlEndPrototype{}/

14845 \def\markdownRendererUlEndTightPrototype{}%

14846 \def\markdownRenderer0lBeginPrototype{}%

14847 \def\markdownRenderer01BeginTightPrototype{}%
14848 \def\markdownRendererFancyOlBeginPrototype#1#2{%

14849 \markdownRenderer(0lBegin},
14850 \def\markdownRendererFancyOlBeginTightPrototype#1#2{/
14851 \markdownRenderer0l1BeginTight},

14852 \def\markdownRenderer0lItemPrototype{}%
14853 \def\markdownRenderer0lItemWithNumberPrototype#1{}%

428



14854 \def\markdownRenderer0lItemEndPrototype{}%

14855 \def\markdownRendererFancy0lItemPrototype{\markdownRenderer0lItem}
14856 \def\markdownRendererFancy0OlItemWithNumberPrototype{’

14857 \markdownRendererOlItemWithNumberl}y

14858 \def\markdownRendererFancy0lItemEndPrototype{}/

14859 \def\markdownRenderer0lEndPrototype{3}/%

14860 \def\markdownRenderer01EndTightPrototype{}’

14861 \def\markdownRendererFancyOlEndPrototype{\markdownRenderer01End}}
14862 \def\markdownRendererFancyOlEndTightPrototype{’

14863  \markdownRenderer0lEndTight}/,

14864 \def\markdownRendererD1BeginPrototype{}%

14865 \def\markdownRendererD1BeginTightPrototype{}%

14866 \def\markdownRendererDl1ItemPrototype#1{#1}%

14867 \def\markdownRendererD1ItemEndPrototype{}%

14868 \def\markdownRendererD1DefinitionBeginPrototype{}/

14869 \def\markdownRendererDlDefinitionEndPrototype{\par}t’

14870 \def\markdownRendererD1EndPrototype{}’

14871 \def\markdownRendererD1EndTightPrototype{}’

14872 \def \markdownRendererEmphasisPrototype#1{{\it#1}}/

14873 \def\markdownRendererStrongEmphasisPrototype#1{{\bf#1}1}
14874 \def\markdownRendererBlockQuoteBeginPrototype{\begingroup\itl}y
14875 \def\markdownRendererBlockQuoteEndPrototype{\endgroup\par}ti
14876 \def\markdownRendererLineBlockBeginPrototype{\begingroup\parindent=0pt}/
14877 \def\markdownRendererLineBlockEndPrototype{\endgroupl}’

14878 \def\markdownRendererInputVerbatimPrototype#1{/,

14879 \par{\tt\input#1i\relax{}}\parl}’

14880 \def\markdownRendererInputFencedCodePrototype#1#2#3{/,

14881 \markdownRendererInputVerbatim{#13}}/

14882 \def\markdownRendererHeadingOnePrototype#1{#1}}

14883 \def\markdownRendererHeadingTwoPrototype#1{#13}J,

14884 \def\markdownRendererHeadingThreePrototype#1{#1}%

14885 \def\markdownRendererHeadingFourPrototype#1{#1}/

14886 \def\markdownRendererHeadingFivePrototype#1{#1}J

14887 \def\markdownRendererHeadingSixPrototype#1{#1}/,

14888 \def\markdownRendererThematicBreakPrototype{}/

14889 \def\markdownRendererNotePrototype#1{#1}J,

14890 \def\markdownRendererCitePrototype#1{}/

14891 \def\markdownRendererTextCitePrototype#1{}%

14892 \def\markdownRendererTickedBoxPrototype{[X]1}/

14893 \def\markdownRendererHalfTickedBoxPrototype{[/]}%

14894 \def\markdownRendererUntickedBoxPrototype{[ 1}/

14895 \def\markdownRendererStrikeThroughPrototype#1{#1}/,

14896 \def\markdownRendererSuperscriptPrototype#1{#1}/

14897 \def\markdownRendererSubscriptPrototype#1{#1}}

14898 \def\markdownRendererDisplayMathPrototype#1{$$#1$$}7

14899 \def\markdownRendererInlineMathPrototype#1{$#1$}%

14900 \ExplSyntaxOn

429



14901 \cs_gset:Npn

14902 \markdownRendererHeaderAttributeContextBeginPrototype
14903 {

14904 \group_begin:

14905 \color_group_begin:

14906  }

14907 \cs_gset:Npn

14908 \markdownRendererHeaderAttributeContextEndPrototype

14909 |

14910 \color_group_end:

14911 \group_end:

14912}

14913 \cs_gset_eq:NN

14914 \markdownRendererBracketedSpanAttributeContextBeginPrototype
14915  \markdownRendererHeaderAttributeContextBeginPrototype
11916 \cs_gset_eq:NN

14917 \markdownRendererBracketedSpanAttributeContextEndPrototype
14918 \markdownRendererHeaderAttributeContextEndPrototype

14919 \cs_gset_eq:NN

14920 \markdownRendererFencedDivAttributeContextBeginPrototype
14921 \markdownRendererHeaderAttributeContextBeginPrototype
14922 \cs_gset_eq:NN

14923 \markdownRendererFencedDivAttributeContextEndPrototype
14924 \markdownRendererHeaderAttributeContextEndPrototype

14925 \cs_gset_eq:NN

14926 \markdownRendererFencedCodeAttributeContextBeginPrototype
14927 \markdownRendererHeaderAttributeContextBeginPrototype
14928 \cs_gset_eq:NN

14929 \markdownRendererFencedCodeAttributeContextEndPrototype
14930 \markdownRendererHeaderAttributeContextEndPrototype

14931 \cs_gset :Npn

14932 \markdownRendererReplacementCharacterPrototype

14933 { \codepoint_str_generate:n { fffd } }

14934 \ExplSyntaxOff

14935 \def\markdownRendererSectionBeginPrototype{}%

14936 \def\markdownRendererSectionEndPrototype{}%

14937 \ExplSyntaxOn

14938 \cs_gset:Npn

14939 \markdownRendererWarningPrototype
14940  #1#2#3#4

14941 {

14942 \tl_set:Nn

14943 \1_tmpa_tl

14944 {#2 }

14945 \tl_if_empty:nF

14946 { #4 3}

14947 {

430



14948 \tl_put_right:Nn

14949 \1_tmpa_tl

14950 { \iow_newline: #4 }
14951 }

14952 \exp_args:NV

14953 \markdownWarning

14954 \1_tmpa_tl

14955  }

14956 \ExplSyntax0ff
14957 \def\markdownRendererErrorPrototype#1#2#3#4{/,
14958 \markdownError{#2}{#4}}/,

3.2.3.1 Raw Attributes

In the raw block and inline raw span renderer prototypes, execute the content
with TeX when the raw attribute is tex, display the content as markdown when the
raw attribute is md, and ignore the content otherwise.

14959 \ExplSyntaxOn

14960 \cs_new:Nn

14961 \@@_plain_tex_default_input_raw_inline:nn
14962 {

14963 \str_case:nn

14964 {#2 }

14965 {

14966 {md } { \markdownInput{#1} }

14967 { tex } { \markdownEscape{#1} \unskip }
14968 }

14969  }

14970 \cs_new:Nn
14971 \@@_plain_tex_default_input_raw_block:nn

14972 {

14973 \str_case:nn

14974 { #2 }

14975 {

14976 {md } { \markdownInput{#1} }
14977 { tex } { \markdownEscape{#1} }
14978 }

14979 }

14980 \cs_gset:Npn
14981 \markdownRendererInputRawInlinePrototype#1#2

14982 o

14983 \@@_plain_tex_default_input_raw_inline:nn
14984 {#1}

14985 {#2 7%

14986  }

14987 \cs_gset:Npn
14988  \markdownRendererInputRawBlockPrototype#1#2

431



14989 {

14990 \@@_plain_tex_default_input_raw_block:nn
14991 {#1}

14992 {#2 }

14993  }

14994 \ExplSyntax0ff

3.2.3.2 Simple YAML Metadata Renderer Prototypes
In this section, we implement the simple high-level interface for processing simple
YAML metadata using the key—value markdown/jekyllData. See also Section 2.2.6.1.
To keep track of the current type of structure we inhabit when we are traversing a
YAML document, we will maintain the \g_0@_jekyll_data_datatypes_seq stack.
At every step of the traversal, the stack will contain one of the following constants
at any position p:

\c_0@@_jekyll_data_sequence_tl The currently traversed branch of the YAML
document contains a sequence at depth p.

\c_00@_jekyll_data_mapping_tl The currently traversed branch of the YAML doc-
ument contains a mapping at depth p.

\c_@@_jekyll_data_scalar_tl The currently traversed branch of the YAML docu-
ment contains a scalar value at depth p.

14995 \ExplSyntaxOn

14996 \seq_new:N  \g_0@_jekyll_data_datatypes_seq

14997 \t1l_const:Nn \c_@@_jekyll data_sequence_tl { sequence }
14998 \t1l_const:Nn \c_0@_jekyll_data_mapping_tl { mapping 1}
14999 \tl_const:Nn \c_Q@_jekyll_data_scalar_tl { scalar }

To keep track of our current place when we are traversing a YAML document, we will
maintain the \g_0@_jekyll_data_wildcard_absolute_address_seq stack of keys
using the \@@_jekyll_data_push_address_segment:n macro.

15000 \seq_new:N \g_0@_jekyll_data_wildcard_absolute_address_seq

1

15002  {

15003 \seq_if_empty:NF

15004 \g_0@_jekyll_data_datatypes_seq
15005 {

15006 \seq_get_right:NN

15007 \g_00_jekyll data_datatypes_seq
15008 \1_tmpa_tl

If we are currently in a sequence, we will put an asterisk (*) instead of a key
into \g_0@_jekyll data_wildcard_absolute_address_seq to make it represent a
wildcard. Keeping a wildcard instead of a precise address makes it easy for the users

432



to react to any item of a sequence regardless of how many there are, which can often
be useful.

09 \str_if_eq:NNTF

[y

50

15010 \1_tmpa_tl

15011 \c_0@_jekyll_data_sequence_tl

15012 {

15013 \seq_put_right:Nn

15014 \g_0@_jekyll_data_wildcard_absolute_address_seq
15015 {*x }

15016 ¥

15017 {

15018 \seq_put_right:Nn

15019 \g_0@_jekyll_data_wildcard_absolute_address_seq
15020 {#1}

15021 ¥

15022 }

15023}

Out of \g_0@_jekyll_data_wildcard_absolute_address_seq, we will construct
the following two token lists:

\g_@@_jekyll_data_wildcard_absolute_address_tl An absolute wildcard: The
wildcard from the root of the document prefixed with a slash (/) with individual
keys and asterisks also delimited by slashes. Allows the users to react to complex
context-sensitive structures with ease.

For example, the name key in the following YAML document would correspond
to the /*/person/name absolute wildcard:

[{person: {name: Elon, surname: Musk}}]

\g_0@_jekyll_data_wildcard_relative_address_tl A relative wildcard: The
rightmost segment of the wildcard. Allows the users to react to simple context-
free structures.

For example, the name key in the following YAML document would correspond
to the name relative wildcard:

[{person: {name: Elon, surname: Musk}}]

We will construct \g_0@_jekyll data_wildcard_absolute_address_tl using
the \@@_jekyll_data_concatenate_address:NN macro and we will construct both
token lists using the \@@_jekyll_data_update_address_tls: macro.

15024 \tl_new:N \g_0@_jekyll_data_wildcard_absolute_address_tl
15025 \tl_new:N \g_0@_jekyll data_wildcard_relative_address_tl
15026 \cs_new:Nn \Q@@_jekyll_data_concatenate_address:NN

433



7 A

8 \seq_pop_left:NN #1 \1_tmpa_tl

9 \tl_set:Nx #2 { / \seq_use:Nn #1 { / } }
0 \seq_put_left:NV #1 \1_tmpa_tl

1}

2 \cs_new:Nn \@@_jekyll_data_update_address_tls:
3 {
1

5

= =

\@@_jekyll_data_concatenate_address:NN
\g_00_jekyll data_wildcard_absolute_address_seq
6 \g_00@_jekyll data_wildcard_absolute_address_tl
7 \seq_get_right:NN
8 \g_00_jekyll_data_wildcard_absolute_address_seq
9 \g_0@_jekyll_data_wildcard_relative_address_tl
0o}
To make sure that the stacks and token lists stay in sync, we will use the
\@@_jekyll_data_push:nN and \@@_jekyll_data_pop: macros.

—_

= e e

G Gy
(SIS, SIS, NG, BNG; BIES) BN G; BN, SIS BNG; BING; SIS, BNe; SN |

—_

\seq_pop_right:NN

6 \g_00_jekyll data_datatypes_seq

7 \1_tmpa_tl

8 \Q@_jekyll_data_update_address_tls:

9 }

To set a single key—value, we will use the \@@_jekyll data_set_keyval_known:nn
macro, ignoring unknown keys. To set key—values for both absolute and relative
wildcards, we will use the \@@_jekyll_data_set_keyvals_known:nn macro.

5042 {

15043 \@@_jekyll_data_push_address_segment:n
15044 {#1}

15045 \seq_put_right:NV

15046 \g_00_jekyll data_datatypes_seq

15047 #2

15048 \Q@_jekyll_data_update_address_tls:
15049  }

15050 \cs_new:Nn \@@_jekyll_data_pop:

15051 {

15052 \seq_pop_right:NN

15053 \g_00_jekyll_data_wildcard_absolute_address_seq
15054 \1_tmpa_tl

5055

50

50

50

50

15060 \cs_new:Nn \Q@_jekyll_data_set_keyval_known:nn

0
15061 {
15062 \keys_set_known:nn
15063 { markdown/jekyllData }
15064 {{#1}ry={# 1%}
15065
15066 \cs_generate_variant:Nn
5(

)67 \@@_jekyll_data_set_keyval_known:nn

434



68 { Vn }
69 \cs_new:Nn \@@_jekyll_data_set_keyvals_known:nn

50

50

15070  {

15071 \@@_jekyll_data_push:nN

15072 { #1 %

15073 \c_0Q@_jekyll_data_scalar_tl

15074 \Q@_jekyll_data_set_keyval_known:Vn

15075 \g_0@_jekyll_data_wildcard_absolute_address_tl
15076 {#2 %

15077 \@@_jekyll_data_set_keyval_known:Vn

15078 \g_00_jekyll_data_wildcard_relative_address_tl
15079 {#2 }

15080 \@@_jekyll_data_pop:

15081  }

Finally, we will register our macros as token renderer prototypes to be able to react
to the traversal of a YAML document.

5082 \def\markdownRendererJekyllDataSequenceBeginPrototype#1#2{
5083  \@@_jekyll_data_push:nN

5084 {#1}

5085 \c_0Q@_jekyll_data_sequence_tl

5086 }

5087 \def\markdownRendererJekyllDataMappingBeginPrototype#1#2{
5088  \@@_jekyll_data_push:nN

5089 {#1}

5090 \c_0@_jekyll_data_mapping_tl

5091 }

5092 \def\markdownRendererJekyllDataSequenceEndPrototype{

5093  \@@_jekyll_data_pop:

5094 }

5095 \def\markdownRendererJekyllDataMappingEndPrototype{
5096  \@@_jekyll_data_pop:

5097 }

5098 \def\markdownRendererJekyllDataBooleanPrototype#1#2{
5099  \@Q@_jekyll data_set_keyvals_known:nn

5100 {#1 1%

5101 {#2 }

5102 }

5103 \def\markdownRendererJekyllDataEmptyPrototype#1{}
5104 \def\markdownRendererJekyllDataNumberPrototype#1#2{
5105 \@@_jekyll_data_set_keyvals_known:nn

5106 {#1 3%

107 {#2 %

108 }

We will process all string scalar values assuming that they may contain markdown
markup and are intended for typesetting.
15109 \def\markdownRendererJekyllDataProgrammaticStringPrototype#1#2{}

435



15110 \def\markdownRendererJekyllDataTypographicStringPrototype#1#2{
15111 \@@_jekyll_data_set_keyvals_known:nn

15112 { #1 %}
15113 {#2 }
15114 }

15115 \ExplSyntax0ff

3.2.3.3 Complex YAML Metadata Renderer Prototypes

In this section, we implement the high-level interface for routing complex YAML
metadata to expl3 key—values using the option jekyllDataKeyValue=(module). See
also Section 2.2.6.1.
15116 \ExplSyntaxOn
15117 \@@_with_various_cases:nn
15118  { jekyllDataKeyValue }

15119 o

15120 \keys_define:nn

15121 { markdown/options }

15122 {

15123 #1 .code:n = {

15124 \@@_route_jekyll_data_to_key_values:n
15125 { ##1 }

15126 },

When no {module) has been provided, assume that the YAML metadata specify
absolute paths to key—values.

15127 #1 .default:n = { },

15128 }

15129  }

15130 \seq_new:N

15131 \1_0@_jekyll_data_current_position_seq
15132 \tl_new:N

15133 \1_0@_jekyll data_current_position_tl
15134 \cs_new:Nn

15135 \@@_route_jekyll_data_to_key_values:n

15136 {

15137 \markdownSetup

15138 {

15139 renderers = {

15140 jekyllData(Sequence|Mapping)Begin = {
15141 \bool_lazy_and:nnTF

15142 {

15143 \seq_if_empty_p:N

15144 \1_@@_jekyll data_current_position_seq
15145 }

15146 {

15147 \str_if_eq_p:nn

436



15148 { ##1 }

15149 { null }

15150 }

15151 {

15152 \tl_if_empty:nF

15153 { #1 %}

15154 {

15155 \seq_put_right:Nn

15156 \1_0@_jekyll_data_current_position_seq
15157 {#1 3}

15158 }

15159 }

15160 {

15161 \seq_put_right:Nn

15162 \1_@@_jekyll data_current_position_seq
15163 { ##1 }

15164 ¥

15165 },

15166 jekyllData(Sequence|Mapping)End = {

15167 \seq_pop_right:NN

15168 \1_@@_jekyll data_current_position_seq
15169 \1_tmpa_tl

15170 },

For every YAML key path.to.{key) with a value of type {non-string type), set the
key {non-string type) of the key-value (module)/path/to/{key) if it is known and
the key (key) of the key—value {(module)y/path/to otherwise. (Non-string type) is
one of boolean, number, and empty.

15171 jekyllDataBoolean = {

15172 \tl_set:Nx

15173 \1_0@@_jekyll_data_current_position_tl

15174 {

15175 \seq_use:Nn

15176 \1_@@_jekyll data_current_position_seq
15177 {77

15178 }

15179 \keys_if_exist:VnTF

15180 \1_0@_jekyll_data_current_position_tl

15181 { ##1 / boolean }

15182 {

15183 \Q@@_keys_set:xn

15184 {

15185 \tl_use:N

15186 \1_0@_jekyll_data_current_position_tl
15187 / ##1 / boolean

15188 }

15189 { ##2 }

437



15190 }

15191 {

15192 \@@_keys_set:xn

15193 {

15194 \tl_use:N

15195 \1_0@_jekyll_data_current_position_tl
15196 / ##1

15197 }

15198 { ##2 }

15199 }

15200 },

15201 jekyllDataNumber = {

15202 \tl_set:Nx

15203 \1_0@_jekyll_data_current_position_tl
15204 {

15205 \seq_use:Nn

15206 \1_0@@_jekyll_data_current_position_seq
15207 {/17

15208 }

15209 \keys_if_exist:VnTF

15210 \1_@@_jekyll data_current_position_tl
15211 { ##1 / number }

15212 {

15213 \@@_keys_set:xn

15214 {

15215 \tl_use:N

15216 \1_0@_jekyll_data_current_position_tl
15217 / ##1 / number

15218 }

15219 { ##2 }

15220 }

15221 {

15222 \Q@_keys_set:xn

15223 {

15224 \tl_use:N

15225 \1_0@_jekyll data_current_position_tl
15226 / ##1

15227 }

15228 { ##2 }

15229 }

15230 1,

For the {non-string type) of empty, no value is passed to the key—value. Therefore,
a default value should always be defined for nullable keys using the key property
.default:n.

231 jekyllDataEmpty = {

32 \tl_set:Nx

1

ot
NN

ot

438



J—

}
{
\keys_set:Vn
\1_@@_jekyll data_current_position_tl
{ ##1 }

—
—_

no

It

15233 \1_0@_jekyll_data_current_position_tl
15234 {

15235 \seq_use:Nn

15236 \1_@@_jekyll data_current_position_seq
15237 {/1%

15238 }

15239 \keys_if_exist:VnTF

15240 \1_0@_jekyll_data_current_position_tl
15241 { ##1 / empty }

15242 {

15243 \keys_set:xn

15244 {

15245 \tl_use:N

15246 \1_0@_jekyll_data_current_position_tl
15247 / ##1

15248 }

15249 { empty }

5

5

5

5

5

5

5

v Ot Ut Ot Ot Ot Ut

R O O

= e e

1,

For every YAML key path.to.(key) with a value of type string, set
the keys typographicString and programmaticString of the key—value
{module)/path/to/{key) if they are known with the typographic and program-
matic strings of the value, respectively. Furthermore, set the key (key) of the
key—value {module)/path/to with the typographic string of the value unless the
key typographicString is known. If the key programmaticString is known, only
set the key (key) if it is known. In contrast, if neither typographicString nor
programmaticString are known, set (key) normally, i.e. regardless of whether it is
known or unknown.

15257 jekyllDataTypographicString = {

15258 \tl_set:Nx

15259 \1_@@_jekyll_data_current_position_tl
15260 {

15261 \seq_use:Nn

15262 \1_00@_jekyll_data_current_position_seq
15263 {/7

15264 }

15265 \keys_if_exist:VnTF

15266 \1_0@_jekyll_data_current_position_tl
15267 { ##1 / typographicString }

15268 {

439



15269 \Q@_keys_set:xn

15270 {

15271 \tl_use:N

15272 \1_0@_jekyll data_current_position_tl
15273 / ##1 / typographicString

15274 }

15275 { ##2 }

15276 }

15277 {

15278 \keys_if_exist:VnTF

15279 \1_@@_jekyll_data_current_position_tl
15280 { ##1 / programmaticString }

15281 {

15282 \@@_keys_set_known:xn

15283 {

15284 \tl_use:N

15285 \1_0@_jekyll_data_current_position_tl
15286 / ##1

15287 }

15288 { ##2 }

15289 ¥

15290 {

15291 \@@_keys_set:xn

15292 {

15293 \tl_use:N

15294 \1_0@_jekyll_data_current_position_tl
15295 / ##1

15296 }

15297 { ##2 }

15298 }

15299 }

15300 },

15301 jekyllDataProgrammaticString = {

15302 \tl_set:Nx

15303 \1_0@_jekyll_data_current_position_tl
15304 {

15305 \seq_use:Nn

15306 \1_@@_jekyll_data_current_position_seq
15307 {/1}7

15308 }

15309 \keys_if_exist:VnT

15310 \1_@@_jekyll data_current_position_tl
15311 { ##1 / programmaticString }

15312 {

15313 \@@_keys_set:xn

15314 {

15315 \tl_use:N

440



15316 \1_0@_jekyll_data_current_position_tl
15317 / ##1 / programmaticString
15318 }

15319 { ##2 }

15320 ¥

15321 },

15322 },

15323 }

15324}

15325 \cs_new:Nn

15326 \@Q@_keys_set:nn

15327 {

15328 \keys_set:nn

15329 {17}

15330 {{#1}r={#1}}
15331 }

15332 \cs_new:Nn
15333 \@@_keys_set_known:nn

15334  {

15335 \keys_set_known:nn
15336 {1

15337 {{#1}r={#21}1}
15338  }

15339 \cs_generate_variant:Nn

15340  \@@_keys_set:nn

15341 { xn }

15342 \cs_generate_variant:Nn

15343 \QQ@_keys_set_known:nn

15344  { xn }

15345 \cs_generate_variant:Nn

15346 \keys_set:nn

15347 { xn, Vn }

15348 \prg_generate_conditional_variant:Nnn

15349 \keys_if_exist:nn

15350 { Vn }

15351 { T, TF }

15352 \ExplSyntax0ff

If plain TEX is the top layer, we load the witiko/markdown/defaults plain TEX
theme with the default definitions for token renderer prototypes unless the option
noDefaults has been enabled (see Section 2.2.2.3).
15353 \ExplSyntaxOn

15354 \str_if_eq:VVT

15355  \c_@@_top_layer_tl

15356 \c_@@_option_layer_plain_tex_tl

15357 {

15358 \use:c

441



15359 { ExplSyntaxOff }

15360 \@@_if_option:nF

15361 { noDefaults }

15362 {

15363 \@@_if_option:nTF

15364 { experimental }

15365 {

15366 \@@_setup:n

15367 { theme = witiko/markdown/defaults@experimental }
15368 }

15369 {

15370 \@Q_setup:n

15371 { theme = witiko/markdown/defaults }
15372 }

15373 }

15374 \use:c

15375 { ExplSyntaxOn }

15376}

15377 \ExplSyntax0ff

3.2.4 Lua Snippets

After the \markdownPrepareLuaOptions macro has been fully expanded, the
\markdownLuaOptions macro will expands to a Lua table that contains the plain
TEX options (see Section 2.2.2) in a format recognized by Lua (see Section 2.1.3).
15378 \ExplSyntaxOn

15379 \tl_new:N \g_@@_formatted_lua_options_tl

15380 \cs_new:Nn \@@_format_lua_options:

15381 {

15382 \tl_gclear:N

15383 \g_0@_formatted_lua_options_tl
15384 \seq_map_function:NN

15385 \g_0@_lua_options_seq

15386 \@@_format_lua_option:n

15387  }

15388 \cs_new:Nn \@@_format_lua_option:n
15389 o

15390 \@@_typecheck_option:n

15391 { #1 %

15392 \Q@_get_option_type:nN

15393 {#1}

15394 \1_tmpa_tl

15395 \bool_case_true:nF

15396 {

15397 {

15398 \str_if_eq_p:VV

442



15399 \1_tmpa_tl

15400 \c_0@_option_type_boolean_tl ||
15401 \str_if_eq_p:VV

15402 \1_tmpa_tl

15403 \c_0Q@_option_type_number_tl ||
15404 \str_if_eq_p:VV

15405 \1_tmpa_tl

15406 \c_0@_option_type_counter_tl
15407 }

15408 {

15409 \@@_get_option_value:nN

15410 {#1 13}

15411 \1_tmpa_tl

15412 \tl_gput_right:Nx

15413 \g_0Q@_formatted_lua_options_tl
15414 { #1~=~ \1_tmpa_tl ,~ }

15415 }

15416 {

15417 \str_if_eq_p:VV

15418 \1_tmpa_tl

15419 \c_0Q@_option_type_clist_tl

15420 }

15421 {

15422 \@@_get_option_value:nN

15423 {#1 3}

15424 \1_tmpa_tl

15425 \tl_gput_right:Nx

15426 \g_0@_formatted_lua_options_tl
15427 { #1~=~\c_left_brace_str }
15428 \clist_map_inline:Vn

15429 \1_tmpa_tl

15430 {

15431 \@@_lua_escape:xN

15432 { ##1 }

15433 \1_tmpb_t1

15434 \tl_gput_right:Nn

15435 \g_0@@_formatted_lua_options_tl
15436 {"3z

15437 \tl_gput_right:NV

15438 \g_0@_formatted_lua_options_tl
15439 \1_tmpb_t1

15440 \tl_gput_right:Nn

15441 \g_0@@_formatted_lua_options_tl
15442 {",~ 3z

15443 }

15444 \tl_gput_right:Nx

15445 \g_0@_formatted_lua_options_tl

443



15446 { \c_right_brace_str ,~ }
15447 }

15448 }

15449 {

15450 \@@_get_option_value:nN

15451 {#1}

15452 \1_tmpa_tl

15453 \@@_lua_escape:xN

15454 { \1_tmpa_tl }

15455 \1_tmpb_t1

15456 \tl_gput_right:Nn

15457 \g_00@_formatted_lua_options_tl
15458 { #1~=~ "}

15459 \tl_gput_right:NV

15460 \g_00@_formatted_lua_options_tl
15461 \1_tmpb_tl

15462 \tl_gput_right:Nn

15463 \g_0@_formatted_lua_options_tl
15464 {",~2

15465 ¥

15466}

15467 \cs_generate_variant:Nn
15468 \clist_map_inline:nn
15469  { Vn }

15470 \let

15471 \markdownPrepareLuaOptions
15472 \@@_format_lua_options:
15473 \def

15474 \markdownLuaOptions
15475 {

15476 {

15477 \g_00@_formatted_lua_options_tl
15478 }

15479 }

15480 \sys_if_engine_luatex:TF
15481 {

15482 \cs_new:Nn

15483 \@@_lua_escape:nN
15484 {

15485 \tl_set:Nx

15486 #2

15487 {

15488 \lua_escape:n
15489 {#1}

15490 }

15491 }

15492}

444



15493 {

15494 \regex_const:Nn

15495 \c_0@_lua_escape_regex
15496 { IN\\"'T }

15497 \cs_new:Nn

15498 \@@_lua_escape:nN

15499 {

15500 \tl_set:Nn

15501 #2

15502 {#1 %

15503 \regex_replace_all:NnN
15504 \c_0Q@_lua_escape_regex
15505 { \u { c_backslash_str } \0 }
15506 #2

15507 ¥

15508  }

15509 \cs_generate_variant:Nn

15510 \@@_lua_escape:nN

15511 { =N }

After the \markdownPrepareInputFilename macro has been fully expanded, the
\markdownInputFilename macro will expands to a Lua string that contains the
input filename passed as the first argument.

15512 \tl_new:N

15513 \markdownInputFilename

15514 \cs_new:Npn

15515  \markdownPrepareInputFilename
15516 #1

15517 {

15518 \@@_lua_escape:xN

15519 {#1 3%

15520 \markdownInputFilename
15521 \tl_gset:Nx

15522 \markdownInputFilename
15523 { " \markdownInputFilename " }
15524}

The \markdownPrepare macro contains the Lua code that is executed prior to any
conversion from markdown to plain TEX. It exposes the convert function for the
use by any further Lua code.

15525 \cs_new:Npn

15526  \markdownPrepare

15527 {

First, ensure that the cacheDir directory exists.
15528 local~1lfs = require("1lfs")

15529 local~options = \markdownLuaOptions

15530 if~not~1fs.isdir(options.cacheDir) then~

445



531 assert(lfs.mkdir (options.cacheDir))
32 end~

Next, load the markdown module and create a converter function using the plain TEX
options, which were serialized to a Lua table via the \markdownLuaOptions macro.
15533 local~md = require("markdown")

15534 local~convert = md.new(options)

15535}

The \markdownConvert macro contains the Lua code that is executed during the
conversion from markdown to plain TEX. It opens the input file, converts it, and
prints the conversion result.

5 \cs_new:Npn

7 \markdownConvert

s A

9 local~filename = \markdownInputFilename

0 local~file = assert(io.open(filename, "r"),

1 [[Could~not~open~file~"]] .. filename .. [["~for~reading]])

2 local~input = assert(file:read("*a"))

3 assert(file:close())

A print (convert (input))

5

}
46 \ExplSyntax0ff

The \markdownCleanup macro contains the Lua code that is executed after any
conversion from markdown to plain TEX.

15547 \def\markdownCleanup<{’

Remove the options.cacheDir directory if it is empty.

15548 if options.cacheDir then

15549 1fs.rmdir (options.cacheDir)
15550 end
15551 Yh

3.2.5 Buffering Block-Level Markdown Input

The macros \markdownInputFileStream and \markdownOutputFileStream contain
the number of the input and output file streams that will be used for the IO operations
of the package.

1

5552 \csname newread\endcsname\markdownInputFileStream
15553 \csname newwrite\endcsname\markdownOutputFileStream

The \markdownReadAndConvertTab macro contains the tab character literal.
54 \begingroup

55  \catcode \""I=12%

56 \gdef\markdownReadAndConvertTab{~ "I}/

57 \endgroup

15¢
15¢
15¢
15¢

446



The \markdownReadAndConvert macro is largely a rewrite of the KIEX 2¢
\filecontents macro to plain TEX.

15558 \begingroup

Make the newline and tab characters active and swap the character codes of the
backslash symbol (\) and the pipe symbol (|), so that we can use the backslash as
an ordinary character inside the macro definition. Likewise, swap the character codes
of the percent sign (%) and the ampersand (@), so that we can remove percent signs
from the beginning of lines when stripPercentSigns is enabled.

15559 \catcode \""M=13Y%

15560  \catcode \""I=13%

15561 \catcode™ |=0%

15562 \catcode \\=12%

15563 | catcode~©@=147,

15564 | catcode™ | %=120@

15565 | gdef ImarkdownReadAndConvert#1#2{Q
Ee

566 | begingroup@

If we are not reading markdown documents from the frozen cache, open the
inputTempFileName file for writing.

15567 |markdownIfOption{frozenCachel}{}{@

15568 | immediate|openout |markdownOutputFileStream@

15569 |markdownOptionInputTempFileName | relax@

0 |markdownInfo{@

1 Buffering block-level markdown input into the temporary @

2 input file "|markdownOptionInputTempFileName" and scanning @
3 for the closing token sequence "#1"}@
1

}e

Locally change the category of the special plain TEX characters to other in order to
prevent unwanted interpretation of the input. Change also the category of the space
character, so that we can retrieve it unaltered.

5 |def |do##1{|catcode ##1=12} |dospecials@

6 |catcode™| =12@

577 |markdownMakeOther@

ot Ot Ot Ot Ot

= e e

The \markdownReadAndConvertStripPercentSigns macro will process the individ-
ual lines of output, stipping away leading percent signs (%) when stripPercentSigns
is enabled. Notice the use of the comments (@) to ensure that the entire macro is at
a single line and therefore no (active) newline symbols ("~M) are produced.
78 | def ImarkdownReadAndConvertStripPercentSign##1{Q
79 |markdownIfOption{stripPercentSigns}{@
| if##17%0

| expandafter|expandafter|expandafter@

|ImarkdownReadAndConvertProcessLine@

lelse@

| expandafter|expandafter|expandafter@

= =

o v v Ov Ot Ot Ot

T
ot Qv gt gt Ot
= W N = O

447



15585 |markdownReadAndConvertProcessLine®

15586 |expandafter|expandafter|expandafter##1@
15587 [fie

15588 He

15589 | expandafter®@

15590 |markdownReadAndConvertProcessLine®@

15591 |expandafter##10

15592 }e

15593 }e

The \markdownReadAndConvertProcessLine macro will process the individual lines
of output. Notice the use of the comments (@) to ensure that the entire macro is at
a single line and therefore no (active) newline symbols ("~M) are produced.
15594 | def ImarkdownReadAndConvertProcessLine##1#1##2#1##3|relax{@

If we are not reading markdown documents from the frozen cache and the ending
token sequence does not appear in the line, store the line in the inputTempFileName
file. If we are reading markdown documents from the frozen cache and the ending
token sequence does not appear in the line, gobble the line.

15595 |ifx|relax##3|relax@

15596 ImarkdownIfOption{frozenCache}{}{@

15597 | immediate|write|markdownOutputFileStream{##1}@
15598 }e

15599 lelse®@

When the ending token sequence appears in the line, make the next newline character
close the inputTempFileName file, return the character categories back to the former
state, convert the inputTempFileNane file from markdown to plain TEX, \input the
result of the conversion, and expand the ending control sequence.

15600 |def~"M{e
15601 ImarkdownInfo{The ending token sequence was found}@
15602 |markdownIfOption{frozenCache}{}{@

15603 | immediate|closeout |markdownOutputFileStream®@
15604 }e

15605 | endgroup®@

15606 |markdownInput{@

15607 |markdownOptionOutputDir@

15608 / |markdownOptionInputTempFileName®@
15609 }e

15610 #2}e

15611 [fi@

Repeat with the next line.

15612 ~Mre

Make the tab character active at expansion time and make it expand to a literal tab
character.

15613 |catcode™ | ""I=13@

448



15614 |def~"I{|markdownReadAndConvertTab}@

Make the newline character active at expansion time and make it consume the rest
of the line on expansion. Throw away the rest of the first line and pass the second
line to the \markdownReadAndConvertProcessLine macro.

15615 |catcode™ | ""M=13@

15616 |def~"M##1~"M{@

15617 |def ™~ ~M####1~"M{Q

15618 |markdownReadAndConvertStripPercentSign####1#1#1|relax}@
15619 “TMre

15620 TTMre

Reset the character categories back to the former state.
15621 | endgroup

Use the lt3luabridge library to define the \markdownLuaExecute macro, which takes
in a Lua scripts and expands to the standard output produced by its execution.

15624 \markdownLuaExecute

15625 #1

15626 {

15627 \int_compare:nNnT

15628 { \g_luabridge_method_int }

15629 =

15630 { \c_luabridge_method_shell_int }
15631 {

15632 \sys_if_shell_unrestricted:F
15633 {

15634 \sys_if_shell:TF

15635 {

15636 \msg_error:nn

15637 { markdown }

15638 { restricted-shell-access }
15639 }

15640 {

15641 \msg_error:nn

15642 { markdown }

15643 { disabled-shell-access }
15644 }

15645 }

15646 }

15647 \str_gset:NV

15648 \g_luabridge_output_dirname_str
15649 \markdownOptionQutputDir

15650 \luabridge_now:e

15651 { #1 3}

15652  }

449



15653 \cs_generate_variant:Nn
15654  \msg_new:nnnn

15655  { nnnV }

15656 \tl_set:Nn

15657  \1_tmpa_tl

15658  {

15659 You~may~need~to~run~TeX~with~the~--shell-escape~or~the~
15660 -—enable-writel8~flag,~or~write~shell_escape=t~in~the~
15661 texmf.cnf~file.

15662

15663 \msg_new:nnnV

15664  { markdown }

15665  { restricted-shell-access }
15666  { Shell~escape~is~restricted }
15667  \1_tmpa_tl

15668 \msg_new:nnnV

15669  { markdown }

15670 { disabled-shell-access }
15671 { Shell~escape~is~disabled }
15672 \1_tmpa_tl

15673 \ExplSyntax0ff

3.2.6 Buffering Inline Markdown Input

This section describes the implementation of the macro \markinline.

15674 \ExplSyntaxOn

15675 \tl_new:N

15676  \g_0@_after_markinline_tl
15677 \tl_gset:Nn

15678  \g_0@_after_markinline_tl

15679 { \unskip }
15680 \cs_new:Npn
15681 \markinline
15682  {

Locally change the category of the special plain TEX characters to other in order to
prevent unwanted interpretation of the input markdown text as TEX code.

15683 \group_begin:
15684 \cctab_select:N
15685 \c_other_cctab

Unless we are reading markdown documents from the frozen cache, open the file
inputTempFileName for writing.

15686 \@@_if_option:nF
15687 { frozenCache }
15688 {

15689 \immediate

450



15690 \openout

15691 \markdownQOutputFileStream

15692 \markdownOptionInputTempFileName
15693 \relax

15694 \msg_info:nne

15695 { markdown }

15696 { buffering-markinline }

15697 { \markdownOptionInputTempFileName }
15698 3

Peek ahead and extract the inline markdown text.

15699 \peek_regex_replace_once:nnF
15700 {{ (*7) } 1}
15701 {

Unless we are reading markdown documents from the frozen cache, store the text in
the file inputTempFileName and close it.

2 \c¢ { @0@_if_option:nF }

3 \cB { frozenCache \cE }

4 \cB {

5 \¢ { immediate }

)6 \c { write }

)7 \c¢ { markdownOutputFileStream }
08 \cB { \1 \cE }

)9 \¢ { immediate }

0 \¢ { closeout }

1 \c¢ { markdownOutputFileStream }
2 \cE }

Reset the category codes and \input the result of the conversion.

G

v v v Ov Ot Ot Ot Ot Ot Ot Ot

15713 \c¢ { group_end: }

15714 \c¢ { group_begin: }

15715 \c { @@_setup:n }

15716 \cB { contentLevel = inline \cE }
15717 \c¢ { markdownInput }

15718 \cB {

15719 \c¢ { markdownOptionOutputDir } /
15720 \c¢ { markdownOptionInputTempFileName }
15721 \cE }

15722 \c { group_end: }

15723 \¢ { tl_use:N }

15724 \c¢ { g_0@_after_markinline_tl }
15725 }

15726 {

15727 \msg_error:nn

15728 { markdown }

15729 { markinline-peek-failure }

15730 \group_end:

451



31 \tl_use:N

32 \g_0@_after_markinline_tl
33 }

4}

35 \msg_new:nnn

36 { markdown }

37 { buffering-markinline }

38 { Buffering~inline~markdown~input~into~

39 the~temporary~input~file~"#1". }

10 \msg_new:nnnn

41 { markdown }

42 { markinline-peek-failure }

13 { Use~of~\iow_char:N \\ markinline~doesn't~match~its~definition }
14 { The~macro~should~be~followed~by~inline~

15 markdown~text~in~curly~braces }

4

3.2.7 Typesetting Markdown

The \markdownInput macro uses an implementation of the \markdownLuaExecute
macro to convert the contents of the file whose filename it has received as its single
argument from markdown to plain TEX.

15747 \ExplSyntaxOn

15748 \cs_new:Npn

15749 \markdownInput

15750 #1

15751 {

15752 \Q@@_if_option:nTF
15753 { frozenCache }
15754 {

15755 \markdownInputRaw
15756 {#1}

15757 ¥

15758 {

If the file does not exist in the current directory, we will search for it in the directories
specified in \1_file_search_path_seq. On IATEX, this also includes the directories
specified in \input@path.

15759 \tl_set:Nx

15760 \1_tmpa_tl

15761 {#1 3}

15762 \file_get_full_name:VNTF
15763 \1_tmpa_tl

15764 \1_tmpb_tl

15765 {

15766 \exp_args:NV

15767 \markdownInputRaw

452



68 \1_tmpb_tl

15769 }

15770 {

1 \msg_error:nnV

1 { markdown }

1 { markdown-file-does-not-exist }
1

1 }

76 }
7}
'8 \msg_new:nnn

(

71

72

73

74 \1_tmpa_tl
75

{

{

7

79  { markdown }

15780  { markdown-file-does-not-exist }
15781 o

15782 Markdown~file~#1~does~not~exist
15783  }

1

15

Swap the category code of the backslash symbol and the pipe symbol, so that we
may use the backslash symbol freely inside the Lua code. Furthermore, use the
ampersand symbol to specify parameters.

15786 \catcode™ |=0%

15787 \catcode \\=12},

15788 \catcode’ | &=6Y%

15789 | gdef ImarkdownInputRaw#1{%

Change the category code of the percent sign (%) to other, so that a user of the
hybrid Lua option or a malevolent actor can’t produce TeX comments in the plain
TeX output of the Markdown package.

15790 | begingroup

15791 |catcode™ |%=12

Furthermore, also change the category code of the hash sign (#) to other, so that
it’s safe to tokenize the plain TeX output without mistaking hash signs with TeX’s
parameter numbers.

15792 |catcode™ [#=12

If we are reading from the frozen cache, input it, expand the corresponding
\markdownFrozenCache{number) macro, and increment frozenCacheCounter.

15793 |markdownIfOption{frozenCache}{%
15794 | ifnum|markdownOptionFrozenCacheCounter=0|relax
15795 ImarkdownInfo{Reading frozen cache from

" |markdownOptionFrozenCacheFileName"},
| input |[markdownOptionFrozenCacheFileName | relax
[fi
99 |markdownInfo{Including markdown document number
"|the |[markdownOptionFrozenCacheCounter" from frozen cachely

3

PSS IS B IS RS IS |
© © ©
o3 >

o Ot Ot Ot

_h
ot
®

453



15801 | csname markdownFrozenCacheY,

15802 | the |markdownOptionFrozenCacheCounter | endcsname

15803 |global |advance |markdownOptionFrozenCacheCounter by 1|relax
15804 H%

15805 |markdownInfo{Including markdown document "&1"1}%

Attempt to open the markdown document to record it in the .log and .fls files.
This allows external programs such as ITEXMk to track changes to the markdown
document.

15806 | openin |markdownInputFileStream{&11}7
15807 |closein|markdownInputFileStream
15808 |markdownPrepareLuaOptions

15809 |markdownPrepareInputFilename{&1}J
15810 |markdownLuaExecute{’,

15811 |markdownPrepare

15812 |markdownConvert

15813 |markdownCleanup}’

If we are finalizing the frozen cache, increment frozenCacheCounter.

15814 |markdownIfOption{finalizeCachel}{’,

15815 |global |advance |markdownOptionFrozenCacheCounter by 1|relax}{}
15816 i

15817 | endgroup

15818 Yh

15819 | endgroup

The \markdownEscape macro resets the category codes of the percent sign and the
hash sign back to comment and parameter, respectively, before using the \input
built-in of TEX to execute a TEX document in the middle of a markdown document
fragment.

15820 \gdef\markdownEscape#1{/

15821 \catcode \%=14\relax

15822 \catcode ™ \#=6\relax

15823 \input #1l\relax

15824  \catcode \%4=12\relax

15825  \catcode  \#=12\relax

15826 }%

3.3 BTEX Implementation

The IXTEX implementation makes use of the fact that, apart from some subtle
differences, IWTEX implements the majority of the plain TEX format [19, Section 9].
As a consequence, we can directly reuse the existing plain TEX implementation.

15827 \def\markdownVersionSpace{ }%
15828 \ProvidesPackage{markdown} [\markdownLastModified\markdownVersionSpace v’
15829  \markdownVersion\markdownVersionSpace markdown renderer]

454



3.3.1 Typesetting Markdown

The \markinlinePlainTeX macro is used to store the original plain TEX implemen-
tation of the \markinline macro. The \markinline macro is then redefined to
accept an optional argument with options recognized by the IXTEX interface (see
Section 2.3.3).

15830 \ExplSyntaxOn

15831 \cs_gset_eq:NN

15832  \markinlinePlainTeX
15833  \markinline

15834 \cs_gset:Npn

15835  \markinline

15836 {

15837 \peek_regex_replace_once:nn
15838 { N[ G*x?) N\ ) 7}
15839 {

Apply the options locally.

15840 \c¢ { group_begin: }

15841 \c { @@_setup:n }

15842 \cB { \2 \cE }

15843 \c¢ { tl_put_right:Nn }

15844 \c¢ { g_0@_after_markinline_tl }
15845 \cB { \c¢ { group_end: } \cE }
15846 \c¢ { markinlinePlainTeX }

15847 }

15848  }

15849 \ExplSyntax0ff

The \markdownInputPlainTeX macro is used to store the original plain TEX imple-
mentation of the \yamlInput macro. The \markdownInput and \yamlInput macros
are then redefined to accept an optional argument with options recognized by the
KTEX interface (see Section 2.3.3).

15850 \let\markdownInputPlainTeX\markdownInput
15851 \renewcommand\markdownInput [2] []1{%

15852 \begingroup

15853 \markdownSetup{#11}/

15854 \markdownInputPlainTeX{#2}/,

15855  \endgroup}%

15856 \renewcommand\yamlInput [2] [1{%

15857  \begingroup
15858 \yamlSetup{jekyllData, expectJekyllData, ensureJekyllData, #1}%
15859 \markdownInputPlainTeX{#2}/,

15860  \endgroupl}’

The markdown, markdown*, and yaml IATEX environments are implemented using the
\markdownReadAndConvert macro.

455



15861 \ExplSyntaxOn
15862 \renewenvironment
15863  { markdown }
15864  {

In our implementation of the markdown XTEX environment, we want to distinguish
between the following two cases:

\begin{markdown} [smartEllipses] \begin{markdown}

% This is an optional argument ~ [smartEllipses]
Ao 4 " This is link
\end{markdown} \end{markdown}

Therefore, we cannot use the built-in IATEX support for environments with optional
arguments or packages such as xparse. Instead, we must read the optional argument
manually and prevent reading past the end of a line.

To prevent reading past the end of a line when looking for the optional argument
of the markdown IATEX environment and accidentally tokenizing markdown text, we
change the category code of carriage return (\r, ASCII character 13 in decimal) from
5 (end of line).

While any category code other than 5 (end of line) would work, we switch to the
category 13 (active), which is also used by the \markdownReadAndConvert macro.
This is necessary if we read until the end of a line, because then the carriage return
character will be produced by TEX via the \endlinechar plain TEX macro and it
needs to have the correct category code, so that \markdownReadAndConvert processes
it correctly.

15865 \group_begin:

15866 \char_set_catcode_active:n { 13 }

To prevent doubling the hash signs (#, ASCII code 35 in decimal), we switch its
category from 6 (parameter) to 11 (letter).

15867 \char_set_catcode_letter:n { 35 }

After we have matched the opening [ that begins the optional argument, we accept
carriage returns as well.

15868 \peek_regex_replace_once:nnF
15869 N S\ DN+« (C11N\ [P\l * }
15870 {

After we have matched the optional argument, we switch back the category code
of carriage returns and hash signs and we retokenize the content. This will cause
single new lines to produce a space token and multiple new lines to produce \par
tokens. Furthermore, this will cause hash signs followed by a number to be recognized
as parameter numbers, which is necessary when we use the optional argument to
redefine token renderers and token renderer prototypes.

456



15871 \c¢ { group_end: }

15872 \c¢ { tl_set_rescan:Nnn } \c¢ { 1_tmpa_tl } { } { \1 }

Then, we pass the retokenized content to the \markdownSetup macro.

15873 \c¢ { @@_setup:V } \c¢ { 1_tmpa_tl }

Finally, regardless of whether or not we have matched the optional argument, we let

the \markdownReadAndConvert macro process the rest of the IATEX environment.
We also make provision for using the \markdown command as a part of a different

IXTEX environment as follows:

\newenvironment{foo}/
{code before \markdown[some, options]}/
{\markdownEnd code after}

15874 \c { exp_args:NV }

15875 \¢ { markdownReadAndConvert@ }
15876 \¢ { Q@currenvir }

15877 }

15878 {

15879 \group_end:

15880 \exp_args:NV

15881 \markdownReadAndConvert@

15882 \@currenvir

15883 }

15884  }
15885 { \markdownEnd }
15886 \renewenvironment

15887  { markdownx }

15888 [ 1]

15880  {

15890 \@@_if_option:nTF

15891 { experimental }

15892 {

15893 \msg_error:nn

15894 { markdown }

15895 { latex-markdown-star-deprecated }
15896 }

15897 {

15898 \msg_warning:nn

15899 { markdown }

15900 { latex-markdown-star-deprecated }
15901 ¥

15902 \Q@_setup:n

15903 { #1132

15904 \markdownReadAndConvert@

15905 { markdown* }

457



15906 }

15907  { \markdownEnd }
15908 \renewenvironment
15909 { yaml }

15910  {

15911 \group_begin:

15912 \yamlSetup

15913 { jekyllData, expectJekyllData, ensureJekyllData }

15914 \markdown

15915}

15916 { \yamlEnd }

15917 \msg_new:nnn

15918 { markdown }

15919  { latex-markdown-star-deprecated }

15920 {

15921 The~markdown*~LaTeX~environment~has~been~deprecated~and~will~
15922 be~removed~in~the~next~major~version~of~the~Markdown~package.
15923  }

15924 \cs_generate_variant:Nn 7% noqa: w402
15925  \@@_setup:n

15926 { V }

15927 \ExplSyntax0ff

15928 \begingroup

Locally swap the category code of the backslash symbol with the pipe symbol, and of
the left ({) and right brace (}) with the less-than (<) and greater-than (>) signs. This
is required in order that all the special symbols that appear in the first argument of
the markdownReadAndConvert macro have the category code other.

15929 \catcode™\|=0\catcode \<=1\catcode \>=2,

15930 \catcode \\=12|catcode” [{=12|catcode” | }=12%

15931 | gdef ImarkdownReadAndConvert@#1<y

15932 |markdownReadAndConvert<\end{#13}>

15933 <|end<#1>>>Y,

15934 | endgroup

3.3.2 Themes

This section overrides the plain TEX implementation of the theme-loading mechanism
from Section 3.2.2. Furthermore, this section also implements the built-in KTEX
themes provided with the Markdown package.

15935 \ExplSyntax0On

15936 \prop_new:N \g_0@_latex_loaded_themes_linenos_prop

15937 \prop_new:N \g_0@_latex_loaded_themes_versions_prop

15938 \cs_gset:Nn

15939  \@@_load_theme:nnn

15940  {

458



If the Markdown package has not yet been loaded, determine whether either this
is a built-in theme according to the prop \g_0@_latex_built_in_themes_prop or
a file named markdowntheme(munged theme name).sty exists and whether we are
still in the preamble.

15941 \ifmarkdownLaTeXLoaded

15942 \ifx\@onlypreamble\@notprerr

If both conditions are true, end with an error, since we cannot load IXTEX themes
after the preamble.

15943 \bool_if :nTF

15944 {

15945 \bool_lazy_or_p:nn

15946 {

15947 \prop_if_in_p:Nn

15948 \g_0@_latex_built_in_themes_prop
15949 {#1 7}

15950 }

15951 {

15952 \file_if_exist_p:n

15953 { markdown theme #3.sty }
15954 }

15955 }

15956 {

15957 \msg_error:nn

15958 { markdown }

15959 { latex-theme-after-preamble }
15960 +

Otherwise, try loading a plain TEX theme instead.
15961 {

15962 \@@_plain_tex_load_theme:nnn
15963 {#1}

15964 {#2 1}

15965 {#3 %

15966 ¥

15967 \else

If the Markdown package has already been loaded but we are still in the preamble,
load a KTEX theme if it exists or load a plain TEX theme otherwise.

15968 \bool_if:nTF

15969 {

15970 \bool_lazy_or_p:nn

15971 {

15972 \prop_if_in_p:Nn

15973 \g_00_latex_built_in_themes_prop
15974 {#1 3}

15975 ¥

459



15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020

{
\file_if_exist_p:n
{ markdown theme #3.sty }

\prop_get :NnNTF

\g_0@_latex_loaded_themes_linenos_prop
{#1 1}
\1_tmpa_tl
{
\prop_get :NnN
\g_00_latex_loaded_themes_versions_prop
{ #1 1}
\1_tmpb_t1
\str_if_eq:nVTF
{#2}
\1_tmpb_t1l
{
\msg_warning:nnnVn
{ markdown }
{ repeatedly-loaded-latex-theme }

{#172
\1_tmpa_tl
{#2}
}
{

\msg_error :nnnnVV
{ markdown }
{ different-versions—-of-latex-theme }

{#1}
{#2 }
\1_tmpb_tl
\1_tmpa_tl
}
}
{

\prop_gput : Nnx
\g_00@_latex_loaded_themes_linenos_prop
{#1}

{ \tex_the:D \tex_inputlineno:D } 7% noqga:

\prop_gput : Nnn
\g_0@_latex_loaded_themes_versions_prop
{#1}

{#2 }

460

W200



Load built-in plain TEX themes from the prop \g_0@_latex_built_in_themes_prop
and from the filesystem otherwise.

16021 \prop_if_in:NnTF

16022 \g_00_latex_built_in_themes_prop
16023 {#1 3}

16024 {

16025 \msg_info:nnnn

16026 { markdown }

16027 { loading-built-in-latex-theme }
16028 {#1}

16029 {#2 }

16030 \prop_item:Nn

16031 \g_0@_latex_built_in_themes_prop
16032 {#1}

16033 }

16034 {

16035 \msg_info:nnnn

16036 { markdown }

16037 { loading-latex-theme }
16038 {#1}

16039 {#2}

16040 \RequirePackage

16041 { markdown theme #3 }
16042 }

16043 }

16044 }

16045 {

16046 \@@_plain_tex_load_theme:nnn

16047 {#1 7

16048 {#2 }

16049 { #3 %}

16050 ¥

16051 \fi

16052 \else

If the Markdown package has not yet been loaded, postpone the loading until the
Markdown package has finished loading.

16053 \msg_info:nnnn

16054 { markdown }

16055 { theme-loading-postponed }
16056 {#1}

16057 {#2 }

16058 \AtEndOfPackage

16059 {

16060 \@@_set_theme:n

16061 {#1 0 #2 }

16062 }

461



16063 \fi

16064  }

16065 \msg_new:nnn

16066 { markdown }

16067  { theme-loading-postponed }

16068  {

16069 Postponing~loading~version~#2~of~Markdown~theme~#1~until~
0 Markdown~package~has~finished~loading

o}

2 \msg_new:nnn

3 { markdown }

4 { loading-built-in-latex-theme }

5 { Loading~version~#2~of~built-in~LaTeX~Markdown~theme~#1 }
6 \msg_new:nnn

7 { markdown }

8 { loading-latex-theme }

9  { Loading~version~#2~of~LaTeX~Markdown~theme~#1 }

16080 \msg_new:nnn

16081 { markdown }

16082  { repeatedly-loaded-latex-theme }

16083 {

16084 Version~#3~of~LaTeX~Markdown~theme~#1~was~previously~
16085 loaded~on~line~#2,~not~loading~it~again

16086  }

16087 \msg_new:nnn
16088 { markdown }

16089  { different-versions-of-latex-theme }

16090  {

16091 Tried~to~load~version~#2~of~LaTeX~Markdown~theme~#1~
16092 but~version~#3~has~already~been~loaded~on~line~#4
16093  }

16094 \cs_generate_variant:Nn

16095  \msg_new:nnnn

16096 { nnVV }

16097 \tl_set:Nn

16098 \1_tmpa_tl

16099  { Cannot~load~LaTeX~Markdown~theme~#1l~after~ }
16100 \tl_put_right:NV

16101 \1_tmpa_tl

16102  \c_backslash_str

16103 \tl_put_right:Nn

16104  \1_tmpa_tl

16105  { begin { document } %}

16106 \tl_set:Nn

16107 \1_tmpb_tl

16108  { Load~Markdown~theme-~#1~before~ }
16109 \tl_put_right:NV

462



16110 \1_tmpb_tl

16111 \c_backslash_str

16112 \tl_put_right:Nn

16113 \1_tmpb_tl

16114 { begin { document } %}

16115 \msg_new:nnVV

16116 { markdown }

16117  { latex-theme-after-preamble }

16118 \1_tmpa_tl

16119 \1_tmpb_tl

The witiko/dot and witiko/graphicx/http IXTEX themes load the package graph-
icx, see also Section 1.1.3. Then, they load the corresponding plain TEX themes.

16120 \tl_set:Nn
16121 \1_tmpa_tl

16122 {

16123 \RequirePackage

16124 { graphicx }

16125 \markdownLoadPlainTeXTheme
16126}

16127 \prop_gput:NnV

16128 \g_0@_latex_built_in_themes_prop
16129 { witiko / dot }

16130 \1_tmpa_t1l

16131 \prop_gput :NnV

16132 \g_0@_latex_built_in_themes_prop
16133 { witiko / graphicx / http }
16134 \1_tmpa_tl

16135 \ExplSyntaxOff

The witiko/markdown/defaults IXTEX theme also loads the corresponding plain

TEX theme.

16136 \markdownLoadPlainTeXTheme
Next, the IATEX theme overrides some of the plain TEX definitions. See Section 3.3.4

for the actual definitions.
3.3.3 Options

The supplied package options are processed using the \markdownSetup macro.
16137 \DeclareOptionx{J

16138 \expandafter\markdownSetup\expandafter{\CurrentOption}}/

16139 \ProcessOptions\relax

3.3.4 Token Renderer Prototypes

The following configuration should be considered placeholder. If the option plain
has been enabled (see Section 2.2.2.3), none of the definitions will take effect.

463



16140 \markdownIfOption{plain}{\iffalse}{\iftrue}

3.3.4.1 Lists

If either the tightLists or the fancyLists Lua option is enabled and the current
document class is not beamer, use a package that provides support for tight and
fancy lists.

If either the package paralist or the package enumitem have already been loaded, use
them. Otherwise, if the option experimental or the command \DocumentMetadata
have been used, use the package enumitem. Otherwise, use the package paralist.
16141 \ExplSyntax0On
16142 \bool_new:N
16143 \g_0@_tight_or_fancy_lists_bool
16144 \bool_gset_false:N
16145  \g_0@_tight_or_fancy_lists_bool
16146 \@@_if_option:nTF
16147 { tightLists }

16148 o

16149 \bool_gset_true:N

16150 \g_0@_tight_or_fancy_lists_bool
16151 }

16152  {

16153 \@@_if_option:nT

16154 { fancyLists }

16155 {

16156 \bool_gset_true:N

16157 \g_00@_tight_or_fancy_lists_bool
16158 }

16159  }

16160 \bool_new:N

16161 \g_0@_beamer_paralist_or_enumitem_bool
16162 \bool_gset_true:N

16163 \g_0@_beamer_paralist_or_enumitem_bool
16164 \@ifclassloaded

16165  { beamer }

16166 { ¥}

16167  {

16168 \@ifpackageloaded
16169 { paralist }

16170 {7

16171 {

16172 \@ifpackageloaded
16173 { enumitem }

16174 {17

16175 {

16176 \bool_gset_false:N

16177 \g_0@_beamer_paralist_or_enumitem_bool

464



16178 }

16179 }

16180  }

16181 \prg_generate_conditional_variant:Nnn
16182  \str_if_eq:nn

16183 { en }

16184  { TF }

16185 \bool_if:nT

16186  {

16187 \g_@@_tight_or_fancy_lists_bool &&
16188 ! \g_00_beamer_paralist_or_enumitem_bool
16189  }

16190 o

16191 \str_if_eq:enTF

16192 { \markdownThemeVersion }
16193 { experimental }

16194 {

16195 \RequirePackage

16196 { enumitem }

16197 ¥

16198 {

16199 \IfDocumentMetadataTF
16200 {

16201 \RequirePackage
16202 { enumitem }

16203 }

16204 {

16205 \RequirePackage
16206 { paralist }

16207 }

16208 ¥

16209  }

16210 \ExplSyntax0ff

If we loaded the enumitem package, define the tight and fancy list renderer prototypes
to make use of the capabilities of the package.

16211 \ExplSyntaxOn

16212 \cs_new:Nn

16213  \@@_latex_fancy_list_item_label_number:nn

16214 {

16215 \str_case:nn

16216 {#1 3}

16217 {

16218 { Decimal } { #2 }

16219 { LowerRoman } { \int_to_roman:n { #2 } }
16220 { UpperRoman } { \int_to_Roman:n { #2 } }
16221 { LowerAlpha } { \int_to_alph:n { #2 } }

465



16222 { UpperAlpha } { \int_to_Alph:n { #2 } }
16223 }

16224  }

16225 \cs_new:Nn

16226 \@@_latex_fancy_list_item_label_delimiter:n
16227  {

16228 \str_case:nn

16229 {#1}

16230 {

16231 { Default } { . }
16232 { OneParen } { ) }
16233 { Period } { . }
16234 }

16235  }

16236 \cs_new:Nn
16237  \@@_latex_fancy_list_item_label:nnn

16238  {

16239 \@@_latex_fancy_list_item_label_number:nn
16240 {#1}

16241 {#3 }

16242 \Q@_latex_fancy_list_item_label_delimiter:n
16243 {#2}

16244  }

16245 \cs_generate_variant:Nn

16246 \@@_latex_fancy_list_item_label:nnn

16247 { VVn }

16248 \tl_new:N

16249 \1_0@_latex_fancy_list_item_label_number_style_tl
16250 \tl_new:N

16251 \1_0@_latex_fancy_list_item_label_delimiter_style_tl
16252 \@ifpackageloaded { enumitem } {

16253  \markdownSetup { rendererPrototypes = {

First, let’s define the tight list item renderer prototypes.

16254 ulBeginTight = {
16255 \begin

16256 { itemize }
16257 [ noitemsep ]
16258 },

16259 ulEndTight = {
16260 \end

16261 { itemize }
16262 T,

16263 0lBeginTight = {
16264 \begin

16265 { enumerate }
16266 [ noitemsep ]
16267 T,

466



16268 0lEndTight = {

16269 \end

16270 { enumerate }

16271 },

16272 dlBeginTight = {

16273 \begin

16274 { description }

16275 [ noitemsep ]

16276 1,

16277 dlEndTight = {

16278 \end

16279 { description }

16280 T,

Second, let’s define the fancy list item renderer prototypes.

16281 fancy0lBegin = {

16282 \group_begin:

16283 \tl_set:Nn

16284 \1_0@_latex_fancy_list_item_label_number_style_tl
16285 {#1 }

16286 \tl_set:Nn

16287 \1_0@_latex_fancy_list_item_label_delimiter_style_tl
16288 {#2}

16289 \begin

16290 { enumerate }

16291 T,

16292 fancy0lBeginTight = {

16293 \group_begin:

16294 \tl_set:Nn

16295 \1_00@_latex_fancy_list_item_label_number_style_tl
16296 {#1 }

16297 \tl_set:Nn

16298 \1_0@_latex_fancy_list_item_label_delimiter_style_tl
16299 {#2}

16300 \begin

16301 { enumerate }

16302 [ noitemsep ]

16303 1,

16304 fancy0lEnd(|Tight) = {

16305 \end { enumerate }

16306 \group_end:

16307 T,

16308 fancy0lItemWithNumber = {

16309 \item

16310 [

16311 \Q@_latex_fancy_list_item_label:VVn

16312 \1_0@_latex_fancy_list_item_label_number_style_tl
16313 \1_0@_latex_fancy_list_item_label_delimiter_style_tl

467



16314 {#1 3

16315 ]
16316 T,
16317} %

Otherwise, if we loaded the paralist package, define the tight and fancy list renderer
prototypes to make use of the capabilities of the package.

16318 }

16319 { \@ifpackageloaded { paralist } {

16320  \markdownSetup { rendererPrototypes = {

Make tight bullet lists a little less compact by adding extra vertical space above and
below them.

16321 ulBeginTight = {

16322 \group_begin:

16323 \pltopsep=\topsep

16324 \plpartopsep=\partopsep
16325 \begin { compactitem }
16326 1,

16327 ulEndTight = {

16328 \end { compactitem }
16329 \group_end:

16330 1,

16331 fancy0lBegin = {

16332 \group_begin:

16333 \tl_set:Nn

16334 \1_0@_latex_fancy_list_item_label_number_style_tl
16335 {#1}

16336 \tl_set:Nn

16337 \1_0@_latex_fancy_list_item_label_delimiter_style_tl
16338 { #2 %

16339 \begin { enumerate }
16340 },

16341 fancy0lEnd = {

16342 \end { enumerate }
16343 \group_end:

16344 },

Make tight ordered lists a little less compact by adding extra vertical space above
and below them.

16345 0lBeginTight = {

16346 \group_begin:

16347 \plpartopsep=\partopsep
16348 \pltopsep=\topsep

16349 \begin { compactenum }
16350 T,

16351 0lEndTight = {

16352 \end { compactenum }

468



16353 \group_end:

16354 },

16355 fancy0lBeginTight = {

16356 \group_begin:

16357 \tl_set:Nn

16358 \1_0@_latex_fancy_list_item_label_number_style_tl
16359 {#1 }

16360 \tl_set:Nn

16361 \1_0@_latex_fancy_list_item_label_delimiter_style_tl
16362 {#2 }

16363 \plpartopsep=\partopsep

16364 \pltopsep=\topsep

16365 \begin { compactenum }

16366 },

16367 fancy0lEndTight = {

16368 \end { compactenum }

16369 \group_end:

16370 },

16371 fancy0lItemWithNumber = {

16372 \item

16373 [

16374 \Q@_latex_fancy_list_item_label:VVn

16375 \1_0@_latex_fancy_list_item_label_number_style_tl
16376 \1_0@_latex_fancy_list_item_label_delimiter_style_tl
16377 {#1}

16378 ]

16379 3,

Make tight definition lists a little less compact by adding extra vertical space above
and below them.

16380 d1BeginTight = {

16381 \group_begin:

16382 \plpartopsep=\partopsep
16383 \pltopsep=\topsep

16384 \begin { compactdesc }
16385 },

16386 d1EndTight = {

16387 \end { compactdesc }
16388 \group_end:

16389 }

16390} %}

16391 }

16392 {

Otherwise, if we loaded neither the enumitem package nor the paralist package,
define the tight and fancy list renderer prototypes to fall back on the corresponding
renderers for the non-tight lists.

16393  \markdownSetup

469



16394 {

16395 rendererPrototypes = {

16396 ulBeginTight = \markdownRendererUlBegin,
16397 ulEndTight = \markdownRendererUlEnd,

16398 fancyOlBegin = \markdownRenderer(0lBegin,
16399 fancy0OlEnd = \markdownRendererOlEnd,

16400 0lBeginTight = \markdownRenderer0lBegin,
16401 0lEndTight = \markdownRenderer(OlEnd,

16402 fancy0lBeginTight = \markdownRendererOlBegin,
16403 fancy0lEndTight = \markdownRenderer(0lEnd,
16404 d1BeginTight = \markdownRendererDlBegin,
16405 d1EndTight = \markdownRendererDlEnd,

16406 },

16407 }

16408 } }

16409 \ExplSyntax0ff
16410 \RequirePackage{amsmath}

Unless the unicode-math package has been loaded, load the amssymb package with
symbols to be used for tickboxes.

16411 \@ifpackageloaded{unicode-math}{

16412 \markdownSetup{rendererPrototypes={
16413 untickedBox = {$\mdlgwhtsquare$},
16414 }}

16415

16416 \RequirePackage{amssymb}

16417 \markdownSetup{rendererPrototypes={
16418 untickedBox = {$\square$},

16419  }}

16420 }

16421 \RequirePackage{csvsimple}

16422 \RequirePackage{fancyvrb}

16423 \RequirePackage{graphicx}

16424 \markdownSetup{rendererPrototypes={
16425  hardLineBreak = {\\},

16426 leftBrace = {\textbraceleft},

16427  rightBrace = {\textbraceright},
16428  dollarSign = {\textdollar},

16429  underscore = {\textunderscore},
16430 circumflex = {\textasciicircum},
16431 backslash = {\textbackslash},

16432  tilde = {\textasciitildel},
16433  pipe = {\textbar},

We can capitalize on the fact that the expansion of renderers is performed by TEX
during the typesetting. Therefore, even if we don’t know whether a span of text is

470



37 we can reliably detect

part of math formula or not when we are parsing markdown,
math mode inside the renderer.

Here, we will redefine the code span renderer prototype to typeset upright text in
math formulae and typewriter text outside math formulae.

16434 codeSpan = {%

16435 \ifmmode

16436 \text{#11}V
16437 \else

16438 \texttt{#1}Y
16439 \fi

16440 }}}

3.3.4.2 Content Blocks

In content block renderer prototypes, display the content as a table using the
package csvsimple when the raw attribute is csv, display the content using the
default templates of the package luaxml when the raw attribute is html, execute
the content with TeX when the raw attribute is tex, and display the content as
markdown otherwise.
16441 \ExplSyntaxOn
16442 \markdownSetup{
16443  rendererPrototypes = {

16444 contentBlock = {

16445 \str_case:nnF

16446 { #1 }

16447 {

16448 { csv }

16449 {

16450 \begin { table }

16451 \begin { center }
16452 \csvautotabular { #3 }
16453 \end{ center }

16454 \tl_if_empty:nF

16455 { #4

16456 { \caption { #4 } }
16457 \end { table }

16458 }

16459 { html }

16460 {

If we are using TEX4ht3®, we will pass HTML elements to the output HTML document
unchanged.

3"This property may actually be undecidable. Suppose a span of text is a part of a macro definition.
Then, whether the span of text is part of a math formula or not depends on where the macro is
later used, which may easily be both inside and outside a math formula.

38See https://tug.org/tex4ht/.

471


https://tug.org/tex4ht/

16461 \cs_if_exist:NTF

16462 \HCode

16463 {

16464 \if _mode_vertical:
16465 \IgnorePar
16466 \fi:

16467 \EndP

16468 \special

16469 { t4ht* < #3 }
16470 \par

16471 \ShowPar

16472 }

16473 {

16474 \@@_luaxml_print_html:n
16475 { #3 }

16476 }

16477 }

16478 { tex }

16479 {

16480 \markdownEscape
16481 {#3 }

16482 }

16483 }

16484 {

16485 \markdownInput

16486 {#3}

16487 }

16488 },

16489  },

16490 }

16491 \ExplSyntax0ff

16492 \markdownSetup{rendererPrototypes={
16493 ulBegin = {\begin{itemizel}},
16494  ulEnd = {\end{itemize}},

16495 olBegin = {\begin{enumerate}},
16496 olItem = {\item{}},

16497  olItemWithNumber = {\item[#1.]},
16498  o0lEnd = {\end{enumeratel}},

16499  dlBegin = {\begin{description}},
16500  dlItem = {\item[#1]3},

16501  d1End = {\end{description}},
16502  emphasis = {\emph{#1}},

16503  tickedBox = {$\boxtimes$},

16504  halfTickedBox = {$\boxdot$}}}

If HTML identifiers appear after a heading, we make them produce \label macros.

16505 \ExplSyntaxOn
16506 \seq_new:N

472



16507 \g_00@_header_identifiers_seq
16508 \markdownSetup

16509  {

16510 rendererPrototypes = {

16511 headerAttributeContextBegin = {
16512 \markdownSetup

16513 {

16514 rendererPrototypes = {
16515 attributeldentifier = {
16516 \seq_gput_right:Nn
16517 \g_0@_header_identifiers_seq
16518 { ##1 }

16519 },

16520 },

16521 }

16522 },

16523 headerAttributeContextEnd = {
16524 \seq_map_inline:Nn

16525 \g_0@_header_identifiers_seq
16526 { \label { ##1 } }

16527 \seq_gclear:N

16528 \g_00_header_identifiers_seq
16529 },

16530 },

16531}

If the unnumbered HTML class (or the {-} shorthand) appears after a heading the
heading and all its subheadings will be unnumbered.

16532 \bool_new:N

16533 \1_0@_header_unnumbered_bool

16534 \markdownSetup

16535  {

16536 rendererPrototypes = {

16537 headerAttributeContextBegin += {
16538 \markdownSetup

16539 {

16540 rendererPrototypes = {

16541 attributeClassName = {
16542 \bool_if:nT

16543 {

16544 \str_if_eq_p:nn
16545 { ##1 }

16546 { unnumbered } &&
16547 ! \1_@@_header_unnumbered_bool
16548 }

16549 {

16550 \group_begin:

473



16551 \bool_set_true:N

16552 \1_0@_header_unnumbered_bool
16553 \c@secnumdepth = -2

16554 \markdownSetup

16555 {

16556 rendererPrototypes = {
16557 sectionBegin = {
16558 \group_begin:

16559 },

16560 sectionEnd = {

16561 \group_end:

16562 },

16563 },

16564 }

16565 }

16566 3,

16567 },

16568 }

16569 },

16570 1,

16571 }

16572 \ExplSyntaxO0ff

16573 \markdownSetup{rendererPrototypes={
16574  superscript = {\textsuperscript{#1}},
16575  subscript = {\textsubscript{#1}},

16576 blockQuoteBegin = {\begin{quotation}},

16577  blockQuoteEnd = {\end{quotation}},
16578  inputVerbatim = {\VerbatimInput{#13}},
16579  thematicBreak = {\noindent\rule[0.5ex]{\linewidth}{1pt}},

16580 note = {\footnote{#1}}}}

3.3.4.3 Fenced Code
When no infostring has been specified, default to the indented code block renderer.
16581 \RequirePackage{ltxcmds}
16582 \ExplSyntax0On
16583 \cs_gset_protected:Npn
16584  \markdownRendererInputFencedCodePrototype#1#2#3

16585 {

16586 \tl_if_empty:nTF

16587 {#2}

16588 { \markdownRendererInputVerbatim{#1} }

Otherwise, extract the first word of the infostring and treat it as the name of the
programming language in which the code block is written.

16589 {

16590 \regex_extract_once:nnN

16591 { \wx }

474



16592 {#2 }

16593 \1_tmpa_seq

16594 \seq_pop_left:NN

16595 \1_tmpa_seq

16596 \1_tmpa_tl

When the minted package is loaded, use it for syntax highlighting.
16597 \1tx@ifpackageloaded

16598 { minted }

16599 {

16600 \catcode \%=14\relax

16601 \catcode ™ \#=6\relax

16602 \exp_args:NV

16603 \inputminted

16604 \1_tmpa_tl

16605 {#1}

16606 \catcode \%=12\relax

16607 \catcode  \#=12\relax

16608 ¥

16609 {

When the listings package is loaded, use it for syntax highlighting.
16610 \1tx@ifpackageloaded

16611 { listings }

16612 { \lstinputlisting [ language = \1l_tmpa_tl ] { #1 } }

When neither the listings package nor the minted package is loaded, act as though
no infostring were given.

16613 { \markdownRendererInputFencedCode { #1 } { } { } }
16614 }

16615 }

16616  }

16617 \ExplSyntaxOff
Support the nesting of strong emphasis.

16618 \ExplSyntax0On
16619 \def\markdownLATEXStrongEmphasis#1{
16620  \str_if_in:NnTF

16621 \f@series

16622 {b?}

16623 { \textnormal{#1} }
16624 { \textbf{#1} }
16625 }

16626 \ExplSyntax0ff
16627 \markdownSetup{rendererPrototypes={strongEmphasis={%
16628  \protect\markdownLATEXStrongEmphasis{#1}}}}

Support KTEX document classes that do not provide chapters.
16629 \@ifundefined{chapter}{%

475



16630  \markdownSetup{rendererPrototypes = {

16631 headingOne = {\section{#1}},

16632 headingTwo = {\subsection{#1}},
16633 headingThree = {\subsubsection{#1}},
16634 headingFour = {\paragraph{#1}},
16635 headingFive = {\subparagraph{#1}}}}
16636 %

16637  \markdownSetup{rendererPrototypes = {
16638 headingOne = {\chapter{#1}},

16639 headingTwo = {\section{#1}},

16640 headingThree = {\subsection{#1}},
16641 headingFour = {\subsubsection{#1}},
16642 headingFive = {\paragraph{#1}},
16643 headingSix = {\subparagraph{#1}}}}
16644 }%

3.3.4.4 Tickboxes
If the taskLists option is enabled, we will hide bullets in unordered list items
with tickboxes.

16645 \markdownSetup{

16646 rendererPrototypes = {

16647 ulltem = {%

16648 \futurelet\markdownLaTeXCheckbox\markdownLaTeXUlItem
16649 ¥,

16650 1},

16651 }

16652 \def\markdownLaTeXUlItem{%

16653  \ifx\markdownLaTeXCheckbox\markdownRendererTickedBox
16654 \item[\markdownLaTeXCheckbox]

16655 \expandafter\Q@gobble

16656 \else

16657 \ifx\markdownLaTeXCheckbox\markdownRendererHalfTickedBox
16658 \item[\markdownLaTeXCheckbox]%

16659 \expandafter\expandafter\expandafter\@gobble

16660 \else

16661 \ifx\markdownLaTeXCheckbox\markdownRendererUntickedBox
16662 \item[\markdownLaTeXCheckbox]Y

16663 \expandafter\expandafter\expandafter\expandafter
16664 \expandafter\expandafter\expandafter\@gobble
16665 \else

16666 \item{}%

16667 \fi

16668 \fi

16669  \fi

16670 }

476



3.3.4.5 HTML elements
If the html option is enabled and we are using TEX4ht??, we will pass HTML
elements to the output HTML document unchanged.

16671 \@ifundefined{HCode}{}{
16672 \markdownSetup{

16673 rendererPrototypes = {
16674 inlineHtmlTag = {%
16675 \ifvmode

16676 \IgnorePar

16677 \EndP

16678 \fi

16679 \HCode{#1}%

16680 1,

16681 inputBlockHtmlElement = {J
16682 \ifvmode

16683 \IgnorePar

16684 \fi

16685 \EndP

16686 \special{t4ht*<#1}},
16687 \par

16688 \ShowPar

16689 },

16690 T,

16691  }

16692 }

3.3.4.6 Citations

Here is a basic implementation for citations that uses the IXTEX \cite macro.
There are also implementations that use the natbib \citep, and \citet macros, and
the BibIATEX \autocites and \textcites macros. These implementations will be
used, when the respective packages are loaded.

16693 \newcount\markdownLaTeXCitationsCounter

16694

16695 % Basic implementation

16696 \long\def\@gobblethree#1#2#3{1}/,

16697 \def\markdownLaTeXBasicCitations#1#2#3#4#5#6{Y

16698 \advance\markdownLaTeXCitationsCounter by 1\relax

16699  \ifx\relax#4\relax

16700 \ifx\relax#5\relax

16701 \ifnum\markdownLaTeXCitationsCounter>\markdownLaTeXCitationsTotal
16702 \relax

16703 \cite{#1#2#6}), No prenotes/postnotes, just accumulate cites
16704 \expandafter\expandafter\expandafter
16705 \expandafter\expandafter\expandafter\expandafter

39G8ee https://tug.org/tex4ht/.

477


https://tug.org/tex4ht/

16706 \@gobblethree

16707 \fi

16708 \else), Before a postnote (#5), dump the accumulator
16709 \ifx\relax#1l\relax\else

16710 \cite{#1}/,

16711 \fi

16712 \cite [#5]{#6}%

16713 \ifnum\markdownLaTeXCitationsCounter>\markdownLaTeXCitationsTotal
16714 \relax

16715 \else

16716 \expandafter\expandafter\expandafter

16717 \expandafter\expandafter\expandafter\expandafter
16718 \expandafter\expandafter\expandafter

16719 \expandafter\expandafter\expandafter\expandafter
16720 \markdownLaTeXBasicCitations

16721 \fi

16722 \expandafter\expandafter\expandafter

16723 \expandafter\expandafter\expandafter\expandafter{)
16724 \expandafter\expandafter\expandafter

16725 \expandafter\expandafter\expandafter\expandafter}y,
16726 \expandafter\expandafter\expandafter

16727 \expandafter\expandafter\expandafter\expandafter{’
16728 \expandafter\expandafter\expandafter

16729 \expandafter\expandafter\expandafter\expandafter}’
16730 \expandafter\expandafter\expandafter

16731 \@gobblethree

16732 \fi

16733 \else} Before a prenote (#4), dump the accumulator
16734 \ifx\relax#1\relax\else

16735 \cite{#1}},

16736 \fi

16737 \ifnum\markdownLaTeXCitationsCounter>1\relax

16738 \space % Insert a space before the prenote in later citations
16739 \fi

16740 #4~\expandafter\cite\ifx\relax#b\relax{#6}\else [#5] {#6}\fi
16741 \ifnum\markdownLaTeXCitationsCounter>\markdownLaTeXCitationsTotal
16742 \relax

16743 \else

16744 \expandafter\expandafter\expandafter

16745 \expandafter\expandafter\expandafter\expandafter
16746 \markdownLaTeXBasicCitations

16747 \fi

16748 \expandafter\expandafter\expandafter{’

16749 \expandafter\expandafter\expandafterl}y,

16750 \expandafter\expandafter\expandafter{),

16751 \expandafter\expandafter\expandafter}’,

16752 \expandafter

478



16753 \Q@gobblethree

16754  \fi\markdownLaTeXBasicCitations{#1#2#6},}

16755 \let\markdownLaTeXBasicTextCitations\markdownLaTeXBasicCitations
16756

16757 % Natbib implementation

16758 \def\markdownLaTeXNatbibCitations#1#2#3#4#5{%

16759 \advance\markdownLaTeXCitationsCounter by 1\relax

16760 \ifx\relax#3\relax

16761 \ifx\relax#4\relax

16762 \ifnum\markdownLaTeXCitationsCounter>\markdownLaTeXCitationsTotal
16763 \relax

16764 \citep{#1,#5}), No prenotes/postnotes, just accumulate cites
16765 \expandafter\expandafter\expandafter

16766 \expandafter\expandafter\expandafter\expandafter
16767 \@gobbletwo

16768 \fi

16769 \else), Before a postnote (#4), dump the accumulator
16770 \ifx\relax#1i\relax\else

16771 \citep{#1}

16772 \fi

16773 \citep[] [#4]{#51}/,

16774 \ifnum\markdownLaTeXCitationsCounter>\markdownLaTeXCitationsTotal
16775 \relax

16776 \else

16777 \expandafter\expandafter\expandafter

16778 \expandafter\expandafter\expandafter\expandafter
16779 \expandafter\expandafter\expandafter

16780 \expandafter\expandafter\expandafter\expandafter
16781 \markdownLaTeXNatbibCitations

16782 \fi

16783 \expandafter\expandafter\expandafter

16784 \expandafter\expandafter\expandafter\expandafter{’
16785 \expandafter\expandafter\expandafter

16786 \expandafter\expandafter\expandafter\expandafter}y,
16787 \expandafter\expandafter\expandafter

16788 \@gobbletwo

16789 \fi

16790  \elsel), Before a prenote (#3), dump the accumulator
16791 \ifx\relax#1\relax\relax\else

16792 \citep{#1}/,

16793 \fi

16794 \citep [#3] [#4]{#5}7

16795 \ifnum\markdownLaTeXCitationsCounter>\markdownLaTeXCitationsTotal
16796 \relax

16797 \else

16798 \expandafter\expandafter\expandafter

16799 \expandafter\expandafter\expandafter\expandafter

479



16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845

16846

\markdownLaTeXNatbibCitations
\fi
\expandafter\expandafter\expandafter{’
\expandafter\expandafter\expandafter}’,
\expandafter
\Q@gobbletwo
\fi\markdownLaTeXNatbibCitations{#1,#5}}

\def\markdownLaTeXNatbibTextCitations#1#2#3#4#5{},

\advance\markdownLaTeXCitationsCounter by 1\relax
\ifx\relax#3\relax
\ifx\relax#4\relax
\ifnum\markdownLaTeXCitationsCounter>\markdownLaTeXCitationsTotal
\relax
\citet{#1,#5}), No prenotes/postnotes, just accumulate cites
\expandafter\expandafter\expandafter
\expandafter\expandafter\expandafter\expandafter
\@gobbletwo
\fi
\else), After a prenote or a postnote, dump the accumulator
\ifx\relax#1l\relax\else
\citet{#1}V,
\fi
, \citet [#3] [#4]1{#5}/
\ifnum\markdownLaTeXCitationsCounter<\markdownLaTeXCitationsTotal
\relax

\else
\ifnum
\markdownLaTeXCitationsCounter=\markdownLaTeXCitationsTotal
\relax
\fi
\fi
\expandafter\expandafter\expandafter
\expandafter\expandafter\expandafter\expandafter
\markdownLaTeXNatbibTextCitations
\expandafter\expandafter\expandafter
\expandafter\expandafter\expandafter\expandafter{’
\expandafter\expandafter\expandafter
\expandafter\expandafter\expandafter\expandafter}’,
\expandafter\expandafter\expandafter
\@gobbletwo
\fi
\else}, After a prenote or a postnote, dump the accumulator
\ifx\relax#1l\relax\relax\else
\citet{#1}/,
\fi

480



16847 , \citet [#3] [#4]{#5}%

16848 \ifnum\markdownLaTeXCitationsCounter<\markdownLaTeXCitationsTotal
16849 \relax

16850 s

16851 \else

16852 \ifnum

16853 \markdownLaTeXCitationsCounter=\markdownLaTeXCitationsTotal
16854 \relax

16855 s

16856 \fi

16857 \fi

16858 \expandafter\expandafter\expandafter

16859 \markdownLaTeXNatbibTextCitations

16860 \expandafter\expandafter\expandafter{’

16861 \expandafter\expandafter\expandafterl}y,

16862 \expandafter

16863 \Q@gobbletwo

16864  \fi\markdownLaTeXNatbibTextCitations{#1,#5}}

16865

16866 % BibLaTeX implementation
16867 \def\markdownLaTeXBibLaTeXCitations#1#2#3#4#5{J,
16868  \advance\markdownLaTeXCitationsCounter by 1\relax

16869 \ifnum\markdownLaTeXCitationsCounter>\markdownLaTeXCitationsTotal
16870  \relax

16871 \autocites#1 [#3] [#4]{#5}/

16872 \expandafter\@gobbletwo

16873 \fi\markdownLaTeXBibLaTeXCitations{#1 [#3] [#4]{#5}}}

16874 \def\markdownLaTeXBibLaTeXTextCitations#1#2#3#4#5{},
16875  \advance\markdownLaTeXCitationsCounter by 1\relax

16876 \ifnum\markdownLaTeXCitationsCounter>\markdownLaTeXCitationsTotal
16877  \relax

16878 \textcites#1 [#3] [#4]{#5}/,

16879 \expandafter\Qgobbletwo

16880  \fi\markdownLaTeXBibLaTeXTextCitations{#1 [#3] [#4]{#5}}}
16881

16882 \markdownSetup{rendererPrototypes = {

16883 cite = {%

16884 \markdownLaTeXCitationsCounter=1Y%

16885 \def\markdownLaTeXCitationsTotal{#1}%

16886 \@ifundefined{autocites}{%

16887 \@ifundefined{citep}{%

16888 \expandafter\expandafter\expandafter
16889 \markdownLaTeXBasicCitations

16890 \expandafter\expandafter\expandafter{y
16891 \expandafter\expandafter\expandafter}y,
16892 \expandafter\expandafter\expandafter{’
16893 \expandafter\expandafter\expandafterl}y,

481



16894 H%

16895 \expandafter\expandafter\expandafter
16896 \markdownLaTeXNatbibCitations

16897 \expandafter\expandafter\expandafter{
16898 \expandafter\expandafter\expandafterl}y,
16899 j A

16900 Hu

16901 \expandafter\expandafter\expandafter
16902 \markdownLaTeXBibLaTeXCitations

16903 \expandafter{\expandafter},

16904 3,

16905  textCite = {J

16906 \markdownLaTeXCitationsCounter=1%

16907 \def\markdownLaTeXCitationsTotal{#1}J,

16908 \@ifundefined{autocites}{%

16909 \@ifundefined{citep}{’

16910 \expandafter\expandafter\expandafter
16911 \markdownLaTeXBasicTextCitations

16912 \expandafter\expandafter\expandafter{’
16913 \expandafter\expandafter\expandafterl}y,
16914 \expandafter\expandafter\expandafter{}
16915 \expandafter\expandafter\expandafterl}y,
16916 o

16917 \expandafter\expandafter\expandafter
16918 \markdownLaTeXNatbibTextCitations

16919 \expandafter\expandafter\expandafter{}
16920 \expandafter\expandafter\expandafterl}y,
16921 Yh

16922 Hx

16923 \expandafter\expandafter\expandafter
16924 \markdownLaTeXBibLaTeXTextCitations

16925 \expandafter{\expandafter}y,

16926 3}

3.3.4.7 Links

Here is an implementation for hypertext links and relative references.
16927 \RequirePackage{url}
16928 \RequirePackage{expl3}
16929 \ExplSyntaxOn
16930 \cs_gset_protected:Npn

16931 \markdownRendererLinkPrototype
16932 #1#2#3#4

16933 {

16934 \tl_set:Nn \1_tmpa_tl { #1 }
16935 \tl_set:Nn \1_tmpb_t1 { #2 }
16936 \bool_set:Nn

482



16937 \1_tmpa_bool

16938 {

16939 \tl_if_eq_p:NN
16940 \1_tmpa_tl

16941 \1_tmpb_t1l
16942 }

16943 \tl_set:Nn \1_tmpa_tl { #4 }
16944 \bool_set:Nn

16945 \1_tmpb_bool

16946 {

16947 \tl_if_empty_p:N
16948 \1_tmpa_tl
16949 }

If the label and the fully-escaped URI are equivalent and the title is empty, assume
that the link is an autolink. Otherwise, assume that the link is either direct or
indirect.

16950 \bool_if:nTF

16951 {

16952 \1_tmpa_bool && \1_tmpb_bool

16953 }

16954 {

16955 \markdownLaTeXRendererAutolink { #2 } { #3 }
16956 }

16957 {

16958 \markdownLaTeXRendererDirectOrIndirectLink
16959 {#1r{#2r{#3 3 {#4

16960 }

16961  }

16962 \def\markdownLaTeXRendererAutolink#1#2{

If the URL begins with a hash sign, then we assume that it is a relative reference.
Otherwise, we assume that it is an absolute URL.

16963  \tl_set:Nn

16964 \1_tmpa_tl

16965 {#2 }

16966 \tl_trim_spaces:N
16967 \1_tmpa_t1

16968  \tl_set:Nx

16969 \1_tmpb_t1l

16970 {

16971 \tl_range:Nnn
16972 \1_tmpa_tl
16973 {11}

16974 {11}

16975 }

16976 \str_if_eq:NNTF
16977 \1_tmpb_tl

483



16978 \c_hash_str

16979 {

16980 \tl_set:Nx

16981 \1_tmpb_tl
16982 {

16983 \tl_range:Nnn
16984 \1_tmpa_tl
16985 {27}

16986 {-113%
16987 }

16988 \exp_args:NV
16989 \ref

16990 \1_tmpb_tl
16991 }

16992 {

16993 \url { #2 }

16994 }

16995 }

16996 \ExplSyntax0ff
16997 \def\markdownLaTeXRendererDirectOrIndirectLink#1#2#3#4{%,
16998 #1\footnote{\ifx\empty#4\empty\else#4: \fi\url{#3}}}

3.3.4.8 Tables
Here is a basic implementation of tables. If the booktabs package is loaded, then
it is used to produce horizontal lines.

16999 \newcount\markdownLaTeXRowCounter

17000 \newcount\markdownLaTeXRowTotal

7001 \newcount\markdownLaTeXColumnCounter
2 \newcount\markdownLaTeXColumnTotal

)3 \newtoks\markdownLaTeXTable

04 \newtoks\markdownLaTeXTableAlignment
7005 \newtoks\markdownLaTeXTableEnd

17006 \AtBeginDocument{}

17007 \Q@ifpackageloaded{booktabs}{%

1

700
70(
70C

17008 \def\markdownLaTeXTopRule{\toprule}y,

17009 \def\markdownLaTeXMidRule{\midrule}%

17010 \def\markdownLaTeXBottomRule{\bottomrule}y,
17011 H%

17012 \def\markdownLaTeXTopRule{\hline}},

17013 \def\markdownLaTeXMidRule{\hline}/

17014 \def\markdownLaTeXBottomRule{\hline}%

17015 Yh

17016 }

17017 \markdownSetup{rendererPrototypes={
17018 table = {%
17019 \markdownLaTeXTable={1}/,

484



17020 \markdownLaTeXTableAlignment={3}%
17021 \markdownLaTeXTableEnd={%

17022 \markdownLaTeXBottomRule

17023 \end{tabular}}

17024 \ifx\empty#1\empty\else

17025 \addto@hook\markdownLaTeXTable{%
17026 \begin{table}

17027 \centering}/

17028 \addto@hook\markdownLaTeXTableEnd{%
17029 \caption{#11}}/

17030 \fi

17031 }

17032 }}

If the tableAttributes option is enabled, we will register any identifiers, so that
they can be used as IXTEX labels for referencing tables.

37 rendererPrototypes = {
8 table += {
\seq_map_inline:Nn

170

170

170

170

170

170

170

1704( \1_0@_table_identifiers_seq
17041 {

17042 \addto@hook

17043 \markdownLaTeXTableEnd
17044 { \label { ##1 } }
17045 }

17046 ¥,

17047  }

17048 }

17049 \markdownSetup {

17050  rendererPrototypes = {

17051 tableAttributeContextBegin = {
17052 \group_begin:

17053 \markdownSetup {

17054 rendererPrototypes = {
17055 attributeIdentifier = {
17056 \seq_put_right:Nn

17057 \1_0@_table_identifiers_seq
17058 { ##1 }

17059 1,

17060 },

17061 }

17(

17

)
062 3,
)63 tableAttributeContextEnd = {

485



Tt o= W

®w I O

0 =1 N 1 7 4 N 3

\group_end:
1,
},
"}
\ExplSyntax0ff
\markdownSetup{rendererPrototypes={
table += {J
\ifx\empty#1\empty\else
\addto@hook\markdownLaTeXTableEnd{%
\end{table}}%
\fi
\addto@hook\markdownLaTeXTable{\begin{tabular}}’
\markdownLaTeXRowCounter=09
\markdownLaTeXRowTotal=#2
\markdownLaTeXColumnTotal=#3Y
\markdownLaTeXRenderTableRow
}
i3
\def\markdownLaTeXRenderTableRow#1{%
\markdownLaTeXColumnCounter=0Y%
\ifnum\markdownLaTeXRowCounter=0\relax
\markdownLaTeXReadAlignments#1
\markdownLaTeXTable=\expandafter\expandafter\expandafter{}
\expandafter\the\expandafter\markdownLaTeXTable\expandafter{/
\the\markdownLaTeXTableAlignment}}/
\addto@hook\markdownLaTeXTable{\markdownLaTeXTopRulel}
\else
\markdownLaTeXRenderTableCell#1Y
\fi
\ifnum\markdownLaTeXRowCounter=1\relax
\addto@hook\markdownLaTeXTable\markdownLaTeXMidRule
\fi
\advance\markdownLaTeXRowCounter by 1\relax
\ifnum\markdownLaTeXRowCounter>\markdownLaTeXRowTotal\relax
\the\markdownLaTeXTable
\the\markdownLaTeXTableEnd
\expandafter\@gobble
\fi\markdownLaTeXRenderTableRow}
\def\markdownLaTeXReadAlignments#1{},
\advance\markdownLaTeXColumnCounter by 1\relax
\if#1d%
\addto@hook\markdownLaTeXTableAlignment{1}/,
\else
\addto@hook\markdownLaTeXTableAlignment{#1}%
\fi
\ifnum\markdownLaTeXColumnCounter<\markdownLaTeXColumnTotal\relax\else
\expandafter\@gobble

486



17111 \fi\markdownLaTeXReadAlignments}

17112 \def\markdownLaTeXRenderTableCell#1{},

17113 \advance\markdownLaTeXColumnCounter by 1\relax

17114 \ifnum\markdownLaTeXColumnCounter<\markdownLaTeXColumnTotal\relax

17115 \addto@hook\markdownLaTeXTable{#1&}%
17116 \else

17117 \addto@hook\markdownLaTeXTable{#1\\1}%
17118 \expandafter\@gobble

17119 \fi\markdownLaTeXRenderTableCell}

3.3.4.9 Line Blocks
Here is a basic implementation of line blocks. If the verse package is loaded, then
it is used to produce the verses.

17121 \markdownIfOption{lineBlocks}{’
17122 \RequirePackage{verse}

17123 \markdownSetup{rendererPrototypes={
17124 lineBlockBegin = {J

17125 \begingroup

17126 \def\markdownRendererHardLineBreak{\\}/
17127 \begin{versel}%

17128 },

17129 lineBlockEnd = {Y%

17130 \end{versel}

17131 \endgroup

17132 1,

17133 }}

17134 ¥

17135

3.3.4.10 YAML Metadata

The default setup of YAML metadata will invoke the \title, \author, and \date
macros when scalar values for keys that correspond to the title, author, and date
relative wildcards are encountered, respectively.
17136 \ExplSyntaxOn
17137 \keys_define:nn
17138 { markdown / jekyllData }

17139 {

17140 author .code:n = {
17141 \author

17142 {#1}

17143 1,

17144 date .code:n = {
17145 \date

17146 {#1}

487



17147 ¥,

17148 title .code:n = {
17149 \title
17150 {#1}

To complement the default setup of our key—values, we will use the \maketitle
macro to typeset the title page of a document at the end of YAML metadata. If we
are in the preamble, we will wait macro until after the beginning of the document.
Otherwise, we will use the \maketitle macro straight away, temporarily resetting
the category codes of the percent sign and the hash sign back to comment and
parameter, respectively.

17151 \char_set_catcode_comment:N \%
17152 \char_set_catcode_parameter:N \#
17153 \AddToHook

17154 { begindocument / end }

17155 { \maketitle }

17156 \char_set_catcode_other:N \%
17157 \char_set_catcode_other:N \#
17158 1,

17159}

3.3.4.11 Marked Text
If the mark option is enabled, we will load either the soul package or the lua-ul
package and use it to implement marked text.
17160 \@@_if_option:nT
17161 { mark }

17162 o

17163 \sys_if_engine_luatex:TF
17164 {

17165 \RequirePackage

17166 { luacolor }

17167 \RequirePackage

17168 { lua-ul }

17169 \markdownSetup

17170 {

17171 rendererPrototypes = {
17172 mark = {

17173 \highLight
17174 {#1}
17175 },

17176 }

17177 }

17178 }

17179 {

17180 \RequirePackage

17181 { xcolor }

488



17182 \RequirePackage
17183 { soul }

17184 \markdownSetup
17185 {

17186 rendererPrototypes = {
17187 mark = {
17188 \h1l

17189 {#1}
17190 1,

17191 }

17192 }

17193 }

17194}

3.3.4.12 Strike-Through
If the strikeThrough option is enabled, we will load either the soul package or
the lua-ul package and use it to implement strike-throughs.
17195 \@Q@_if _option:nT
17196 { strikeThrough }

17197 {

17198 \sys_if_engine_luatex:TF
17199 {

17200 \RequirePackage

17201 { lua-ul }

17202 \markdownSetup

17203 {

17204 rendererPrototypes = {
17205 strikeThrough = {
17206 \strikeThrough
17207 {#1 %}

17208 T,

17209 }

17210 }

17211 }

17212 {

17213 \RequirePackage

17214 { soul }

17215 \markdownSetup

17216 {

17217 rendererPrototypes = {
17218 strikeThrough = {
17219 \st

17220 {#1 3%

17221 },

17222 }

17223 }

489



17224 }
17225}

3.3.4.13 Images and their attributes

We define images to be rendered as floating figures using the command
\includegraphics, where the image label is the alt text and the image title is
the caption of the figure.

If the linkAttributes option is enabled, we will make attributes in the form
(key)=(value) set the corresponding keys of the graphicx package to the corresponding
values and we will register any identifiers, so that they can be used as XTEX labels
for referencing figures.

17226 \seq_new:N

17227 \1_@@_image_identifiers_seq
17228 \markdownSetup {

17229  rendererPrototypes = {

17230 image = {

17231 \tl_if_empty:nTF

17232 {#4 }

17233 {

17234 \begin { center }

17235 \includegraphics
17236 [ alt = { #1 } ]
17237 {#3 %

17238 \end { center }

17239 }

17240 {

17241 \begin { figure }

17242 \begin { center }
17243 \includegraphics
17244 [ alt = { #1 } ]
17245 { #3 }

17246 \caption { #4 }
17247 \seq_map_inline:Nn
17248 \1_0@_image_identifiers_seq
17249 { \label { ##1 } }
17250 \end { center }

17251 \end { figure }

17252 }

17253 },

17254}

17255 }

17256 \@@_if_option:nT

17257 { linkAttributes }

17258 {

17259 \RequirePackage { graphicx }
17260  }

490



17261 \markdownSetup {
17262  rendererPrototypes = {

17263 imageAttributeContextBegin = {
17264 \group_begin:

17265 \markdownSetup {

17266 rendererPrototypes = {
17267 attributeldentifier = {
17268 \seq_put_right:Nn

17269 \1_@Q@_image_identifiers_seq
17270 { ##1 }

17271 T,

17272 attributeKeyValue = {
17273 \setkeys

17274 { Gin }

17275 {{##1}r={#21}1}
17276 },

17277 3,

17278 }

17279 T,

17280 imageAttributeContextEnd = {
17281 \group_end:

17282 },

17283},

17284 }

17285 \ExplSyntax0ff

3.3.4.14 Raw Attributes

In the raw block and inline raw span renderer prototypes, display the content
using the default templates of the package luaxml when the raw attribute is html
and default to the plain TeX renderer prototypes otherwise, translating raw attribute
latex to tex.
17286 \ExplSyntaxOn
17287 \cs_new:Nn
17288 \@@_luaxml_print_html:n

17289  {

17290 \luabridge_now:n

17291 {

17292 local~input_file = assert(io.open(" #1 ", "r"))

17293 local~input = assert(input_file:read("*a"))

17294 assert(input_file:close())

17295 input = "<body>" .. input .. "</body>"

17296 local~dom = require("luaxml-domobject") .html_parse (input)
17297 local~output = require("luaxml-htmltemplates") :process_dom(dom)
17298 print (output)

17299 }

17300

491



17301 \cs_gset_protected:Npn

17302 \markdownRendererInputRawInlinePrototype#1#2
17303 {

17304 \str_case:nnF

17305 {#2 }

17306 {

17307 { latex }

17308 {

17309 \@@_plain_tex_default_input_raw_inline:nn
17310 {#1 3}

17311 { tex }

17312 ¥

17313 { html }

17314 {

If we are using TEX4ht*?, we will pass HTML elements to the output HTML document
unchanged.

17315 \cs_if_exist:NTF

17316 \HCode

17317 {

17318 \if _mode_vertical:

17319 \IgnorePar

17320 \EndP

17321 \fi:

17322 \special

17323 { tdht* < #1 }

17324 }

17325 {

17326 \@@_luaxml_print_html:n

17327 {#1}

17328 }

17329 }

17330 }

17331 {

17332 \@@_plain_tex_default_input_raw_inline:nn
17333 {#1}

17334 {#2 }

17335 ¥

17336}

17337 \cs_gset_protected:Npn

17338 \markdownRendererInputRawBlockPrototype#1#2

17339 o

17340 \str_case:nnF
17341 {#2 3}

17342 {

17343 { latex }

408ee https://tug.org/tex4ht/.

492


https://tug.org/tex4ht/

17344 {

17345 \@@_plain_tex_default_input_raw_block:nn
17346 {#11%

17347 { tex }

17348 }

17349 { html }

17350 {

If we are using TEX4ht*!, we will pass HTML elements to the output HTML document
unchanged.

17351 \cs_if_exist:NTF

17352 \HCode

17353 {

17354 \if _mode_vertical:
17355 \IgnorePar

17356 \fi:

17357 \EndP

17358 \special

17359 { t4ht* < #1 }
17360 \par

17361 \ShowPar

17362 }

17363 {

17364 \@@_luaxml_print_html:n
17365 {#17

17366 }

17367 }

17368 }

17369 {

17370 \@@_plain_tex_default_input_raw_block:nn
17371 {#1 3}

17372 {#2}

17373 }

17374}

3.3.4.15 Bracketed spans

If the bracketedSpans option is enabled, we will register any identifiers, so that
they can be used as IXTEX labels for referencing the last IXTFX counter that has been
incremented in e.g. ordered lists.

17375 \seq_new:N

17376 \1_0@_bracketed_span_identifiers_seq
17377 \markdownSetup {

17378 rendererPrototypes = {

17379 bracketedSpanAttributeContextBegin = {
17380 \group_begin:

41See https://tug.org/tex4ht/.

493


https://tug.org/tex4ht/

17381 \markdownSetup {

17382 rendererPrototypes = {

17383 attributeldentifier = {

17384 \seq_put_right:Nn

17385 \1_@@_bracketed_span_identifiers_seq
17386 { ##1 }

17387 },

17388 },

17389 }

17390 },

17391 bracketedSpanAttributeContextEnd = {
17392 \seq_map_inline:Nn

17393 \1_0@_bracketed_span_identifiers_seq
17394 { \label { ##1 } }

17395 \group_end:

17396 3,

17397},

17398 }

17399 \ExplSyntax0ff
17400 \fi % Closes ~\markdownIfOption{plain}{\iffalse}{\iftrue}"

3.3.5 Miscellanea

When buffering user input, we should disable the bytes with the high bit set, since
these are made active by the inputenc package. We will do this by redefining the
\markdownMakeOther macro accordingly. The code is courtesy of Scott Pakin, the
creator of the filecontents package.

17401 \newcommand\markdownMakeOther{%

17402 \count0=128\relax

17403 \loop

17404 \catcode\countO=11\relax

17405 \advance\count0 by 1\relax

17406 \ifnum\count0<256\repeatl}y,

3.4 ConTgXt Implementation

The ConTEXt implementation makes use of the fact that, apart from some subtle
differences, the Mark II and Mark IV ConTgXt formats seem to implement (the
documentation is scarce) the majority of the plain TEX format required by the plain
TEX implementation. As a consequence, we can directly reuse the existing plain TEX
implementation after supplying the missing plain TEX macros.

When buffering user input, we should disable the bytes with the high bit set, since
these are made active by the \enableregime macro. We will do this by redefining
the \markdownMakeOther macro accordingly. The code is courtesy of Scott Pakin,
the creator of the filecontents IXTEX package.

494



17407 \def\markdownMakeOther{’
17408  \count0=128\relax

17409 \loop

17410 \catcode\countO=11\relax
17411 \advance\count0 by 1\relax
17412 \ifnum\count0<256\repeat

On top of that, make the pipe character (|) inactive during the scanning. This is
necessary, since the character is active in ConTEXt.
17413 \catcode™ |=12},

3.4.1 Typesetting Markdown

The \inputmarkdown and \inputyaml macros are defined to accept an optional
argument with options recognized by the ConTEXt interface (see Section 2.4.2).
17414 \long\def\inputmarkdown{’

17415 \dosingleempty

17416 \doinputmarkdownl}’

17417 \long\def\doinputmarkdown [#1]#2{%

17418 \begingroup

17419 \iffirstargument

17420 \setupmarkdown [#1]7%
17421 \fi

17422 \markdownInput{#23}/,

17423 \endgroupl}’%

17424 \long\def\inputyaml{%

17425  \dosingleempty

17426 \doinputyaml},

17427 \long\def\doinputyaml [#1]#2{%

17428 \doinputmarkdown

17429 [jekyllData, expectJekyllData, ensureJekyllData, #1]1{#2}}%

The \startmarkdown, \stopmarkdown, \startyaml, and \stopyaml macros are
implemented using the \markdownReadAndConvert macro.

In Knuth’s TEX, trailing spaces are removed very early on when a line is being put
to the input buffer. [20, sec. 31]. According to Eijkhout [21, sec. 2.2], this is because
“these spaces are hard to see in an editor”. At the moment, there is no option to
suppress this behavior in (Lua)TEX, but ConTEXt MKIV funnels all input through its
own input handler. This makes it possible to suppress the removal of trailing spaces
in ConTEXt MkKIV and therefore to insert hard line breaks into markdown text.
17430 \startluacode
17431 document.markdown_buffering = false
17432 local function preserve_trailing_spaces(line)

17433 if document.markdown_buffering then
17434 line = line:gsub("[ \tI[ \tl$", "\t\t")
17435 end

495



17436 return line

17437 end

17438 resolvers.installinputlinehandler (preserve_trailing_spaces)
17439 \stopluacode

17440 \begingroup

17441 \catcode™\|=0%

17442 \catcode \\=12},

17443 | gdef | startmarkdown{’,

17444 | ctxlua{document .markdown_buffering = truel},
17445 |markdownReadAndConvert{\stopmarkdown}

17446 {|stopmarkdown}}’

17447 | gdef | stopmarkdown{Y

17448 | ctxlua{document .markdown_buffering = falsel}/
17449 | markdownEnd}Y

17450 | gdef | startyaml{’

17451 | begingroup

17452 | ctxlua{document .markdown_buffering = truel}’
17453 | setupyaml [jekyllData, expectJekyllData, ensureJekyllDatal’
17454 |markdownReadAndConvert{\stopyaml}%

17455 {|stopyaml}}¥

17456 | gdef | stopyaml{%

17457 | ctxlua{document.markdown_buffering = falsel}’
17458 | yam1End}?

17459 | endgroup

3.4.2 Themes

This section overrides the plain TEX implementation of the theme-loading mechanism
from Section 3.2.2. Furthermore, this section also implements the built-in ConTEXt
themes provided with the Markdown package.

17460 \ExplSyntaxOn

17461 \prop_new:N \g_0@_context_loaded_themes_linenos_prop

17462 \prop_new:N \g_0@_context_loaded_themes_versions_prop

17463 \cs_gset:Nn

17464  \@@_load_theme:nnn

17465  {

Determine whether either this is a built-in theme according to the prop
\g_0@_context_built_in_themes_prop or a file named t-markdowntheme{munged
theme name).tex exists. If it does, load it. Otherwise, try loading a plain TEX
theme instead.

17466 \bool_if:nTF

17467 {

17468 \bool_lazy_or_p:nn
17469 {

17470 \prop_if_in_p:Nn

496



17471 \g_0Q@_context_built_in_themes_prop

17472 {#1 3}

17473 }

17474 {

17475 \file_if_exist_p:n

17476 { t - markdown theme #3.tex }

17477 }

17478 }

17479 {

17480 \prop_get :NnNTF

17481 \g_0@_context_loaded_themes_linenos_prop
17482 {#1}

17483 \1_tmpa_tl

17484 {

17485 \prop_get :NnN

17486 \g_0@_context_loaded_themes_versions_prop
17487 {#1 3}

17488 \1_tmpb_tl

17489 \str_if_eq:nVTF

17490 {#2 %

17491 \1_tmpb_tl

17492 {

17493 \msg_warning:nnnVn

17494 { markdown }

17495 { repeatedly-loaded-context-theme }
17496 {#1 %

17497 \1_tmpa_tl

17498 {#2 }

17499 }

17500 {

17501 \msg_error :nnnnVV

17502 { markdown }

17503 { different-versions-of-context-theme }
17504 {#1 %

17505 {#2 3}

17506 \1_tmpb_t1

17507 \1_tmpa_tl

17508 }

17509 }

17510 {

17511 \prop_gput :Nnx

17512 \g_0@@_context_loaded_themes_linenos_prop
17513 {#1 3

17514 { \tex_the:D \tex_inputlineno:D } 7% noga: W200
17515 \prop_gput :Nnn

17516 \g_0@_context_loaded_themes_versions_prop
17517 {#1 3}

497



17518 {#2 }

Load built-in plain TEX themes from the prop \g_00@_context_built_in_themes_prop
and from the filesystem otherwise.

17519 \prop_if_in:NnTF

17520 \g_@Q@_context_built_in_themes_prop
17521 {#1}

17522 {

17523 \msg_info:nnnn

17524 { markdown }

17525 { loading-built-in-context-theme }
17526 {#1}

17527 {#2 %

17528 \prop_item:Nn

17529 \g_0@_context_built_in_themes_prop
17530 {#1 %

17531 }

17532 {

17533 \msg_info:nnnn

17534 { markdown }

17535 { loading-context-theme }
17536 {#1 3}

17537 {#2 %

17538 \usemodule

17539 [ t]

17540 [ markdown theme #3 ]
17541 }

17542 }

17543 }

17544 {

17545 \@@_plain_tex_load_theme:nnn

17546 {#1 3}

17547 { #2 %

17548 { #3 %

17549 }

17550}

17551 \msg_new:nnn

2 { markdown }

{ loading-built-in-context-theme }

554 { Loading~version~#2~of~built-in~ConTeXt~Markdown~theme~#1 }
5 \msg_new:nnn

556  { markdown }

7 { loading-context-theme }

8 { Loading~version~#2~of~ConTeXt~Markdown~theme~#1 }
9 \msg_new:nnn

560  { markdown }

7561 { repeatedly-loaded-context-theme }

498



17562 {

17563 Version~#3~of~ConTeXt~Markdown~theme~#1~was~previously~
17564 loaded~on~line~#2,~not~loading~it~again
17565  }

17566 \msg_new:nnn

17567 { markdown }

17568 { different-versions-of-context-theme }

17569 {

17570 Tried~to~load~version~#2~of~ConTeXt~Markdown~theme~#1~
but~version~#3~has~already~been~loaded~on~line~#4

71
572 }

The witiko/markdown/defaults ConTEXt theme provides default definitions for
token renderer prototypes. First, the ConTEXt theme loads the plain TEX theme
with the default definitions for plain TEX:

17574 \markdownLoadPlainTeXTheme

Next, the ConTpXt theme overrides some of the plain TEX definitions. See Section
3.4.3 for the actual definitions.

3.4.3 Token Renderer Prototypes

The following configuration should be considered placeholder. If the option plain
has been enabled (see Section 2.2.2.3), none of the definitions will take effect.

5 \markdownIfOption{plain}{\iffalse}{\iftrue}
6 \def\markdownRendererHardLineBreakPrototype{\blank}/,

7 \def\markdownRendererLeftBracePrototype{\textbraceleft}}
578 \def\markdownRendererRightBracePrototype{\textbracerightl}’
9 \def\markdownRendererDollarSignPrototype{\textdollar}y,

580 \def\markdownRendererPercentSignPrototype{\percent}’

17581 \def\markdownRendererUnderscorePrototype{\textunderscorel}’,
17582 \def\markdownRendererCircumflexPrototype{\textcircumflex}y
17583 \def\markdownRendererBackslashPrototype{\textbackslashl}y
17584 \def\markdownRendererTildePrototype{\textasciitildel},

17585 \def\markdownRendererPipePrototype{\char |}/

17586 \def\markdownRendererLinkPrototype#1#2#3#4{%

17587 \useURL [#1] [#3] [] [#4]1#1\footnote [#1]{\ifx\empty#4\empty\else#4:
17588 \fi\tt<\hyphenatedurl{#3}>}}J

17589 \usemodule [database]

17590 \defineseparatedlist

17591 [MarkdownConTeXtCSV]

17592 [separator={,},

17593 before=\bTABLE,after=\eTABLE,

17594 first=\bTR,last=\eTR,

17595 left=\bTD,right=\eTD]

17596 \def\markdownConTeXtCSV{csv}

499



17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642

17643

\def\markdownRendererContentBlockPrototype#1#2#3#4{J,
\def\markdownConTeXtCSVQ@arg{#1}%
\ifx\markdownConTeXtCSVQ@arg\markdownConTeXtCSV

\placetable[] [tab:#1]1{#4}{%
\processseparatedfile [MarkdownConTeXtCSV] [#3]}%
\else
\markdownInput{#3}%
\fil}%

\def\markdownRendererImagePrototype#1#2#3#4{Y
\placefigure[] [J{#4}{\externalfigure [#3]}}%

\def\markdownRendererUlBeginPrototype{\startitemizel}y,

\def\markdownRendererUlBeginTightPrototype{\startitemize [packed] }%

\def\markdownRendererUlItemPrototype{\item}y

\def\markdownRendererUlEndPrototype{\stopitemize},

\def\markdownRendererUlEndTightPrototype{\stopitemize},

\def\markdownRendererOlBeginPrototype{\startitemize [n]}},

\def\markdownRendererOlBeginTightPrototype{\startitemize [packed,n]}’

\def\markdownRenderer0lItemPrototype{\item}%

\def\markdownRendererO0lItemWithNumberPrototype#1{\sym{#1.}}%

\def\markdownRenderer0lEndPrototype{\stopitemize}y,

\def\markdownRenderer0lEndTightPrototype{\stopitemizel},

\definedescription
[MarkdownConTeXtD1ItemPrototypel
[location=hanging,

margin=standard,
headstyle=boldl’

\definestartstop
[MarkdownConTeXtD1Prototype]

[before=\blank,
after=\blank]?

\definestartstop
[MarkdownConTeXtD1TightPrototypel
[before=\blank\startpacked,

after=\stoppacked\blank]

\def\markdownRendererD1BeginPrototype{%
\startMarkdownConTeXtD1Prototypel}’

\def\markdownRendererD1BeginTightPrototype{’
\startMarkdownConTeXtD1TightPrototypely,

\def\markdownRendererDlItemPrototype#1{/
\startMarkdownConTeXtD1ItemPrototype{#1}}%

\def\markdownRendererD1ItemEndPrototype{%
\stopMarkdownConTeXtD1lItemPrototype}’

\def\markdownRendererD1EndPrototype{’,
\stopMarkdownConTeXtD1Prototypel’

\def\markdownRendererD1EndTightPrototype{’%
\stopMarkdownConTeXtD1TightPrototype}

\def\markdownRendererEmphasisPrototype#1{{\em#1}}/

500



17644 \def\markdownRendererStrongEmphasisPrototype#1{{\bf#1}1}/

17645 \def\markdownRendererBlockQuoteBeginPrototype{\startquotation}
17646 \def\markdownRendererBlockQuoteEndPrototype{\stopquotation}y,
17647 \def\markdownRendererLineBlockBeginPrototype{%

17648 \begingroup

17649 \def\markdownRendererHardLineBreak{

17650 o

17651 \startlines

17652 }%

17653 \def\markdownRendererLineBlockEndPrototype{’
17654 \stoplines

17655  \endgroup

17656 }%

17657 \def\markdownRendererInputVerbatimPrototype#1{\typefile{#1}}%

3.4.3.1 Fenced Code

When no infostring has been specified, default to the indented code block renderer.

17658 \ExplSyntaxOn
17659 \cs_gset:Npn

17660  \markdownRendererInputFencedCodePrototype#1#2#3
17661 {

17662 \tl_if_empty:nTF

17663 {#2}

17664 { \markdownRendererInputVerbatim{#1} }

Otherwise, extract the first word of the infostring and treat it as the name of the
programming language in which the code block is written. This name is then used in
the ConTEXt \definetyping macro, which allows the user to set up code highlighting

mapping as follows:

\definetyping [latex]
\setuptyping [latex] [option=TEX]

\starttext
\startmarkdown
~~~ latex
\documentclass{article}
\begin{document}
Hello world!
\end{document}
\stopmarkdown
\stoptext

17665 {

501

17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692

17693

\regex_extract_once:nnN
{ \w* }
{#2 %
\1_tmpa_seq
\seq_pop_left:NN
\1_tmpa_seq
\1_tmpa_tl
\typefile[\1_tmpa_t1l J[] {#1}
}
}
\ExplSyntaxOff
\def\markdownRendererHeadingOnePrototype#1{\chapter{#1}}%
\def\markdownRendererHeadingTwoPrototype#1{\section{#1}1}/
\def\markdownRendererHeadingThreePrototype#1{\subsection{#1}}%
\def\markdownRendererHeadingFourPrototype#1{\subsubsection{#1}}%
\def\markdownRendererHeadingFivePrototype#1{\subsubsubsection{#1}}%
\def\markdownRendererHeadingSixPrototype#1{\subsubsubsubsection{#1}}/
\def\markdownRendererThematicBreakPrototype{’
\blackrule[height=1pt, width=\hsize]}),
\def\markdownRendererNotePrototype#l{\footnote{#1}1}7
\def\markdownRendererTickedBoxPrototype{\boxtimes}
\def\markdownRendererHalfTickedBoxPrototype{\boxdot}
\def\markdownRendererUntickedBoxPrototype{\square}
\def\markdownRendererStrikeThroughPrototype#1{\overstrikes{#1}}
\def\markdownRendererSuperscriptPrototype#1{\high{#1}}
\def\markdownRendererSubscriptPrototype#1{\low{#1}}
\def\markdownRendererDisplayMathPrototype#1{%
\startformula#1\stopformula}y,

3.4.3.2 Tables
There is a basic implementation of tables.

17694
17695
17696
17697
17698
17699
17700

17701
17702
17703
17704
17705

17706
17707

17708

\newcount\markdownConTeXtRowCounter
\newcount\markdownConTeXtRowTotal
\newcount\markdownConTeXtColumnCounter
\newcount\markdownConTeXtColumnTotal
\newtoks\markdownConTeXtTable
\newtoks\markdownConTeXtTableFloat
\def\markdownRendererTablePrototype#1#2#3{J,
\markdownConTeXtTable={}}
\ifx\empty#1\empty
\markdownConTeXtTableFloat={
\the\markdownConTeXtTable}/,
\else
\markdownConTeXtTableFloat={Y%
\placetable{#1}{\the\markdownConTeXtTable}}/
\fi

502

17709 \begingroup

17710 \setupTABLE[r] [each] [topframe=0ff, bottomframe=off,

17711 leftframe=off, rightframe=off]

17712 \setupTABLE[c] [each] [topframe=off, bottomframe=off,

17713 leftframe=off, rightframe=off]

17714 \setupTABLE[r] [1] [topframe=on, bottomframe=on]

17715 \setupTABLE[r] [#1] [bottomframe=on]

17716 \markdownConTeXtRowCounter=07,

17717 \markdownConTeXtRowTotal=#2}

17718 \markdownConTeXtColumnTotal=#3,

17719 \markdownConTeXtRenderTableRow}

17720 \def\markdownConTeXtRenderTableRow#1{’

17721 \markdownConTeXtColumnCounter=0%

17722 \ifnum\markdownConTeXtRowCounter=0\relax

17723 \markdownConTeXtReadAlignments#17

17724 \markdownConTeXtTable={\bTABLE}/,

17725 \else

17726 \markdownConTeXtTable=\expandafter{),

17727 \the\markdownConTeXtTable\bTR}%

28 \markdownConTeXtRenderTableCell#1,

17729 \markdownConTeXtTable=\expandafter{),

17730 \the\markdownConTeXtTable\eTR}/

31 \fi

32 \advance\markdownConTeXtRowCounter by 1\relax

33 \ifnum\markdownConTeXtRowCounter>\markdownConTeXtRowTotal\relax
34 \markdownConTeXtTable=\expandafter{),

35 \the\markdownConTeXtTable\eTABLE}Y,

36 \the\markdownConTeXtTableFloat

37 \endgroup

38 \expandafter\gobbleoneargument

39 \fi\markdownConTeXtRenderTableRow}

10 \def\markdownConTeXtReadAlignments#1{/

41 \advance\markdownConTeXtColumnCounter by 1\relax

12 \if#1d%

13 \setupTABLE[c] [\the\markdownConTeXtColumnCounter] [align=right]
14 \fi\if#11}

15 \setupTABLE[c] [\the\markdownConTeXtColumnCounter] [align=right]
46 \fi\if#lcy

\7 \setupTABLE [c] [\the\markdownConTeXtColumnCounter] [align=middle]
18 \fi\if#ir),

19 \setupTABLE[c] [\the\markdownConTeXtColumnCounter] [align=left]
50 \fi

51 \ifnum\markdownConTeXtColumnCounter<\markdownConTeXtColumnTotal\relax
52 \else

53 \expandafter\gobbleoneargument

54 \fi\markdownConTeXtReadAlignments}

5

503

17756 \advance\markdownConTeXtColumnCounter by 1\relax

17757 \markdownConTeXtTable=\expandafter{/,

17758 \the\markdownConTeXtTable\bTD#1\eTD}%

17759 \ifnum\markdownConTeXtColumnCounter<\markdownConTeXtColumnTotal\relax
17760 \else

17761 \expandafter\gobbleoneargument

17762 \fi\markdownConTeXtRenderTableCell}

3.4.3.3 Raw Attributes
In the raw block and inline raw span renderer prototypes, default to the plain TeX
renderer prototypes, translating raw attribute context to tex.
17763 \ExplSyntaxOn
17764 \cs_gset:Npn
17765 \markdownRendererInputRawInlinePrototype#1#2

17766 {

17767 \str_case:nnF

17768 {#2 }

17769 {

17770 { latex }

17771 {

17772 \@@_plain_tex_default_input_raw_inline:nn
17773 {#1}

17774 { context }

17775 }

17776 }

17777 {

17778 \@@_plain_tex_default_input_raw_inline:nn
17779 {#1 3}

17780 {#2 }

17781 }

17782}

17783 \cs_gset :Npn
17784 \markdownRendererInputRawBlockPrototype#1#2

17785 {

17786 \str_case:nnF

17787 {#2 }

17788 {

17789 { context }

17790 {

17791 \@@_plain_tex_default_input_raw_block:nn
17792 {#1}

17793 { tex }

17794 }

17795 }

17796 {

17797 \@@_plain_tex_default_input_raw_block:nn

504

17798 {#1 3%

17799 {#2 1}

17800 }

17801}

17802 \cs_gset_eq:NN

17803 \markdownRendererInputRawBlockPrototype

17804 \markdownRendererInputRawInlinePrototype

17805 \fi % Closes ~\markdownIfOption{plain}{\iffalse}{\iftruel}"

17806 \ExplSyntax0ff

17807 \stopmodule

17808 \protect

At the end of the ConTEXt module, we load the witiko/markdown/defaults
ConTEXt theme with the default definitions for token renderer prototypes unless the
option noDefaults has been enabled (see Section 2.2.2.3).

17809 \ExplSyntaxOn

17810 \str_if_eq:VVT

17811 \c_@@_top_layer_tl

17812 \c_0@_option_layer_context_tl

17813 {

17814 \use:c

17815 { ExplSyntaxO0ff }

17816 \@@_if_option:nF

17817 { noDefaults }

17818 {

17819 \@@_if_option:nTF

17820 { experimental }

17821 {

17822 \@@_setup:n

17823 { theme = witiko/markdown/defaults@experimental }
17824 }

17825 {

17826 \Q@@_setup:n

17827 { theme = witiko/markdown/defaults }
17828 }

17829 }

17830 \use:c

17831 { ExplSyntaxOn }

17832 }

17833 \ExplSyntaxOff
17834 \stopmodule
17835 \protect

505

References

1]

2]

[10]

[11]

Hans Hagen. ConTgXt Lua Documents. July 8, 2023. URL: https://www.
pragma-ade.nl/general/manuals/cld-mkiv.pdf (visited on 09/22/2025).

LuaTEX development team. LuaTpX reference manual. Version 1.21. Feb. 1,
2025. URL: http://mirrors.ctan.org/systems/doc/luatex/luatex.pdf
(visited on 05/12/2025).

IXTEX Project. [3kernel. BTEXS programming conventions. Dec. 25, 2024. URL:
https://ctan.org/pkg/13kernel (visited on 01/06/2025).

Frank Mittelbach, Ulrike Fischer, and IXTEX Project. The documentmetadata-
support code. June 1, 2024. URL: https://mirrors. ctan.org/macros/

latex/required/latex-lab/documentmetadata-support-code.pdf (vis-
ited on 10/21/2024).

Vit Novotny. TeXovy interpret jazyka Markdown (markdown.sty). 2015. URL:
https : / /www . muni . cz / en / research / projects / 32984 (visited on
02/19/2018).

Anton Sotkov. File transclusion syntax for Markdown. Jan. 19, 2017. URL:
https : / / github . com / iainc / Markdown - Content - Blocks (visited on
01/08/2018).

John MacFarlane. Pandoc. a universal document converter. 2022. URL: https:
//pandoc.org/ (visited on 10/05/2022).

Bonita Sharif and Jonathan I. Maletic. “An Eye Tracking Study on camelCase
and under_ score Identifier Styles.” In: 2010 IEEE 18th International Conference
on Program Comprehension. 2010, pp. 196-205. DOI: 10.1109/ICPC.2010.41.

Donald Ervin Knuth. The TgXbook. 3rd ed. Vol. A. Computers & Typesetting.
Reading, MA: Addison-Wesley, 1986. ix, 479. 1SBN: 0-201-13447-0.

Frank Mittelbach. The doc and shorturb Packages. Apr. 15, 2017. URL: https:
//mirrors.ctan.org/macros/latex/base/doc.pdf (visited on 02/19/2018).

Till Tantau, Joseph Wright, and Vedran Mileti¢. The Beamer class. Feb. 10,
2021. URL: https://mirrors.ctan.org/macros/latex/contrib/beamer/
doc/beameruserguide.pdf (visited on 02/11/2021).

Vit Stary Novotny. Versioned Themes. Markdown Enhancement Proposal.
Oct. 13, 2024. URL: https://github.com/Witiko/markdown/discussions/
514 (visited on 10/21/2024).

Vit Stary Novotny et al. Convert control sequence with a variable number of
undelimited parameters into a token list. URL: https://tex.stackexchange.
com/q/716362/70941 (visited on 04/28/2024).

506

https://www.pragma-ade.nl/general/manuals/cld-mkiv.pdf
https://www.pragma-ade.nl/general/manuals/cld-mkiv.pdf
http://mirrors.ctan.org/systems/doc/luatex/luatex.pdf
https://ctan.org/pkg/l3kernel
https://mirrors.ctan.org/macros/latex/required/latex-lab/documentmetadata-support-code.pdf
https://mirrors.ctan.org/macros/latex/required/latex-lab/documentmetadata-support-code.pdf
https://www.muni.cz/en/research/projects/32984
https://github.com/iainc/Markdown-Content-Blocks
https://pandoc.org/
https://pandoc.org/
https://doi.org/10.1109/ICPC.2010.41
https://mirrors.ctan.org/macros/latex/base/doc.pdf
https://mirrors.ctan.org/macros/latex/base/doc.pdf
https://mirrors.ctan.org/macros/latex/contrib/beamer/doc/beameruserguide.pdf
https://mirrors.ctan.org/macros/latex/contrib/beamer/doc/beameruserguide.pdf
https://github.com/Witiko/markdown/discussions/514
https://github.com/Witiko/markdown/discussions/514
https://tex.stackexchange.com/q/716362/70941
https://tex.stackexchange.com/q/716362/70941

Vit Stary Novotny. Routing YAML metadata to expl3 key—values. Markdown
Enhancement Proposal. Oct. 14, 2024. URL: https://github.com/witiko/
markdown/discussions/517 (visited on 01/06/2025).

[15] Frank Mittelbach. BTEX’s hook management. June 26, 2024. URL: https:
//mirrors.ctan.org/macros/latex/base/1lthooks-code.pdf (visited on
10/02/2024).

[16] Geoffrey M. Poore. The minted Package. Highlighted source code in KATEX.
July 19, 2017. URL: https://mirrors.ctan.org/macros/latex/contrib/
minted/minted.pdf (visited on 09/01/2020).

[17] Unicode Consortium. The Unicode Standard. Version 16.0 — Core Specification.
Sept. 10, 2024. URL: https://www.unicode.org/versions/Unicodel6.0.0/
UnicodeStandard-16.0.pdf (visited on 05/07/2025).

[18] Roberto Ierusalimschy. Programming in Lua. 3rd ed. Rio de Janeiro: PUC-Rio,
2013. xviii, 347. 1SBN: 978-85-903798-5-0.

[19] Johannes Braams et al. The BTEX 2 Sources. Apr. 15, 2017. URL: https:
//mirrors . ctan . org /macros /latex /base/source2e . pdf (visited on
01/08/2018).

[20] Donald Ervin Knuth. TgX: The Program. Vol. B. Computers & Typesetting.
Reading, MA: Addison-Wesley, 1986. xvi, 594. 1SBN: 978-0-201-13437-7.

[21] Victor Eijkhout. TgX by Topic. A TgXnician’s Reference. Wokingham, England:
Addison-Wesley, Feb. 1, 1992. 307 pp. I1SBN: 978-0-201-56882-0.

Index

autoIdentifiers 22, 35, 89, 105

blankBeforeBlockquote 23

blankBeforeCodeFence 28

blankBeforeDivFence 23

blankBeforeHeading 24

blankBeforeHtmlBlock 24

blankBeforelist 24

bracketedSpans 25, 91, 493

breakableBlockquotes 25

cacheDir 4,17, 20, 61, 62, 163, 194, 404, 426, 445

citationNbsps 25

citations 26, 94, 95

codeSpans 26

contentBlocks 21, 27, 37

507

https://github.com/witiko/markdown/discussions/517
https://github.com/witiko/markdown/discussions/517
https://mirrors.ctan.org/macros/latex/base/lthooks-code.pdf
https://mirrors.ctan.org/macros/latex/base/lthooks-code.pdf
https://mirrors.ctan.org/macros/latex/contrib/minted/minted.pdf
https://mirrors.ctan.org/macros/latex/contrib/minted/minted.pdf
https://www.unicode.org/versions/Unicode16.0.0/UnicodeStandard-16.0.pdf
https://www.unicode.org/versions/Unicode16.0.0/UnicodeStandard-16.0.pdf
https://mirrors.ctan.org/macros/latex/base/source2e.pdf
https://mirrors.ctan.org/macros/latex/base/source2e.pdf

contentBlocksLanguageMap
contentLevel

debugExtensions
debugExtensionsFileName
defaultOptions
definitionLists
depth_first_search
\DocumentMetadata

eagerCache

ensureJekyllData
entities.char_entity
entities.dec_entity
entities.hex_entity
entities.hex_entity_with_x_char
escape_minimal
escape_programmatic_text
escape_typographic_text

expandtabs

expectJekyllData
experimental
experimentalOptions

extensions

extensions.
extensions.
extensions.
extensions.
extensions.
.fenced_code

extensions

extensions.
extensions.
extensions.
extensions.

extensions

extensions.

extensions

extensions.
extensions.
extensions.
.strike_through

extensions

extensions.

bracketed_spans
citations
content_blocks
definition_lists
fancy_lists

fenced_divs
header_attributes
inline_code_attributes
jekyll_data

.line_blocks

link_attributes

.mark

notes
pipe_table
raw_inline

subscripts

508

21
27

9, 21, 28, 347

21, 28

10, 54, 401, 403

28, 99
171
464

17, 401
29
2/8
247
2/8
2/8
252
252
252
308
29, 29

5, 18, 36, 464

10, 401, 403
30, 170, 352
352
353
358
361
363
369
374
378
380
397
380
382
381
384
386
391
391
392

extensions.superscripts
extensions.tex_math

fancyLists
fencedCode
fencedCodeAttributes
fencedDiv

fencedDivs
finalizeCache
frozenCache
frozenCacheCounter
frozenCacheFileName

\g_markdown_diagrams_infostrings_prop

gfmAutoldentifiers

hashEnumerators
headerAttributes
HTML

html
htmlOverLinks
hybrid

inlineCodeAttributes
inlineNotes

\input
\inputmarkdown
inputTempFileName
\inputyaml

iterlines

jekyllData

\1_file_search_path_seq
languages_json
lineBlocks
linkAttributes

mark

\markdown
markdown
markdown*
\markdownBegin
\markdownCleanup

393
393

81, 115-121, 464

32, 42, 95, 103, 122, 415, 418
33, 89, 103, 418

104

33, 44

18, 22, 34, 3/, 61, 62, 162, 401, 402

22, 34, 62, 79, 162, 415, 425
34, 402, 453, 454
22, 34, 61, 402

420
22, 34, 89, 105

35
35, 44, 89, 105
36

36, 107, 108, 477
18, 36

36, 37, 42, 48, 50, 65, 79, 123, 163, 253, 309, 453

509

38, 89, 96

38

58, 403

165, 167, 168, 495

63, 65, 447, 448, 450, 451
165, 167, 495

308

3, 29, 30, 39, 132-135, 137

452

358, 358

40, 111

39, 89, 109, 113, 328, 490

40, 113, 488

158, 159, 457

157, 157, 158, 455, 456
157, 157, 162, 455

56, 56, 57, 58, 155, 157, 158, 166

446

\markdownConvert 446
\markdownEnd 56, 56, 57, 58, 155, 157-159, 166
\markdownError 155, 155
\markdownEscape 56, 59, 454
\markdownIfOption 60
\markdownIfSnippetExists 84
\markdownInfo 155, 155
\markdownInput 56, 58, 157, 159, 160, 162, 167, 452, 455
\markdownInputFilename 445
\markdownInputFileStream 446
\markdownInputPlainTeX 455
\markdownLoadPlainTeXTheme 163, 169, 414
\markdownLuaExecute 449, 452
\markdownLuaOptions 442, 446
\markdownMakeOther 155, 494
\markdownOptionExperimental 65
\markdownOptionFinalizeCache 01
\markdownOptionFrozenCache 61
\markdownOptionHybrid 65
\markdownOptionInputTempFileName 62
\markdownOptionNoDefaults 6/
\markdownOptionQutputDir 62, 63, 66, 67
\markdownOptionPlain 63
\markdownOptionStripPercentSigns 04
\markdownOutputFileStream 446
\markdownPrepare 445
\markdownPrepareInputFilename 445
\markdownPrepareLuaOptions 442
\markdownReadAndConvert 155, 4477, 455457, 495
\markdownReadAndConvertProcessLine 448, 449
\markdownReadAndConvertStripPercentSigns 447
\markdownReadAndConvertTab 446
\markdownRendererAttributeClassName 89
\markdownRendererAttributeIdentifier 89
\markdownRendererAttributeKeyValue 89
\markdownRendererBlockQuoteBegin 90
\markdownRendererBlockQuoteEnd 91
\markdownRendererBracketedSpanAttributeContextBegin 91
\markdownRendererBracketedSpanAttributeContextEnd 91
\markdownRendererCite 94, 95
\markdownRendererCodeSpan 96
\markdownRendererCodeSpanAttributeContextBegin 96

510

\markdownRendererCodeSpanAttributeContextEnd
\markdownRendererContentBlock
\markdownRendererContentBlockCode
\markdownRendererContentBlockOnlineImage
\markdownRendererDisplayMath
\markdownRendererD1Begin
\markdownRendererD1BeginTight
\markdownRendererD1DefinitionBegin
\markdownRendererD1DefinitionEnd
\markdownRendererD1End
\markdownRendererD1EndTight
\markdownRendererD1Item
\markdownRendererD1ItemEnd
\markdownRendererDocumentBegin
\markdownRendererDocumentEnd
\markdownRendererEllipsis
\markdownRendererEmphasis
\markdownRendererError
\markdownRendererFancyOlBegin
\markdownRendererFancy0lBeginTight
\markdownRendererFancy0lEnd
\markdownRendererFancy0OlEndTight
\markdownRendererFancy0lItem
\markdownRendererFancy0lItemEnd
\markdownRendererFancy0lItemWithNumber

\markdownRendererFencedCodeAttributeContextBegin
\markdownRendererFencedCodeAttributeContextEnd
\markdownRendererFencedDivAttributeContextBegin

\markdownRendererFencedDivAttributeContextEnd
\markdownRendererHalfTickedBox
\markdownRendererHardLineBreak
\markdownRendererHeaderAttributeContextBegin
\markdownRendererHeaderAttributeContextEnd
\markdownRendererHeadingFive
\markdownRendererHeadingFour
\markdownRendererHeadingOne
\markdownRendererHeadingSix
\markdownRendererHeadingThree
\markdownRendererHeadingTwo
\markdownRendererImage
\markdownRendererImageAttributeContextBegin
\markdownRendererImageAttributeContextEnd

511

96
97, 98
98
98
129
99
99
100
101
101
101
100
100
114
114
44, 102
102, 142
151
116, 117
117
120
121
118
119
119
103
108
104
10/
130
112
105
105
107
106
105
107
106
106
109
109
109

\markdownRendererInlineHtmlComment
\markdownRendererInlineHtmlTag
\markdownRendererInlineMath
\markdownRendererInputBlockHtmlElement
\markdownRendererInputFencedCode
\markdownRendererInputRawBlock
\markdownRendererInputRawInline
\markdownRendererInputVerbatim
\markdownRendererInterblockSeparator
\markdownRendererJekyllDataBegin
\markdownRendererJekyllDataBoolean
\markdownRendererJekyllDataEmpty
\markdownRendererJekyllDataEnd
\markdownRendererJekyllDataMappingBegin
\markdownRendererJekyllDataMappingEnd
\markdownRendererJekyllDataNumber

\markdownRendererJekyllDataProgrammaticString
\markdownRendererJekyllDataSequenceBegin

\markdownRendererJekyllDataSequenceEnd
\markdownRendererJekyllDataString

\markdownRendererJekyllDataStringPrototype
\markdownRendererJekyllDataTypographicString

\markdownRendererLineBlockBegin
\markdownRendererLineBlockEnd
\markdownRendererLink

\markdownRendererLinkAttributeContextBegin
\markdownRendererLinkAttributeContextEnd

\markdownRendererMark
\markdownRendererNbsp
\markdownRendererNote
\markdownRenderer01Begin
\markdownRenderer01BeginTight
\markdownRenderer01End
\markdownRenderer0OlEndTight
\markdownRenderer0lItem
\markdownRenderer0lItemEnd
\markdownRenderer0lItemWithNumber
\markdownRendererParagraphSeparator
\markdownRendererReplacementCharacter
\markdownRendererSectionBegin
\markdownRendererSectionEnd
\markdownRendererSoftLineBreak

512

135, 135,

136,

112,

A4,

44,

107
108
129
108

95
122
121

95
110
132
134
137
132
133
133
135
136
133
13
140
150

135, 135, 136, 397

111
111
142
113
113
113
115
115
115
116
120
120
117
118
118
110
125
122
122
111

\markdownRendererStrikeThrough 126

\markdownRendererStrongEmphasis 105
\markdownRendererSubscript 127
\markdownRendererSuperscript 127
\markdownRendererTable 128
\markdownRendererTableAttributeContextBegin 127
\markdownRendererTableAttributeContextEnd 127
\markdownRendererTextCite 95
\markdownRendererThematicBreak 129
\markdownRendererTickedBox 130
\markdownRendererUlBegin 92
\markdownRendererUlBeginTight 92
\markdownRendererUlEnd 93
\markdownRendererUlEndTight 94
\markdownRendererUlItem 93
\markdownRendererUlItemEnd 93
\markdownRendererUntickedBox 130
\markdownRendererWarning 151
\markdownSetup 60, 60, 65, 161, 162, 168, 457, 463
\markdownSetupSnippet 82, 82
\markdownThemeVersion 72, 73
\markdownWarning 155, 155
\markinline 56, 57, 58, 157, 159, 450, 455
\markinlinePlainTeX 455
\mmdcCommand 422
new 7,19, 401, 403
notes 40, 115
parsers 269, 307
parsers.commented_line 289
parsers.unicode 272
pipeTables 7, 41,47, 128
preserveTabs 42, 45, 308
rawAttribute 37,42, 42,121, 122
read_decompositions 178
reader 8, 31, 170, 269, 306, 352
reader->add_special_character 8,9, 31, 346
reader->auto_link email 330
reader->auto_link_url 356
reader->create_parser 308
reader->finalize_grammar 342, 408

513

reader->initialize_named_group
reader->insert_pattern
reader->lookup_note_reference
reader->lookup_reference
reader->normalize_tag
reader->options
reader->parser_functions
reader—->parser_functions.name
reader->parsers
reader->register_link
reader->update_rule
reader—->writer

reader.new

relativeReferences

serialize_byte_parser
serialize_byte_range_parser
serialize_replacement
\setupmarkdown
\setupyaml
shiftHeadings
singletonCache

slice

smartEllipses
\startmarkdown
startNumber
\startyaml
\stopmarkdown
\stopyaml
strikeThrough
stripIndent
stripPercentSigns
subscripts
superscripts

syntax

tableAttributes
tableCaptions
taskLists

texComments
texMathDollars
texMathDoubleBackslash

514

347
8,9, 31, 342, 348
320

320

307

307

308

308

307, 307

320

342, 345, 348
307

307, 307, 408
36, 43

171
172

172

168, 168

168

7, 43

19
7,43, 249, 262, 263
44, 102, 163

165, 166, 495

44, 117-119

165, 166, 495

165, 166, 495

165, 166, 495

45, 126, 489

45, 308

447

46, 127

46, 127

344, 348

46, 127, 485
7,46, 47, 127
47, 130, 476
48, 309

37, 48, 129
37, 49, 129

texMathSingleBackslash
tightLists

underscores

unicode_data.casefold_mapping

unicode_data.categories
unicode_data.ccc

unicode_data.composition_mapping

37, 49, 129

49, 92, 94, 99, 101, 116, 117, 120, 121, 464

unicode_data.decomposition_mapping

unicodeNormalization
unicodeNormalizationForm
util.cache
util.cache_verbatim
util.canonically_order
util.casefold
util.compose
util.decompose
util.encode_json_string
util.err

util.escaper
util.expand_tabs_in_line
util.find_file
util.find_files
util.flatten
util.intersperse
util.map

util.normalize
util.pathname
util.rope_last
util.rope_to_string
util.salt
util.table_copy
util.walk

util.warning

walkable_syntax

writer
writer->active_attributes
writer->attribute_type_levels
writer->attributes
writer->block_html_element
writer->blockquote

515

50
183, 194
185, 272
187, 195
179, 199

173, 175, 197

19, 20
19, 20
189, 190
190
195
19/
199
197
190
189
192
190
202
202
191
192
192
201
193
191
191
193
190
190, 191
19/

8, 21, 28, 342, 345-348
170, 170, 248, 249, 352
261, 261, 262, 263

261

259

257

258

writer->bulletitem
writer->bulletlist
writer->citations
writer->code
writer->contentblock
writer->defer_call
writer->definitionlist
writer->display_math
writer->div_begin
writer->div_end
writer->document
writer->ellipsis
writer->emphasis
writer->error
writer->escape
writer->escaped_chars

writer->escaped_minimal_strings

writer->escaped_strings
writer->escaped_uri_chars
writer->fancyitem
writer->fancylist
writer->fencedCode
writer->flatten_inlines
writer->get_state
writer->hard_line_break
writer->heading
writer->identifier
writer->image
writer->infostring
writer->inline_html_comment
writer->inline_html_tag
writer->inline_math
writer->interblocksep
writer->is_writing
writer->jekyllData
writer->lineblock
writer->link
writer->mark
writer->math
writer->nbsp
writer->note
writer->options

516

269,

252,
251,

251,

249,

249,

255
255
353
253
358
269
361
393
374
374
258
251
257
253
253
252
252
252
252
36
363
369
249
269
251
267
253
254
253
256
257
39
250
249
397
381
25/
381
253
250
384
249

writer->ordereditem
writer->orderedlist
writer->paragraph
writer->paragraphsep
writer->plain
writer->pop_attributes
writer->push_attributes
writer->rawBlock
writer->rawlnline
writer->set_state
writer->slice_begin
writer->slice_end
writer->soft_line_break
writer—->space
writer->span
writer->strike_through
writer->string
writer->strong
writer->subscript
writer->superscript
writer->table
writer->thematic_break
writer->tickbox
writer->undosep
writer->uri
writer->verbatim
writer->warning
writer.new

\yaml

yaml
\yamlBegin
\yamlEnd
\yamlInput
\yamlSetup

261,
261,

249,

157, 158

56, 57, 155,
56, 57, 155, 158,
56, 58, 157, 160,

017

256
256
250
250
250
262, 263
262, 263
370
391
269
249
249
251
250
352
391
253
257
392
393
388
251
257
251, 351
253
258
194, 253
249, 408

159
159, 455
158, 166
159, 166
167, 455

60

	Contents
	List of Figures
	1 Introduction
	1.1 Requirements
	1.1.1 Lua Requirements
	1.1.2 Plain TeX Requirements
	1.1.3 LaTeX Requirements
	1.1.4 ConTeXt Prerequisites

	1.2 Feedback
	1.3 Acknowledgements

	2 Interfaces
	2.1 Lua Interface
	2.1.1 Conversion from Markdown to Plain TeX
	2.1.2 User-Defined Syntax Extensions
	2.1.3 Options
	2.1.4 General Behavior
	eagerCache
	experimental
	singletonCache
	unicodeNormalization
	unicodeNormalizationForm

	2.1.5 File and Directory Names
	cacheDir
	contentBlocksLanguageMap
	debugExtensionsFileName
	frozenCacheFileName

	2.1.6 Parser Options
	autoIdentifiers
	blankBeforeBlockquote
	blankBeforeCodeFence
	blankBeforeDivFence
	blankBeforeHeading
	blankBeforeHtmlBlock
	blankBeforeList
	bracketedSpans
	breakableBlockquotes
	citationNbsps
	citations
	codeSpans
	contentBlocks
	contentLevel
	debugExtensions
	definitionLists
	ensureJekyllData
	expectJekyllData
	extensions
	fancyLists
	fencedCode
	fencedCodeAttributes
	fencedDivs
	finalizeCache
	frozenCacheCounter
	gfmAutoIdentifiers
	hashEnumerators
	headerAttributes
	html
	htmlOverLinks
	hybrid
	inlineCodeAttributes
	inlineNotes
	jekyllData
	linkAttributes
	lineBlocks
	mark
	notes
	pipeTables
	preserveTabs
	rawAttribute
	relativeReferences
	shiftHeadings
	slice
	smartEllipses
	startNumber
	strikeThrough
	stripIndent
	subscripts
	superscripts
	tableAttributes
	tableCaptions
	taskLists
	texComments
	texMathDollars
	texMathDoubleBackslash
	texMathSingleBackslash
	tightLists
	underscores

	2.1.7 Command-Line Interface

	2.2 Plain TeX Interface
	2.2.1 Typesetting Markdown and YAML
	2.2.1.1 Typesetting Markdown and YAML directly
	2.2.1.2 Typesetting Markdown and YAML from external documents
	2.2.1.3 Typesetting TeX from inside Markdown and YAML documents

	2.2.2 Options
	2.2.2.1 Finalizing and Freezing the Cache
	2.2.2.2 File and Directory Names
	2.2.2.3 No default token renderer prototypes
	2.2.2.4 Miscellaneous Options
	2.2.2.5 Generating Plain TeX Option Macros and Key-Values

	2.2.3 Themes
	2.2.4 Snippets
	2.2.5 Token Renderers
	2.2.5.1 Attribute Renderers
	2.2.5.2 Block Quote Renderers
	2.2.5.3 Bracketed Spans Attribute Context Renderers
	2.2.5.4 Bullet List Renderers
	2.2.5.5 Citation Renderers
	2.2.5.6 Code Block Renderers
	2.2.5.7 Code Span Renderer
	2.2.5.8 Code Span Attribute Context Renderers
	2.2.5.9 Content Block Renderers
	2.2.5.10 Definition List Renderers
	2.2.5.11 Ellipsis Renderer
	2.2.5.12 Emphasis Renderers
	2.2.5.13 Fenced Code Attribute Context Renderers
	2.2.5.14 Fenced Div Attribute Context Renderers
	2.2.5.15 Header Attribute Context Renderers
	2.2.5.16 Heading Renderers
	2.2.5.17 Inline HTML Comment Renderer
	2.2.5.18 HTML Tag and Element Renderers
	2.2.5.19 Image Renderer
	2.2.5.20 Image Attribute Context Renderers
	2.2.5.21 Interblock Separator Renderers
	2.2.5.22 Line Block Renderers
	2.2.5.23 Line Break Renderers
	2.2.5.24 Link Renderer
	2.2.5.25 Link Attribute Context Renderers
	2.2.5.26 Marked Text Renderer
	2.2.5.27 Markdown Document Renderers
	2.2.5.28 Non-Breaking Space Renderer
	2.2.5.29 Note Renderer
	2.2.5.30 Ordered List Renderers
	2.2.5.31 Raw Content Renderers
	2.2.5.32 Section Renderers
	2.2.5.33 Replacement Character Renderers
	2.2.5.34 Special Character Renderers
	2.2.5.35 Strike-Through Renderer
	2.2.5.36 Subscript Renderer
	2.2.5.37 Superscript Renderer
	2.2.5.38 Table Attribute Context Renderers
	2.2.5.39 Table Renderer
	2.2.5.40 TeX Math Renderers
	2.2.5.41 Thematic Break Renderer
	2.2.5.42 Tickbox Renderers
	2.2.5.43 Warning and Error Renderers
	2.2.5.44 YAML Metadata Renderers
	2.2.5.45 Generating Plain TeX Token Renderer Macros and Key-Values

	2.2.6 Token Renderer Prototypes
	2.2.6.1 YAML Metadata Renderer Prototypes
	2.2.6.2 Generating Plain TeX Token Renderer Prototype Macros and Key-Values

	2.2.7 Logging Facilities
	2.2.8 Miscellanea

	2.3 LaTeX Interface
	2.3.1 Typesetting Markdown
	2.3.1.1 Typesetting Markdown and YAML directly
	2.3.1.2 Typesetting Markdown and YAML from external documents

	2.3.2 Using LaTeX hooks with the Markdown package
	2.3.3 Options
	2.3.3.1 Finalizing and Freezing the Cache
	2.3.3.2 Generating Plain TeX Option, Token Renderer, and Token Renderer Prototype Macros and Key-Values

	2.3.4 Themes

	2.4 ConTeXt Interface
	2.4.1 Typesetting Markdown and YAML
	2.4.1.1 Typesetting Markdown and YAML directly
	2.4.1.2 Typesetting Markdown and YAML from external documents

	2.4.2 Options
	2.4.2.1 Generating Plain TeX Option Macros and Key-Values

	2.4.3 Themes

	3 Implementation
	3.1 Lua Implementation
	3.1.1 Unicode Support
	3.1.1.1 Canonical and Compatibility Decomposition
	3.1.1.2 Hangul Syllable Decomposition
	3.1.1.3 Canonical Composition
	3.1.1.4 Case Folding
	3.1.1.5 Character Categories
	3.1.1.6 Canonical Ordering Classes

	3.1.2 Utility Functions
	3.1.3 HTML Entities
	3.1.4 Plain TeX Writer
	3.1.4.1 Slicing
	3.1.4.2 Basic Formatter Variables and Functions
	3.1.4.3 Escaping Special Characters
	3.1.4.4 Formatters of Warnings and Errors
	3.1.4.5 Formatter of Code Spans
	3.1.4.6 Formatter of Hyperlinks
	3.1.4.7 Formatter of Images
	3.1.4.8 Formatters of Lists
	3.1.4.9 Formatters of HTML Tags, Elements, and Comments
	3.1.4.10 Formatter of Emphasis
	3.1.4.11 Formatter of Strong Emphasis
	3.1.4.12 Formatter of Tickboxes
	3.1.4.13 Formatter of Blockquotes
	3.1.4.14 Formatter of Code Blocks
	3.1.4.15 Formatter of Documents
	3.1.4.16 Formatter of Attributes
	3.1.4.17 Tracking Active Attributes
	3.1.4.18 Automatically Generated Identifiers for Headings
	3.1.4.19 Formatter of Headings
	3.1.4.20 Managing State and Deferred Writer Calls

	3.1.5 Parsers
	3.1.5.1 Basic Parsers
	3.1.5.2 Parsers for Unicode Character Classes and Categories
	3.1.5.3 Parsers Used for Indentation
	3.1.5.4 Parsers Used for HTML Entities
	3.1.5.5 Parsers Used for Markdown Lists
	3.1.5.6 Parsers Used for Markdown Code Spans
	3.1.5.7 Parsers Used for HTML
	3.1.5.8 Parsers Used for Markdown Tags and Links
	3.1.5.9 Helpers for Links and Link Reference Definitions
	3.1.5.10 Inline Elements
	3.1.5.11 Block Elements
	3.1.5.12 Headings

	3.1.6 Markdown Reader
	3.1.6.1 Top-Level Helper Functions
	3.1.6.2 High-Level Parser Functions
	3.1.6.3 Parsers Used for Indentation (local)
	3.1.6.4 Parsers Used for Markdown Lists (local)
	3.1.6.5 Parsers Used for Blockquotes (local)
	3.1.6.6 Helpers for Emphasis and Strong Emphasis (local)
	3.1.6.7 Helpers for Links and Link Reference Definitions (local)
	3.1.6.8 Inline Elements (local)
	3.1.6.9 Block Elements (local)
	3.1.6.10 Lists (local)
	3.1.6.11 Blank (local)
	3.1.6.12 Headings (local)
	3.1.6.13 Syntax Specification

	3.1.7 Built-In Syntax Extensions
	3.1.7.1 Bracketed Spans
	3.1.7.2 Citations
	3.1.7.3 Content Blocks
	3.1.7.4 Definition Lists
	3.1.7.5 Fancy Lists
	3.1.7.6 Fenced Code
	3.1.7.7 Fenced Divs
	3.1.7.8 Header Attributes
	3.1.7.9 Inline Code Attributes
	3.1.7.10 Line Blocks
	3.1.7.11 Marked text
	3.1.7.12 Link Attributes
	3.1.7.13 Notes
	3.1.7.14 Pipe Tables
	3.1.7.15 Raw Attributes
	3.1.7.16 Strike-Through
	3.1.7.17 Subscripts
	3.1.7.18 Superscripts
	3.1.7.19 TeX Math
	3.1.7.20 YAML Metadata

	3.1.8 Conversion from Markdown to Plain TeX
	3.1.9 Command-Line Implementation

	3.2 Plain TeX Implementation
	3.2.1 Logging Facilities
	3.2.2 Themes
	3.2.3 Token Renderer Prototypes
	3.2.3.1 Raw Attributes
	3.2.3.2 Simple YAML Metadata Renderer Prototypes
	3.2.3.3 Complex YAML Metadata Renderer Prototypes

	3.2.4 Lua Snippets
	3.2.5 Buffering Block-Level Markdown Input
	3.2.6 Buffering Inline Markdown Input
	3.2.7 Typesetting Markdown

	3.3 LaTeX Implementation
	3.3.1 Typesetting Markdown
	3.3.2 Themes
	3.3.3 Options
	3.3.4 Token Renderer Prototypes
	3.3.4.1 Lists
	3.3.4.2 Content Blocks
	3.3.4.3 Fenced Code
	3.3.4.4 Tickboxes
	3.3.4.5 HTML elements
	3.3.4.6 Citations
	3.3.4.7 Links
	3.3.4.8 Tables
	3.3.4.9 Line Blocks
	3.3.4.10 YAML Metadata
	3.3.4.11 Marked Text
	3.3.4.12 Strike-Through
	3.3.4.13 Images and their attributes
	3.3.4.14 Raw Attributes
	3.3.4.15 Bracketed spans

	3.3.5 Miscellanea

	3.4 ConTeXt Implementation
	3.4.1 Typesetting Markdown
	3.4.2 Themes
	3.4.3 Token Renderer Prototypes
	3.4.3.1 Fenced Code
	3.4.3.2 Tables
	3.4.3.3 Raw Attributes

	References

